
Michiel Stock is a post-doctoral researcher at the Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium. His research
interests include machine learning and computational biology.
Tapio Pahikkala is an assistant professor of machine learning at the Department of Future Technologies, University of Turku, Finland. His research interests
include machine learning methods and applications.
Antti Airola is adjunct professor and university lecturer at the Department of Future Technologies, University of Turku, Finland. His research interests
include machine learning methods and applications.
Willem Waegeman is an associate professor at the Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium. His research
interests include machine learning and its applications.
Bernard De Baets is a senior full professor at the Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium. His research
interests include knowledge-based, predictive and spatio-temporal modelling.
Submitted: 27 June 2018; Received (in revised form): 21 August 2018

© The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

262

Briefings in Bioinformatics, 21(1), 2020, 262–271

doi: 10.1093/bib/bby095
Advance Access Publication Date: 16 October 2018
Problem solving protocol

Algebraic shortcuts for leave-one-out cross-validation
in supervised network inference
Michiel Stock, Tapio Pahikkala, Antti Airola, Willem Waegeman and
Bernard De Baets

Corresponding author: Michiel Stock, Department of Data Analysis and Mathematical Modelling, Ghent University, Belgium. Tel: (+32) 9 264 60 18;
Fax: (+32) 9 264 62 20; E-mail: michiel.stock@ugent.be

Abstract

Supervised machine learning techniques have traditionally been very successful at reconstructing biological networks, such
as protein–ligand interaction, protein–protein interaction and gene regulatory networks. Many supervised techniques for
network prediction use linear models on a possibly nonlinear pairwise feature representation of edges. Recently, much
emphasis has been placed on the correct evaluation of such supervised models. It is vital to distinguish between using a
model to either predict new interactions in a given network or to predict interactions for a new vertex not present in the
original network. This distinction matters because (i) the performance might dramatically differ between the prediction
settings and (ii) tuning the model hyperparameters to obtain the best possible model depends on the setting of interest.
Specific cross-validation schemes need to be used to assess the performance in such different prediction settings.

In this work we discuss a state-of-the-art kernel-based network inference technique called two-step kernel ridge
regression. We show that this regression model can be trained efficiently, with a time complexity scaling with the number of
vertices rather than the number of edges. Furthermore, this framework leads to a series of cross-validation shortcuts that
allow one to rapidly estimate the model performance for any relevant network prediction setting. This allows
computational biologists to fully assess the capabilities of their models. The machine learning techniques with the algebraic
shortcuts are implemented in the RLScore software package: https://github.com/aatapa/RLScore.

Key words: network inference; biological networks; cross-validation; kernel methods

Introduction
Biological systems can be understood as large collections of
interacting parts, such as genes, proteins, nucleic acids and
small organic molecules. Computational techniques are required
to model such biological networks, since the number of possi-
ble interactions is simply too large to explore experimentally.

Furthermore, high-throughput screenings are often noisy and
not always reproducible [1–3]. Supervised machine learning
techniques have been successfully used for biological network
inference for over a decade [4–8]. Such methods depart from
an experimentally determined network, a set of observed
interactions, from which a statistical model is learned. This

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/21/1/262/5124288 by G

hent U
niversity user on 11 February 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/299792331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.oxfordjournals.org/
https://github.com/aatapa/RLScore

Shortcuts for network cross-validation 263

Figure 1. Overview of the network inference problems discussed in this work. (top) Bipartite network prediction, where the vertices are of a different type, e.g. predicting

interactions between proteins and ligands. A toy network between five proteins and four ligands with the interaction network is shown. Here, we distinguish four

prediction settings: I (interactions), R (rows), C (columns) and B (both). (bottom) Network prediction, where the vertices are of the same type, e.g. protein–protein

interaction prediction. A toy network of interactions between five proteins is shown. Here, two prediction settings are distinguished: E (edges) and V (vertices). We also

present variants of both Settings I and E: Settings I0 and E0. Here, the value of an interaction is set to zero rather than being discarded. See main text for details.

model can subsequently be used to suggest missing interactions
in the given network or to predict interactions with new vertices.

The network used to build the model can be represented as
an adjacency matrix, with the rows and columns representing
the vertices and the matrix elements the values of the edges
between the vertices. If the network is only characterized by the
presence or absence of an interaction, the values in the matrix
are binary and the matrix is often sparse. If the interaction
strength is measured, for example in the form of a binding
affinity, the elements of the adjacency matrix are real-valued.
In supervised network inference, one also uses a description of
the vertices, typically in the form of numerical features (e.g. a
molecular fingerprint) or a similarity matrix (e.g. obtained by
sequence alignment). Using the example network and these
vertex descriptors, a function f(u, v) is learned to predict the
interaction value for two given vertices u and v.

Despite the fact that supervised network inference is
arguably only a specific application of standard regression or
classification algorithms, there are some specific challenges
in correctly estimating the performance of a learned model
[7, 9, 10]. This is because the set of labeled edges serving
as the training data is not independent and identically
distributed; the same vertices participate in several edges. A
major problem in assessing the performance of models for
supervised network inference is that it is not unambiguously
clear how to choose an independent test set. Following the work
of [9], we distinguish different prediction settings, dependent
on whether one is interested in detecting new interactions
between the vertices of the trained network or predicting for
one or two new vertices. The performance for each of those
settings should be assessed accordingly. For each of the settings,
we present computational shortcuts to perform suitable
leave-one-out (LOO) cross-validation, allowing for extremely
rapidly tuning and validating models for such settings. These
shortcuts relate to a kernel-based method for network inference,
namely two-step kernel ridge regression (KRR) [11–13]. Kernel
methods are popular in computational biology for their ability
to learn nonlinear associations and to represent complex
structured objects such as sequences, graphs and trees
[14–16]. As will be discussed later, two-step KRR is a spe-
cific way of finding the parameters of a popular class of
kernel-based models commonly used for biological network
inference.

The remainder of this work is structured as follows. First, we
outline the different prediction settings for which we developed
specialized cross-validation shortcuts. Subsequently, we discuss
the two-step kernel method for network inference and how it
relates to other methods. In the next section we provide the com-
putational shortcuts for cross-validation in network inference.
The basic shortcuts for KRR are presented first, with the proofs
in the appendix. These are combined into the shortcuts for
bipartite and homogeneous networks, respectively. The short-
cuts are illustrated on some benchmark biological networks in
the experimental section. Finally, we end this work with a short
discussion and provide some pointers for future research.

