14,253 research outputs found

    Predicting variation of DNA shape preferences in protein-DNA interaction in cancer cells with a new biophysical model

    Full text link
    DNA shape readout is an important mechanism of target site recognition by transcription factors, in addition to the sequence readout. Several models of transcription factor-DNA binding which consider DNA shape have been developed in recent years. We present a new biophysical model of protein-DNA interaction by considering the DNA shape features, which is based on a neighbour dinucleotide dependency model BayesPI2. The parameters of the new model are restricted to a subspace spanned by the 2-mer DNA shape features, which allowing a biophysical interpretation of the new parameters as position-dependent preferences towards certain values of the features. Using the new model, we explore the variation of DNA shape preferences in several transcription factors across cancer cell lines and cellular conditions. We find evidence of DNA shape variations at FOXA1 binding sites in MCF7 cells after treatment with steroids. The new model is useful for elucidating finer details of transcription factor-DNA interaction. It may be used to improve the prediction of cancer mutation effects in the future

    Computational prediction of RNA-protein interaction partners and interfaces

    Get PDF
    RNA-protein interactions play important roles in fundamental cellular processes involved in human diseases, viral replication and defense against pathogens in plants, animals and microbes. However, the detailed recognition mechanisms underlying these interactions are poorly understood. To gain a better understanding of the molecular recognition code for RNA-protein interactions, this dissertation has three related goals: i) to develop methods for predicting RNA-protein interaction partners; ii) to develop an approach for predicting interfacial residues in both the RNA and protein components of RNA-protein complexes; and iii) to develop computational tools and resources for investigating RNA-protein interactions. First, we present machine learning classifiers for predicting RNA-protein interaction partners. The classifiers use the amino acid composition of proteins and the ribonucleotide composition of RNAs as input to predict whether a given RNA-protein pair interacts. We show that protein and RNA sequences alone (i.e., in the absence of any structural information) contain enough signal to allow reliable prediction of interaction partners. Second, we present RPISeq, a webserver that predicts the interaction probabilities of input RNA-protein pairs, using the above-mentioned machine learning classifiers. A comprehensive database of RNA-protein interactions, RPIntDB, is integrated with the webserver to allow users to search for homologous proteins and their known interacting RNA partners. Finally, we perform an analysis of contiguous interfacial amino acids and ribonucleotides in RNA-protein complexes for which structures are known. We generate a dataset of bipartite RNA-protein motifs that can be used to predict interfacial residues in both the RNA and protein sequences of a given RNA-protein pair simultaneously. We show that taking binding partner information into account leads to higher precision in the prediction of RNA-binding residues in proteins. Taken together, these studies have increased our understanding of how RNA and proteins interact

    Algebraic shortcuts for leave-one-out cross-validation in supervised network inference

    Get PDF
    Supervised machine learning techniques have traditionally been very successful at reconstructing biological networks, such as protein-ligand interaction, protein-protein interaction and gene regulatory networks. Many supervised techniques for network prediction use linear models on a possibly nonlinear pairwise feature representation of edges. Recently, much emphasis has been placed on the correct evaluation of such supervised models. It is vital to distinguish between using a model to either predict new interactions in a given network or to predict interactions for a new vertex not present in the original network. This distinction matters because (i) the performance might dramatically differ between the prediction settings and (ii) tuning the model hyperparameters to obtain the best possible model depends on the setting of interest. Specific cross-validation schemes need to be used to assess the performance in such different prediction settings. In this work we discuss a state-of-the-art kernel-based network inference technique called two-step kernel ridge regression. We show that this regression model can be trained efficiently, with a time complexity scaling with the number of vertices rather than the number of edges. Furthermore, this framework leads to a series of cross-validation shortcuts that allow one to rapidly estimate the model performance for any relevant network prediction setting. This allows computational biologists to fully assess the capabilities of their models

    Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli.

    Get PDF
    A significant obstacle in training predictive cell models is the lack of integrated data sources. We develop semi-supervised normalization pipelines and perform experimental characterization (growth, transcriptional, proteome) to create Ecomics, a consistent, quality-controlled multi-omics compendium for Escherichia coli with cohesive meta-data information. We then use this resource to train a multi-scale model that integrates four omics layers to predict genome-wide concentrations and growth dynamics. The genetic and environmental ontology reconstructed from the omics data is substantially different and complementary to the genetic and chemical ontologies. The integration of different layers confers an incremental increase in the prediction performance, as does the information about the known gene regulatory and protein-protein interactions. The predictive performance of the model ranges from 0.54 to 0.87 for the various omics layers, which far exceeds various baselines. This work provides an integrative framework of omics-driven predictive modelling that is broadly applicable to guide biological discovery

