DNA shape readout is an important mechanism of target site recognition by
transcription factors, in addition to the sequence readout. Several models of
transcription factor-DNA binding which consider DNA shape have been developed
in recent years. We present a new biophysical model of protein-DNA interaction
by considering the DNA shape features, which is based on a neighbour
dinucleotide dependency model BayesPI2. The parameters of the new model are
restricted to a subspace spanned by the 2-mer DNA shape features, which
allowing a biophysical interpretation of the new parameters as
position-dependent preferences towards certain values of the features. Using
the new model, we explore the variation of DNA shape preferences in several
transcription factors across cancer cell lines and cellular conditions. We find
evidence of DNA shape variations at FOXA1 binding sites in MCF7 cells after
treatment with steroids. The new model is useful for elucidating finer details
of transcription factor-DNA interaction. It may be used to improve the
prediction of cancer mutation effects in the future