Supervised network prediction settings
The different prediction settings for which we present cross-
validation shortcuts are depicted in Figure 1. We categorize the
cross-validation schemes in two ways. We distinguish between
bipartite networks (e.g. protein–ligand interaction networks) and
homogeneous networks (e.g. protein–protein networks). The lat-
ter case might induce additional structure in the network, for
example if protein u′ interacts with protein v′, then protein v
interacts with protein u. Such symmetries need to be taken into
account to obtain a fair estimate of the model performance. A
second issue is whether the training network can have false
negative or missing interactions. If we want to assess whether
the model can find such missing interactions in the network, we
can delete interactions and see whether the model can recover.
This setting is called the zero-one-out (ZOO) setting.

Cross-validation for bipartite network prediction

The first set of cross-validation schemes applies to bipartite
networks, i.e. graphs for which the vertices can be subdivided
in two disjoint sets and edges only occur between vertices of
different sets. Examples of bipartite network inference include
protein–ligand interaction prediction [6, 17–21], mRNA–miRNA
interaction prediction [22], nucleic acid–protein affinity predic-
tion [23] and drug sensitivity prediction [24]. Suppose that one
wants to build a classifier to predict protein–ligand interac-
tion, i.e. a function f(·, ·) that takes as input a protein u and a

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/21/1/262/5124288 by G

hent U
niversity user on 11 February 2020

264 Stock et al.

ligand v and returns a positive value if the pair shows a binding
interaction and a negative value otherwise. For a given protein–
ligand pair, four predictions settings can be distinguished: (1)
the protein and the ligand both occur in the training network,
(2) only the protein occurs in the training network, (3) only
the ligand occurs in the training network or (4) both vertices
are new. For these four settings, we define four respective LOO
cross-validation settings. In Setting I, one interaction or value
of the adjacency matrix is withheld at a time. In Setting R,
every row of the adjacency matrix is withheld once. Similarly,
in Setting C, every column is withheld one-by-one. Finally, in
Setting B, every element of the adjacency matrix is withheld
once and the model is trained using the adjacency matrix with
both the row and column containing that element discarded. All
bipartite settings are depicted at the top part of Figure 1. Note
that even though the toy example illustrates network inference
as a binary classification task (predict presence/absence of an
interaction), our settings can also be used for regression tasks
such as predicting binding affinities between molecules.

Cross-validation for homogeneous network prediction

Some slightly different prediction settings arise for homoge-
neous networks, i.e. networks for which the vertices are of the
same kind. Inference problems for these types of networks
arise for protein–protein interaction (ppi) networks [25–27],
gene regulatory networks [28–30] and metabolic networks
[31–34]. Homogeneous networks are represented by square
adjacency matrices. In addition, the adjacency matrix is often
symmetric (in case of ppi networks) or, more rarely, skew-
symmetric (in metabolic networks, an ingoing flux is always
accompanied by a negative outgoing flux of equal magnitude).
To accommodate for these properties, we suggest two additional
prediction settings for homogeneous networks: predicting for
edges within the network or predicting how new vertices will
interact with the existing network. We refer to the former
setting as Setting E. Here, we remove one edge of the network
at a time and predict for this edge. This edge is represented
by two values in the adjacency matrix: one above (i.e. the
element at position (i, j)) and one below the diagonal (i.e.
the element at position (j, i)). To evaluate how new vertices
interact with the network, we suggest Setting V. Here, every
vertex is removed once from the network and the interaction
values of the remaining vertices with this left-out vertex are
predicted. Leaving out one vertex corresponds to removing
the corresponding row and column of the adjacency matrix.
These two cross-validation settings are depicted at the bottom
part of Figure 1. Note that when there is no symmetric or
skew-symmetric structure in the adjacency matrix, it makes
more sense to use the cross-validation schemes developed for
bipartite networks.

False negative interactions: LOO versus zero-one-out

Biological networks have one more peculiarity to keep in
mind: the occurrence of false negatives. When networks are
constructed by experimentally determining all the pairwise
interactions, e.g. an assay of kinase inhibition, all interactions
are assumed to be correct within experimental error. Usually,
however, biological networks are obtained by aggregating
positive interactions. This means that there is often no
experimental evidence for the absence of an interaction. Missing
links in a network are either true negative interactions or
false negative ones, i.e. the interaction between the vertices

is simply not observed. Several researchers [7, 26, 35–37]
discussed how to train supervised models in the absence of
true negative interactions. To assess whether a model can
detect missing interactions within a network, we propose a
small modification of Settings I and E. Rather than withholding
interactions, in Setting I0, each interaction of the adjacency
matrix is in turn set to zero, regardless whether there was
a non-zero interaction value or not. Thus, for every element
in the adjacency matrix, the value is set to zero, and a
prediction is made for that element using a model trained
with the modified adjacency matrix. The same principle
is used in Setting E0. Both variants are also depicted in
Figure 1. Here, the values of edges are in turn set to zero
and hence we denote this as ZOO cross-validation. Such
cross-validation schemes have been used, for example, by
[19] and [38]. Depending on whether one can deal with false
negatives or not, Setting I, resp. Setting E, is more relevant than
Setting I0, resp. E0.

Supervised network inference with two-step
kernel ridge regression
Throughout this work, we use boldface small cap letters for
vectors, e.g. a, and capital letters for matrices, e.g. A. The i-th
element of vector a is denoted by ai. We use Ai. to denote the
i-th row vector of A, A.j to denote the j-th column vector of A and
Aij for the element at position (i, j) of matrix A. Similarly, for sets
of indices S ⊂ {1, . . . , n} and S ′ ⊂ {1, . . . , m}, AS., A.S ′ and ASS ′

denote the submatrices of A in which the rows, columns or both
are indexed by S or S ′.

Predicting bipartite networks

Supervised network inference starts from a set of labeled
interactions. For bipartite networks, one wants to predict an
interaction between vertices of two different kinds, e.g. between
proteins and ligands or between miRNAs and mRNAs. There
are thus two object spaces, U and V. Suppose the training set
contains information on the subsets U = {ui | i = 1, . . . , n} ⊂ U
and V = {vj | j = 1, . . . , m} ⊂ V of both types of objects.
There is exactly one observed label Yij for every pair (ui, vj) ∈
U × V, stored in the n × m adjacency matrix Y, as illustrated
in Figure 1. These labels can either be binary, indicating
the presence or absence of an interaction, or real-valued,
indicating for example the strength of an interaction or a kinetic
parameter.