    Predicting RNA-Protein Interactions Using Only Sequence Information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA-protein interactions (RPIs) play important roles in a wide variety of cellular processes, ranging from transcriptional and post-transcriptional regulation of gene expression to host defense against pathogens. High throughput experiments to identify RNA-protein interactions are beginning to provide valuable information about the complexity of RNA-protein interaction networks, but are expensive and time consuming. Hence, there is a need for reliable computational methods for predicting RNA-protein interactions.</p> <p>Results</p> <p>We propose <b><it>RPISeq</it></b>, a family of classifiers for predicting <b><it>R</it></b>NA-<b><it>p</it></b>rotein <b><it>i</it></b>nteractions using only <b><it>seq</it></b>uence information. Given the sequences of an RNA and a protein as input, <it>RPIseq </it>predicts whether or not the RNA-protein pair interact. The RNA sequence is encoded as a normalized vector of its ribonucleotide 4-mer composition, and the protein sequence is encoded as a normalized vector of its 3-mer composition, based on a 7-letter reduced alphabet representation. Two variants of <it>RPISeq </it>are presented: <it>RPISeq-SVM</it>, which uses a Support Vector Machine (SVM) classifier and <it>RPISeq-RF</it>, which uses a Random Forest classifier. On two non-redundant benchmark datasets extracted from the Protein-RNA Interface Database (PRIDB), <it>RPISeq </it>achieved an AUC (Area Under the Receiver Operating Characteristic (ROC) curve) of 0.96 and 0.92. On a third dataset containing only mRNA-protein interactions, the performance of <it>RPISeq </it>was competitive with that of a published method that requires information regarding many different features (e.g., mRNA half-life, GO annotations) of the putative RNA and protein partners. In addition, <it>RPISeq </it>classifiers trained using the PRIDB data correctly predicted the majority (57-99%) of non-coding RNA-protein interactions in NPInter-derived networks from <it>E. coli, S. cerevisiae, D. melanogaster, M. musculus</it>, and <it>H. sapiens</it>.</p> <p>Conclusions</p> <p>Our experiments with <it>RPISeq </it>demonstrate that RNA-protein interactions can be reliably predicted using only sequence-derived information. <it>RPISeq </it>offers an inexpensive method for computational construction of RNA-protein interaction networks, and should provide useful insights into the function of non-coding RNAs. <it>RPISeq </it>is freely available as a web-based server at <url>http://pridb.gdcb.iastate.edu/RPISeq/.</url></p

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art

    Get PDF
    Background: RNA molecules play diverse functional and structural roles in cells. They function as messengers for transferring genetic information from DNA to proteins, as the primary genetic material in many viruses, as catalysts (ribozymes) important for protein synthesis and RNA processing, and as essential and ubiquitous regulators of gene expression in living organisms. Many of these functions depend on precisely orchestrated interactions between RNA molecules and specific proteins in cells. Understanding the molecular mechanisms by which proteins recognize and bind RNA is essential for comprehending the functional implications of these interactions, but the recognition ā€˜codeā€™ that mediates interactions between proteins and RNA is not yet understood. Success in deciphering this code would dramatically impact the development of new therapeutic strategies for intervening in devastating diseases such as AIDS and cancer. Because of the high cost of experimental determination of protein-RNA interfaces, there is an increasing reliance on statistical machine learning methods for training predictors of RNA-binding residues in proteins. However, because of differences in the choice of datasets, performance measures, and data representations used, it has been difficult to obtain an accurate assessment of the current state of the art in protein-RNA interface prediction. Results: We provide a review of published approaches for predicting RNA-binding residues in proteins and a systematic comparison and critical assessment of protein-RNA interface residue predictors trained using these approaches on three carefully curated non-redundant datasets. We directly compare two widely used machine learning algorithms (NaĀØıve Bayes (NB) and Support Vector Machine (SVM)) using three different data representations in which features are encoded using either sequence- or structure-based windows. Our results show that (i) Sequencebased classifiers that use a position-specific scoring matrix (PSSM)-based representation (PSSMSeq) outperform those that use an amino acid identity based representation (IDSeq) or a smoothed PSSM (SmoPSSMSeq); (ii) Structure-based classifiers that use smoothed PSSM representation (SmoPSSMStr) outperform those that use PSSM (PSSMStr) as well as sequence identity based representation (IDStr). PSSMSeq classifiers, when tested on an independent test set of 44 proteins, achieve performance that is comparable to that of three state-of-the-art structure-based predictors (including those that exploit geometric features) in terms of Matthews Correlation Coefficient (MCC), although the structure-based methods achieve substantially higher Specificity (albeit at the expense of Sensitivity) compared to sequence-based methods. We also find that the expected performance of the classifiers on a residue level can be markedly different from that on a protein level. Our experiments show that the classifiers trained on three different non-redundant protein-RNA interface datasets achieve comparable cross-validation performance. However, we find that the results are significantly affected by differences in the distance threshold used to define interface residues. Conclusions: Our results demonstrate that protein-RNA interface residue predictors that use a PSSM-based encoding of sequence windows outperform classifiers that use other encodings of sequence windows. While structure-based methods that exploit geometric features can yield significant increases in the Specificity of protein-RNA interface residue predictions, such increases are offset by decreases in Sensitivity. These results underscore the importance of comparing alternative methods using rigorous statistical procedures, multiple performance measures, and datasets that are constructed based on several alternative definitions of interface residues and redundancy cutoffs as well as including evaluations on independent test sets into the comparisons
    • ā€¦
    corecore