The goal of supervised network inference is to learn a
predictive model f : U × V → R that takes a pair of vertices as
input and returns a value that either estimates the interaction
label or that can be interpreted as a score indicating the confi-
dence in the occurrence of an interaction. In kernel methods,
such a function is based on a feature description of both
vertices by means of kernel functions. Kernels are symmetric
and positive-definite functions that quantify the similarity
between vertices [39]. They are very popular in bioinformatics
because they can be used to implicitly represent structured
objects such as sequences, trees and graphs [40]. For example,
the Smith–Waterman similarity scores obtained by sequence
alignment are routinely used as kernel values [41, 42] for
biological sequences. Let k : U × U → R be the kernel
function associated with vertices in U (for example, the
Smith–Waterman similarity score between protein sequences)
and, likewise, g : V × V → R be the kernel function associated
with vertices in V (for example, the Jaccard similarity between

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/21/1/262/5124288 by G

hent U
niversity user on 11 February 2020

Shortcuts for network cross-validation 265

Figure 2. Overview of the two-step KRR method to network prediction. (top) The prediction matrix F is obtained by a bilinear model where the vertices in spaces U
and V are described by the similarity or Gram matrices K and G, respectively. The model is parametrized by a weight matrix W, computed using Equation (2) such that

the prediction matrix approximates the adjacency matrix Y. (bottom left) Conceptually, two-step KRR can be understood as performing ridge regression twice, once to

generalize to new vertices of type U and once for type V . The order of these predictions does not matter and in practice the predictions are computed directly using

the equivalent model of Equation (1). (bottom right) Depending on whether one predicts for new vertices of type U or V , the settings of Figure 1 arise.

fingerprints describing drugs). The model to be learned is of the
form

f(u, v) =
n∑

i=1

m∑

j=1

Wijk(u, ui)g(v, vj) , (1)

with W = [Wij] an n × m matrix of weights. This model admits
an equivalent primal form

f(u, v) = φ(u)�Aψ(v) ,

with φ(·) and ψ(·) some feature mappings of objects of type
U and V, respectively, and A the matrix with the primal
weights. Models of this type are commonly used for biological
network inference, e.g. [4, 10, 17, 19, 23, 34, 43]. They arise
naturally when using the Kronecker kernel in a kernel-based
learning algorithm such as a support vector machine or KRR.
All such models have an algebraic form, as depicted at the
top part of Figure 2. Such pairwise kernel methods achieve
state-of-the-art performance for many network inference
tasks.

In this work, we will focus on the two-step KRR method for
fitting the model of Equation (1). This method was independently
proposed by [11] and [12], though similar methods have been
proposed earlier in structural equation modeling [44, 45]. We
introduce the Gram matrices

K = [k(ui, uj)] and G = [g(vi, vj)] .

The parameters for two-step KRR are obtained as

W = (K + λuI)
−1Y(G + λvI)

−1 , (2)

with I the identity matrix and λu and λv two regularization
parameters that have to be tuned. Equation (2) can be motivated
in several ways. Foremost, it is obtained when, as the name sug-
gests, two successive KRR steps are executed: once to generalize
to new objects in U and once to generalize to new objects in
V (see the bottom left of Figure 1). A similar two-step approach
for biological network prediction was introduced by [27], though
using tree-based ensembles rather than KRR as learners. In
supervised network prediction, constructing a different model
for every vertex is called the local approach, whereas building a
single model that predicts for pairs of edges (cfr. Equation (1))
is called the global approach [5]. For instance, in protein–ligand
prediction, the local approach would involve building a separate
model for every protein to predict drug affinity, whereas the
global approach involves one model to predict interaction of
protein–ligand pairs. Two-step KRR can be seen as a particularly
efficient way of incorporating many local models in a global
one. Equation (2) can also be seen as solving the inverse prob-
lem of finding the parameters W of model (1) to explain the
observed labels Y. The regularization is then required to make
this inverse problem well-posed, such that tiny fluctuations in
the labels do not result in huge changes in model behavior.
Regardless of how two-step KRR is derived, it is a theoretically
well-founded method that is closely related to Kronecker KRR
[13]. Both methods have the same time complexity and a nearly
identical performance [46], as we also experimentally demon-
strate later on.

The associated matrix of predictions, F = [f(ui, vj)], can easily
be computed as

F = K(K + λuI)
−1Y(G + λvI)

−1G (3)

= HkYHg , (4)

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/21/1/262/5124288 by G

hent U
niversity user on 11 February 2020

266 Stock et al.

Figure 3. (left) Toy regression problem with 10 instances. The i-th instance has label yi and a single feature xi. The blue line is a ridge regression model fit on the data,

the red line is the fit without the i-th instance and the green line is the fit in which the label of the i-th instance is set to zero. (right) Predicting and LOO validation as

matrix operations.

where Hk = K(K + λuI)
−1 and Hg = G(G + λvI)

−1 are further on
referred to as the hat matrices. It is the simple factorization of
Equation (4) that allows for all the shortcuts discussed in this
work. All shortcuts can be applied to any model which satisfies
this form. Note that given the eigenvalue decompositions of the
Gram matrices, i.e.

K = UΛU� and G = VΣV� ,

the hat matrices can easily be obtained as

Hk = UΛ(Λ + λuI)
−1U� and Hg = VΣ(Σ + λvI)

−1V� ,

for any values of the regularization parameters. Note that
in the above computations one only has to invert diago-
nal matrices, which can be done by simply inverting the
element on the diagonal. The eigenvalue decompositions
can be computed with a time complexity of O(n3 + m3).
Given this decomposition, the model weights and the pre-
dictions can be obtained by matrix multiplication for any
value of the regularization parameters. This is in sharp
contrast to a time complexity of O(n3m3) for training pairwise
kernel methods without such algebraic tricks. The poor
time complexity of pairwise kernel methods without such
shortcuts is often given as a critique of these methods
[6, 7, 37].

Predicting homogeneous networks

A special, yet important case occurs when interactions between
objects of the same kind are predicted, e.g. ppi networks,
metabolic networks or gene regulatory networks. Here, there
is only one set of objects U ⊂ U and the adjacency matrix Y is
square. The equations hence simplify to

f(u, u′) =
n∑

i=1

n∑

j=1

Wijk(u, ui)k(u′, uj) (5)

W = (K + λuI)
−1Y(K + λuI)

−1 (6)

F = HkYHk . (7)

In some cases, a special structure can be imposed on the
adjacency matrix. When the label of every pair (u, u′) is always
the same as the label of (u′, u), this is called a symmetric interac-
tion [47]. Such relations occur for example in ppi networks. For
symmetric interactions, we expect that f(u, u′) = f(u′, u) for any
u, u′ ∈ U . Likewise, skew-symmetric prediction functions satisfy
that f(u, u′) = −f(u′, u) for any u, u′ ∈ U [47]. Skew-symmetric
functions are of relevance when modeling gene regulatory net-
works and flows in a metabolic network.

Whenever Y is symmetric, the learned prediction function
will also be symmetric, i.e. W = W�. This can be seen from
Equation (6). The same holds for skew-symmetric adjacency
matrices, where a skew-symmetric adjacency training network
will lead to parameters that satisfy W = −W�.

Shortcuts for LOO cross-validation
Two-step KRR is, as implied by its name, merely performing KRR
twice. As such, traditional LOO cross-validation shortcuts can be
used as building blocks toward the shortcuts for the more com-
plex network cross-validation schemes. The formal derivations
of these shortcuts are presented in the supplementary materials.

Basic shortcuts for LOO cross-validation

The traditional LOO shortcuts can be applied for any model that
minimizes a squared loss and where a vector of labels Yi. (here
rows from the adjacency matrix) and the corresponding vector
of predictions Fi. are linked through a hat matrix [48]:

Fi. = HYi. .

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/21/1/262/5124288 by G

hent U
niversity user on 11 February 2020

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby095/-/DC1

Shortcuts for network cross-validation 267

Crucially, the hat matrix depends only on the feature descrip-
tions of the instances and not on the labels. Popular methods
such as (kernel) ridge regression, splines, spectral regularization
methods and extreme learning machines fall into this category.
Figure 3 shows a toy regression problem to illustrate the different
shortcuts.

The following theorem gives the shortcut to compute the
corresponding predictions for an adjacency matrix with the rows
indexed by S removed.

Theorem 1 For an n × m matrix of labels Y and an n × n hat
matrix H, the elements indexed by the set S ⊂ {1, . . . , n} of the
leave-S-out split are given by the |S| × m matrix

FHO(Y, H, F,S) = (I − HSS)−1(FS. − HSSYS.) .

The proof of the theorem, adapted from [49], is given in the
supplementary materials. The main idea is that if one replaces

the rows indexed by S in the label matrix by the correspond-
ing rows of FHO(Y, H, F,S), the corresponding predictions with a
model trained with using these labels again yield FHO(Y, H, F,S).
The holdout values are as such ‘in equilibrium’ with the other
label. This is illustrated in Figure 3, in which the LOO prediction
for instance i coincides with the corresponding prediction of the
model fitted without the i-th instance.

Rather than removing an instance, one can also opt for
setting the value to zero. Such a setting is relevant to assess
whether the model can detect false negatives, i.e. whether a
zero should be a one in the adjacency matrix. We use the term
ZOO for the scheme in which models are fitted using data where
the labels are set to zero one-by-one. The following theorem
gives a computational shortcut to compute the predictions for an
adjacency matrix with an arbitrary number of rows set to zero.

Theorem 2 For an n×m matrix of labels Y and an n×n hat matrix
H, if the elements indexed by the set S ⊂ {1, . . . , n} are set to zero,
the corresponding predictions are given by the |S| × m matrix

FZO(Y, H, F,S) = FS. − HSSYS. .

LOO in bipartite networks

Table 1 shows the shortcuts for the different cross-validation
settings for bipartite networks. The shortcuts for Settings I and
I0 can easily be deduced by transforming the network prediction
problem into a standard prediction problem using the vec oper-
ator, which stacks the columns of a matrix into a vector. As such,
Equation (3) becomes

vec(F) = (Hg ⊗ Hk)vec(Y) , (8)

with ⊗ the Kronecker product. We have made use of the identity
vec(AXB) = (B� ⊗ A)vec(X), which holds for any conformable
matrices A, B and X. Theorems 1 and 2 then yield the shortcuts
for Settings I and I0. The shortcuts for the Settings R, C and B
can be obtained by considering the two steps of two-step KRR
separately and applying Theorem 1 on the rows, columns or
both, respectively.

The shortcuts for bipartite networks have an approximate
time complexity of O(nm), given that the hat matrices and the
prediction matrix have been precomputed. In the case of Settings
R, C and B, the matrices HkY and YHg, intermediate results toward
computing F should also be kept in cache to reach this time
complexity.

Table 1. The different shortcuts for bipartite networks. As shown
in Figure 1, the settings I (interactions), R (rows), C (columns) and B
(both) are considered. The variation of Setting I, Setting I0, is when
a single element at position (i, j) is set to zero, rather than being
withheld. For bipartite networks F = HkYHg

Setting shortcut

I FI
ij =

Fij − Hk
iiH

g
jjYij

1 − Hk
iiH

g
jj

I0 FI0
ij = Fij − Hk

iiH
g
jjYij

R FR
i. = Fi.− HiiYi.H

g

1 − Hk
ii

C FC
.j =

F.j − H
g
jjH

kYj.

1 − H
g
jj

B FB
ij = (Fij − Hk

iiYi.H
g
.j − Hg

jjH
k
i.Y.j + Hk

iiH
g
jjYij)

(1 − Hk
ii)

−1(1 − Hg
jj)

−1

Table 2. The different shortcuts for homogeneous networks. As
shown in Figure 1, Settings E (edges) and V (vertices) are considered.
The shortcuts for Setting E can be used for symmetric (S) and skew-
symmetric (SS) matrices. The variation of Setting E, Setting E0, is
when the label of the edge from vertex i to vertex j is set to zero,
rather than being withheld. For homogeneous networks F = HkYHk

Setting shortcut

E (S) FE
ij =

Fij − Yij(H
k
ii

Hk
jj

+ (Hk
ij
)2)

1 − (Hk
iiH

k
jj + (Hk

ij)
2)

E (SS) FE
ij =

Fij − Yij(H
k
ii

Hk
jj

− (Hk
ij
)2)

1 − (Hk
iiH

k
jj − (Hk

ij)
2)

E0 (S) FE0
ij = Fij − Yij(H

k
iiH

k
jj + (Hk

ij)
2)

E0 (SS) FE0
ij = Fij − Yij(H

k
iiH

k
jj − (Hk

ij)
2)

V FV
i. = FLOO

i. Hk + Hk
i.

FLOO
i. Hk

.i − FLOO
ii

1 − Hk
ii

- FLOO
i. = HkY − Hk

iiYi.
1 − Hk

ii

Leave-one-pair-out in homogeneous networks

Homogeneous networks impose additional dependencies in the
adjacency matrices. To derive the shortcuts for leaving out edges,
Equation (7) can also be stated in vector form, as Equation (1).
By leaving out the values at positions (i, j) and (j, i) and using
the properties of symmetry and skew-symmetry, the shortcuts
for Setting E can be derived. The shortcut for Setting V can
be obtained by applying the shortcut of Theorem 1 twice. The
shortcuts for homogeneous networks are summarized in
Table 2. Given that F and Hk are precomputed, these leave-out-
out adjacency matrices can be computed with a time complexity
of O(n2), i.e. constant time complexity for each element.

Experiments
Data sets

In the experiments we will illustrate the speed of the LOO
shortcuts provided in this work. To this end, we use four bench-
mark data sets of bipartite protein–ligand interaction networks
collected by [50] and one homogeneous ppi data set from [31, 34].

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/21/1/262/5124288 by G

hent U
niversity user on 11 February 2020

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby095/-/DC1

268 Stock et al.

Table 3. Overview of the different biological networks discussed
in this work. We use four bipartite networks from [61], enzymes
(e), G protein-coupled receptors (gpcr), ion channels (ic) and nuclear
receptors (nr) and one homogeneous ppi (ppi) network from [62]

data set e gpcr ic nr ppi

targets 664 95 204 26 769
drugs 445 223 210 54 -
fraction of interactions (%) 0.99 3.00 3.45 6.41 1.25
median degree targets 2 3 5 3 7
median degree drugs 2 2 3 1 -

The protein–ligand networks were obtained using bioinformat-
ics databases KEGG [51], BRENDA [52], SuperTarget [53] and Drug-
Bank [54]. Note that for the enzyme data set, the interactions
relate to regulators, i.e. small molecules acting as inhibitor or
activator. Cofactors (except when indicated as regulators) and
molecules with a mass smaller than 100 dalton were excluded.
The kernel matrix for the proteins is filled using normalized
Smith-Waterman scores [55], the kernel matrix for the drugs is
obtained by the SIMCOMP similarity score [17].

The homogeneous network is a metabolic protein–protein
network from the yeast Saccharomyces cerevisiae, collected from
the KEGG database. The proteins, in casu enzymes, are adjacent
in the network if they catalyze subsequent steps in a pathway.
Kernel matrices are available describing expression, the phyloge-
netic profiles of genes, protein localization and yeast two-hybrid
ppi data. For the experiments, we combined these four different
kernel matrices by averaging, as this approach resulted in the
best model by [34] and subsequent studies.

The data sets are described in Table 3. We compare the short-
cuts for the bipartite networks with Kronecker KRR (for which
only as shortcut for Setting I can be derived), whereas in the
subsequent section we study the scalability of the shortcuts
for homogeneous networks. In the supplementary materials,
we also experimentally study the general holdout shortcuts for
Settings R, C and B using a large data set from [23] to predict
affinity of proteins for RNA probes. Using larger fold sizes results
in relatively smaller, but still substantial speedups.

Bipartite networks

We compare two-step KRR with Kronecker KRR, which have
identical time complexities for training and prediction. Kro-
necker KRR has only one regularization parameter λ, whereas
two-step KRR has two regularization parameters, λu and λv. The
main advantages of two-step KRR is the ease of implementation
and that the LOO shortcuts can be used. Hence, if the opti-
mal regularization parameter is sought using grid search of d
values, two-step KRR requires d2 computations of the perfor-
mance in contrast to d for Kronecker ridge regression. For this
reason, we also consider a version of two-step KRR where λu =
λv = λ, such that also a one-dimensional grid of hyperparameters
has to be explored. This trade-off results in a faster tuning at
the cost of potentially obtaining a slightly inferior model. In
the experiments, the regularization parameters λ, λu and λv are
selected from {10−7, 10−6, . . . , 105, 106}.

For each data set, we perform the LOO cross-validation
for Settings I, R, C and B for the different values of the
regularization parameters. The prediction matrices obtained
using cross-validation are evaluated using micro-wise AUC
(i.e. AUC computed over the complete adjacency matrix).
For Setting I, a computational shortcut is available for all

models. For the remaining settings, only two-step KRR has the
respective shortcuts. Hence, in the case of Kronecker KRR, at
least one eigenvalue decomposition has to be performed when
withholding a protein, ligand or both.

Table 4 shows the best performances for both methods, as
well as the running times for performing the complete cross-
validation and hyperparameter grid search. For the different
settings and data sets, we can observe that both methods have
a similar performance, with two-step KRR often slightly outper-
forming Kronecker KRR. For all methods, Setting B is the hardest
and Setting I the easiest, as expected.

When comparing the running times for model selection, we
can observe the computational advantage of using the shortcuts.
For Setting I, both Kronecker and two-step KRR have a holdout
shortcut, hence both are fast. Kronecker KRR has to iterate over a
set of 15 regularization values, while two-step KRR has to search
a grid of 15 × 15 regularization parameters, making the latter
slower. Both methods are very fast in practice, however, since the
main bottleneck is computing the eigenvalue decomposition of
the two Gram matrices. For Settings R and C, there is only an
efficient algorithm for two-step KRR. For data sets larger than
data set nr, two-step KRR is much faster than Kronecker KRR. For
Setting B two-step KRR is several magnitudes faster compared to
Kronecker KRR. For the latter method it was not even possible to
perform this cross-validation for the e data set within 3 days.

In the supplementary materials, we show how the per-
formance of the different methods changes with the different
regularization parameter(s). Two conclusions can be drawn from
these experiments. Firstly, the performance is quite sensitive
to the chosen regularization parameters. Secondly, the optimal
regularization parameters are quite different, depending on the
prediction setting that is evaluated. This illustrates the impor-
tance of the four cross-validation settings discussed in this work.
Using the shortcuts, the best model for the given task can be
obtained.

Homogeneous networks

In this section, we explore how the computing time scales for
performing cross-validation in homogeneous networks. We
again use the four protein–ligand networks of the previous
settings, though they are turned into eight square matrices by
either multiplying a label matrix with its transpose or multi-
plying the transpose of an adjacency matrix with the adjacency
matrix itself. These represent the number of molecules two
proteins or ligands have in common as binding partner. The
goal here is to predict for a given molecule how many indirect
interactions there are with another molecule of the same type.
Though this setting is arguably somewhat artificial, it is well
suited to demonstrate our shortcuts. The values of the new
label matrices are variance-stabilized by means of a square root
transformation.

In addition to the protein–ligand networks, we also use the
ppi network of [34]. In this work, the proteins are described using
seven different Gram matrices, encoding information on the
location, expression, phylogeny, etc. Following the original paper,
we summed these kernel matrices, as this resulted in the best
performing model.

For the different data sets, we measured the time to train
a model (i.e. compute the hat matrix H), to make a prediction
(i.e. compute the prediction matrix F given H) and to compute
the LOO matrices for Settings E and V using our shortcuts. Every
computation was done for values of λ in {10−5, 10−4, . . . , 104, 105}
and we computed the average time over the 11 experiments.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/21/1/262/5124288 by G

hent U
niversity user on 11 February 2020

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby095/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby095/-/DC1

Shortcuts for network cross-validation 269

Table 4. Overview of the performance and running time using Kronecker kernel ridge regression (KK), two-step kernel ridge regression (TS)
and the two-step method with a single regularization parameter (TSS) for the different drug-target data sets and cross-validation settings. One
experiment could not be completed in less than 3 days of running time. See main text for details. All experiments were performed using a basic
Numpy implementation of the models and cross-validation shortcuts. All experiments were run on an AMD Opteron server (2500.159 MHz)

best performance (AUC) running time

data e gpcr ic nr e gpcr ic nr

Set. met.

I KK 0.964 0.948 0.972 0.866 7.64s 0.22s 0.54s 0.01s
I TS 0.964 0.942 0.971 0.886 68.68s 3.14s 5.645s 0.215s
I TSS 0.964 0.942 0.961 0.886 5.96s 0.22s 0.44s 0.02s
R KK 0.945 0.892 0.947 0.737 1.57h 12.88s 91.14s 0.24s
R TS 0.948 0.910 0.948 0.783 68.79s 3.17s 5.645s 0.205s
R TSS 0.948 0.900 0.948 0.724 5.93s 0.22s 0.43s 0.01s
C KK 0.843 0.871 0.808 0.840 0.69h 81.56s 97.13s 1.01s
C TS 0.851 0.872 0.808 0.852 68.53s 3.12s 5.745s 0.24s
C TSS 0.846 0.871 0.803 0.848 5.94s 0.22s 0.43s 0.02s
B KK - 0.823 0.769 0.711 >3d 2.15h 5.48h 26.5s
B TS 0.828 0.834 0.770 0.727 98.6s 3.855s 7.39s 0.25s
B TSS 0.814 0.827 0.770 0.707 7.95s 0.27s 0.54s 0.01s

Figure 4. Time for training, predicting and LOO computation in several homo-

geneous networks. For the training time, the time to construct the hat matrix

is taken. Constructing the LOO matrices for Settings E and V using the provided

shortcuts takes less time than training, but more than for computing the predic-

tion matrix. The time for computing LOO matrices naively is estimated from the

training and prediction times. Experiments performed on a MacBook Pro 2.5 GHz

Intel Core i5.

Figure 4 shows how the computing time scales with the num-
ber of vertices in the network. Computing the hat matrix is dom-
inated by the eigenvalue decomposition of the hat matrix and
takes the most time. Computing the prediction matrix given the
hat matrix takes the least time, as this only involves multiplying
three matrices. The time to compute the cross-validation matri-
ces takes an intermediate amount of time, though for larger
networks these times seem to converge asymptotically to the
prediction time. For reference, we added the times it would take
to naively compute the cross-validation matrices. For Setting E,
resp. Setting V, we took

(n
2

) = n(n−1)

2 , resp. n, times the training time
plus one time the prediction time. Again, our shortcuts are many
orders of magnitude faster than computing the cross-validation
naively. We refer to the supplementary materials for an overview
of the performance of the different models.

Discussion and conclusion
Recent surveys have highlighted the importance of correctly
blocking when performing cross-validation in ‘structured’ data

[7, 9, 10, 57]. In this work we have presented a series of algebraic
shortcuts for LOO cross-validation for the biological network
inference problem. These shortcuts are a valuable tool for select-
ing the best model and for accurately estimating the model
performance on new data. The shortcuts apply to a simple,
though powerful network inference model, two-step KRR. Kernel
methods are generally liked by the computational biology com-
munity, both because they are strong learners and because prior
knowledge can naturally be assimilated. Given the eigenvalue
decomposition of the Gram matrices of the vertices, LOO cross-
validation can be performed for any of the discussed settings
and any values of the regularization parameters in roughly
the time needed to make a prediction of the original adja-
cency matrix. LOO cross-validation provides nearly unbiased,
though sometimes high variance estimates of the generaliza-
tion error of a model [58]. This is because all the models are
trained using largely the same data. Our shortcuts can easily be
extended to leaving out larger blocks of the adjacency matrix,
using Theorem 1. The shortcuts are described in the supplemen-
tary materials.

We believe that linear methods (in a possibly nonlinear fea-
ture space) will remain relevant for biological network inference.
These will continue to benefit from larger data sets and new
methods to generate more biologically relevant feature repre-
sentations for the vertices. Randomized algorithms allow for
approximating the decomposition of huge Gram matrices [59] or
constructing a nonlinear feature description directly [60]. Recent
advances in convolutional neural networks have resulted in
intriguing ways to generate representations for molecules [61],
proteins [62] and nucleic acids [63]. In such cases, one would
prefer to work in the primal form and the hat matrix is hence
computed as

H = Ψ (Ψ �Ψ + λI)−1Ψ � ,

with Ψ a feature matrix.

Availability
The methods and shortcuts in this work are available in the
RLScore software package [64].

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/21/1/262/5124288 by G

hent U
niversity user on 11 February 2020

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby095/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby095/-/DC1

270 Stock et al.

Key Points
• Given a biological network as training data, supervised

machine learning methods can be used to detect miss-
ing interactions or even predict interactions between
previously unseen vertices. Pairwise kernel methods
are particularly suited to this task, as they provide a
natural way of representing an edges.

• Tuning and validating supervised network inference
models is no trivial task because several prediction
settings can be distinguished, depending on whether
the vertices of the test set occur in the training data
or not.

• Algebraic tricks can be applied to train, tune and
validate pairwise kernel-based methods at lightning
speed.

Funding

Research Foundation - Flanders (FWO17/PDO/067 to M.S.).
Academy of Finland (grants 311273 and 313266 to T.P. and
A.A.).

References
1. Wodak SJ, Pu S, Vlasblom J, Séraphin B. Challenges and

rewards of interaction proteomics. Mol Cell Proteomics
2009;8(1):3–18.

2. Bonetta L. Interactome under construction. Nature 2010;
468(7325):8–11.

3. Prinz F, Schlange T, Asadullah K. Believe it or not: how much
can we rely on published data on potential drug targets?
Nat Rev Drug Discov 2011;10(9):712–13.

4. Ben-Hur A, Noble WS. Kernel methods for predicting ppis.
Bioinformatics 2005;21(Suppl 1):i38–46.

5. Vert J-P. Reconstruction of biological networks by supervised
machine learning approaches. In: Elements of Computational
Systems Biology. Hoboken: John Wiley & Sons, 2008, p. 165–88.

6. Ding H, Takigawa I, Mamitsuka H, Zhu S. Similarity-based
machine learning methods for predicting drug-target inter-
actions: a brief review. Brief Bioinform 2013;14(5):734–47.

7. Schrynemackers M, Küffner R, Geurts P. On protocols and
measures for the validation of supervised methods for
the inference of biological networks. Front Genet 2013;
4(262):1–16.

8. Newman ME. Network structure from rich but noisy data.
Nat Phys 2018;14:542–5.

9. Park Y, Marcotte EM. Flaws in evaluation schemes
for pair-input computational predictions. Nat Methods
2012;9(12):1134–6.

10. Pahikkala T, Airola A, Pietila S, et al. Toward more real-
istic drug-target interaction predictions. Brief Bioinform
2015;16(2):325–37.

11. Pahikkala T, Stock M, Airola A, et al. A two-step learning
approach for solving full and almost full cold start problems
in dyadic prediction. Lect Notes Comp Sci 2014;8725:517–32.

12. Romera-Paredes B, Torr PHS. An embarrassingly simple
approach to zero-shot learning. In: Feris R, Lampert C,
Parikh D (eds). Visual Attributes, Vol. 37. Advances in
Computer Vision and Pattern Recognition. Cham: Springer,
2017, p. 2152–61.

13. Stock M, Pahikkala T, Airola A, et al. A comparative study of
pairwise learning methods based on kernel ridge regression.
Neural Comput 2018;30:2245–83.

14. Schölkopf B, Tsuda K, Vert J-P. Kernel Methods in Computational
Biology. Cambridge: The MIT Press, 2004.

15. Lodhi H. Computational biology perspective: Kernel meth-
ods and deep learning. Wiley Interdiscip Rev Comput Stat
2012;4(5):455–65.

16. Wang X, Xing EP, Schaid DJ. Kernel methods for large-scale
genomic data analysis. Brief Bioinform 2015;16(2):183–92.

17. Jacob L, Vert J-P. Protein–ligand interaction prediction:
an improved chemogenomics approach. Bioinformatics
2008;24(19):2149–56.

18. Bleakley K, Yamanishi Y. Supervised prediction of drug-
target interactions using bipartite local models. Bioinformat-
ics 2009;25(18):2397–403.

19. van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian inter-
action profile kernels for predicting drug-target interaction.
Bioinformatics 2011;27(21):3036–43.

20. Gönen M. Predicting drug-target interactions from chemical
and genomic kernels using Bayesian matrix factorization.
Bioinformatics 2012;28(18):2304–10.

21. Li ZC, Huang MH, Zhong WQ, et al. Identification of drug-
target interaction from interactome network with ‘guilt-by-
association’ principle and topology features. Bioinformatics
2016;32(7):1057–64.

22. Van Peer G, De Paepe A, Stock M, et al. miRNA target
prediction through modeling quantitative and qualitative
miRNA binding site information in a stacked model struc-
ture. Nucleic Acids Res 2016;45:e51.

23. Pelossof R, Singh I, Yang JL, et al. Affinity regression
predicts the recognition code of nucleic acid-binding pro-
teins. Nat Biotechnol 2015;33(12):1242–9.

24. Costello J, Heiser L, Georgii E, et al. A community effort to
assess and improve drug sensitivity prediction algorithms.
Nat Biotechnol 2014;32(12):1202–12.

25. Hamp T, Rost B. Evolutionary profiles improve protein–
protein interaction prediction from sequence. Bioinformatics
2015;31(12):1945–50.

26. Liu H, Sun J, Guan J, et al. Improving compound-
protein interaction prediction by building up highly credible
negative samples. Bioinformatics 2015;31(12):i221–9.

27. Schrynemackers M, Wehenkel L, Babu MM, Geurts P. Clas-
sifying pairs with trees for supervised biological network
inference. Mol Biosyst 2015;11(8):2116–25.

28. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring
regulatory networks from expression data using tree-based
methods. PLoS One 2010;5(9):1–10.

29. Marbach D, Costello J, Küffner R, Vega N. Wisdom of
crowds for robust gene network inference. Nat Methods
2012;9(8):796–807.

30. Maetschke SR, Madhamshettiwar PB, Davis MJ, Ragan MA.
Supervised, semi-supervised and unsupervised inference of
gene regulatory networks. Brief Bioinform 2014;15(2):195–211.

31. Yamanishi Y, Vert J-P, Kanehisa M. Protein network infer-
ence from multiple genomic data: a supervised approach.
Bioinformatics 2004;20(Suppl 1):i363–70.

32. Yamanishi Y, Vert J-P, Kanehisa M. Supervised enzyme
network inference from the integration of genomic data
and chemical information. Bioinformatics, 2005;21(Suppl 1):
i468–77.

33. Geurts P, Touleimat N, Dutreix M, D’Alché-Buc F. Inferring
biological networks with output kernel trees. BMC Bioinfor-
matics 2007;8(2):S4.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/21/1/262/5124288 by G

hent U
niversity user on 11 February 2020

Shortcuts for network cross-validation 271

34. Vert J-P, Qiu J, Noble WS. A new pairwise kernel for biolog-
ical network inference with support vector machines. BMC
Bioinformatics 2007;8(S-10):1–10.

35. Elkan C, Noto K. Learning classifiers from only positive and
unlabeled data. In: Proceedings of the 14th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining.
New York: ACM, 2008, p. 213–220.

36. Cerulo L, Elkan C, Ceccarelli M. Learning gene regulatory
networks from only positive and unlabeled data. BMC Bioin-
formatics 2010;11(228):1–16.

37. Park Y, Marcotte EM. Revisiting the negative example sam-
pling problem for predicting protein–protein interactions.
Bioinformatics 2011;27(21):3024–8.

38. De Clercq M, Stock M, De Baets B, Waegeman W. Data-driven
recipe completion using machine learning methods. Trends
Food Sci Technol 2015;49:1–13.

39. Schölkopf B, Smola AJ. Learning with Kernels. Cambridge: The
MIT Press, 2002.

40. Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Anal-
ysis. Mouscron: Cambridge University Press; 2004.

41. Liao L, Noble WS. Combining pairwise sequence simi-
larity and support vector machines for detecting remote
protein evolutionary and structural relationships. J Comput
Biol 2003;10(6):857–68.

42. Zaki N, Lazarova-Molnar S, El-Hajj W, Campbell P.
Protein–protein interaction based on pairwise similarity.
BMC Bioinformatics, 2009;10(150):1–12.

43. Stock M, Poisot T, Waegeman W, De Baets B. Linear
filtering reveals false negatives in species interaction data.
Sci Rep 2017;7(45908):1–8.

44. Bollen KA. An alternative two stage least squares (2SLS)
estimator for latent variable equations. Psychometrika 1996;
61(1):109–21.

45. Jung S. Structural equation modeling with small sample
sizes using two-stage ridge least-squares estimation. Behav
Res Methods 2013;45(1):75–81.

46. Stock M. Exact and efficient algorithms for pairwise learning.
PhD diss., Ghent Univerity, 2017.

47. Waegeman W, Pahikkala T, Airola A, et al. A kernel-based
framework for learning graded relations from data. IEEE
Trans Fuzzy Syst 2012;20(6):1090–101.

48. Wahba G. Spline Models for Observational Data. Philadelphia:
SIAM, 1990.

49. Rifkin RM, Lippert RA. Notes on regularized least squares.
Technical report, MIT, 2007.

50. Yamanishi Y, Araki M, Gutteridge A, et al. Prediction
of drug-target interaction networks from the integra-
tion of chemical and genomic spaces. Bioinformatics 2008;
24(13):i232–40.

51. Kanehisa M, Goto S, Hattori M, et al. From genomics to chem-
ical genomics: new developments in KEGG. Nucleic Acids Res
2006;34:D354–7.

52. Schomburg I, Chang A, Ebeling C, et al. BRENDA, the enzyme
database: updates and major new developments. Nucleic
Acids Res. 2004;32:431D–3.

53. Günther S, Kuhn M, Dunkel M, et al. SuperTarget and
Matador: resources for exploring drug-target relationships.
Nucleic Acids Res 2008;36:919–22.

54. Wishart DS, Knox C, Guo AC, et al. DrugBank: a knowledge-
base for drugs, drug actions and drug targets. Nucleic Acids
Res 2008;36:901–6.

55. Smith TF, Waterman MS. Identification of common molecu-
lar subsequences. J Mol Biol 1981;147:195–7.

56. Hattori M, Okuno Y, Goto S, Kanehisa M. Development of
a chemical structure comparison method for integrated
analysis of chemical and genomic information in the
metabolic pathways. J Am Chem Soc 2003;125(39):11853–65.

57. Roberts DR, Bahn V, Ciuti S, et al. Cross-validation strategies
for data with temporal, spatial, hierarchical, or phylogenetic
structure. Ecography 2017;40(8):913–29.

58. Varma S, Simon R. Bias in error estimation when using cross-
validation for model selection. BMC Bioinformatics 2006;
7(91):1–8.

59. Gittens A, Mahoney MW. Revisiting the Nyström method for
improved large-scale machine learning. J Mach Learn Res
2013;28(3):567–75.

60. Huang G, Huang G-B, Song S, You K. Trends in extreme
learning machines: a review. Neural Netw 2015;61:32–48.

61. Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, et al. Con-
volutional networks on graphs for learning molecular fin-
gerprints. In: Proceedings of the 28th International Conference on
Neural Information Processing Systems. Cambridge: MIT Press
2015, p. 1–9.

62. Jo T, Hou J, Eickholt J, Cheng J. Improving protein fold recog-
nition by deep learning networks. Sci Rep 2015;5(1):17573.

63. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the
sequence specificities of DNA- and RNA-binding proteins by
deep learning. Nat Biotechnol 2015;33(8):831–8.

64. Pahikkala T, Airola A. RLScore: Regularized Least-Squares
learners. J Mach Learn Res 2016;17:1–5.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/21/1/262/5124288 by G

hent U
niversity user on 11 February 2020

	Algebraic shortcuts for leave-one-out cross-validation in supervised network inference
	Introduction
	Supervised network prediction settings
	Cross-validation for bipartite network prediction
	Cross-validation for homogeneous network prediction
	False negative interactions: LOO versus zero-one-out

	Supervised network inference with two-step kernel ridge regression
	Predicting bipartite networks
	Predicting homogeneous networks

	Shortcuts for LOO cross-validation
	Basic shortcuts for LOO cross-validation
	LOO in bipartite networks
	Leave-one-pair-out in homogeneous networks

	Experiments
	Data sets
	Bipartite networks
	Homogeneous networks

	Discussion and conclusion
	Availability
	Key Points

