8 research outputs found

    CAIR: Using Formal Languages to Study Routing, Leaking, and Interception in BGP

    Full text link
    The Internet routing protocol BGP expresses topological reachability and policy-based decisions simultaneously in path vectors. A complete view on the Internet backbone routing is given by the collection of all valid routes, which is infeasible to obtain due to information hiding of BGP, the lack of omnipresent collection points, and data complexity. Commonly, graph-based data models are used to represent the Internet topology from a given set of BGP routing tables but fall short of explaining policy contexts. As a consequence, routing anomalies such as route leaks and interception attacks cannot be explained with graphs. In this paper, we use formal languages to represent the global routing system in a rigorous model. Our CAIR framework translates BGP announcements into a finite route language that allows for the incremental construction of minimal route automata. CAIR preserves route diversity, is highly efficient, and well-suited to monitor BGP path changes in real-time. We formally derive implementable search patterns for route leaks and interception attacks. In contrast to the state-of-the-art, we can detect these incidents. In practical experiments, we analyze public BGP data over the last seven years

    Distributed Internet Paths Performance Analysis through Machine Learning

    Get PDF
    International audienceInternet path changes are frequently linked to path inflation and performance degradation; therefore, predicting their occurrence is highly relevant for performance monitoring and dynamic traffic engineering. In this paper we showcase DisNETPerf and NETPerfTrace, two different and complementary tools for distributed Internet paths performance analysis, using machine learning models

    Improving the Routing Layer of Ad Hoc Networks Through Prediction Techniques

    Get PDF
    Cada dia 茅s m茅s evident el paper clau que juguen la inform脿tica/computaci贸 m貌bil i les tecnologies sense fils a les nostres activitats di脿ries. Estar sempre connectat, en qualsevol moment i lloc, 茅s actualment m茅s una necessitat que un luxe. Els escenaris de computaci贸 ubics creats en base a aquests aven莽os tecnol貌gics, permeten a les persones proporcionar i consumir informaci贸 compartida. En aquests escenaris, les xarxes que donen suport a aquestes comunicacions s贸n t铆picament sense fils i ad hoc. Les caracter铆stiques din脿miques i canviants de les xarxes ad hoc, fan que el treball realitzat per la capa d'enrutament tingui un gran impacte en el rendiment d'aquestes xarxes. 脡s molt important que la capa d'enrutament reaccioni r脿pidament als canvis que es produeixen, i fins i tot s'avanci als que es produiran en un futur proper, mitjan莽ant l'aplicaci贸 de t猫cniques de predicci贸. Aquesta tesi investiga si les t猫cniques de predicci贸 poden millorar la capa d'enrutament de les xarxes ad hoc. Com a primer pas en aquesta direcci贸, explorem la potencialitat d'una estrat猫gia de Predictor-Basat-en-Hist貌ria (HBP) per predir la Informaci贸 de Control Topol貌gic (TCI) generada pels protocols d'enrutament. Demostrem que hi ha una gran oportunitat per predir TCI, i aquesta predicci贸 pot centrar-se en un petit subconjunt de missatges. En base a les nostres troballes, implementem el predictor OLSR-HBP i l'avaluem respecte al protocol Optimized Link State Routing (OLSR). OLSR-HBP aconsegueix disminucions importants de TCI (sobrec脿rrega de senyalitzaci贸), sense afectar el funcionament de la xarxa i necessita una quantitat de recursos petita i assequible. Finalment, en refer猫ncia a l'impacte de la predicci贸 en les dades d'enrutament tant de la informaci贸 de Qualitat d'Enlla莽 como de Ruta (o Extrem-a-Extrem), demostrem que l'An脿lisi de S猫ries Temporals 茅s un enfocament prometedor per predir amb precisi贸, tant la Qualitat d'Enlla莽 como la Qualitat d'Extrem a Extrem en Xarxes Comunit脿ries.Cada d铆a es m谩s evidente el papel clave que juegan la inform谩tica/computaci贸n m贸vil y las tecnolog铆as inal谩mbricas en nuestras actividades diarias. Estar siempre conectado, en cualquier momento y lugar, es actualmente m谩s una necesidad que un lujo. Los escenarios de computaci贸n ubicuos creados en base a estos avances tecnol贸gicos, permiten a las personas proporcionar y consumir informaci贸n compartida. En estos escenarios, las redes que dan soporte a estas comunicaciones son t铆picamente inal谩mbricas y ad hoc. Las caracter铆sticas din谩micas y cambiantes de las redes ad hoc, hacen que el trabajo realizado por la capa de enrutamiento tenga un gran impacto en el rendimiento de estas redes. Es muy importante que la capa de enrutamiento reaccione r谩pidamente a los cambios que se producen, e incluso se adelante a los que suceder谩n en un futuro cercano, mediante la aplicaci贸n de t茅cnicas de predicci贸n. Esta tesis investiga si las t茅cnicas de predicci贸n pueden mejorar la capa de enrutamiento de las redes ad hoc. Como primer paso en esta direcci贸n, exploramos la potencialidad de una estrategia de Predictor-Basado-en-Historia (HBP) para predecir la Informaci贸n de Control Topol贸gico (TCI) generada por los protocolos de enrutamiento. Demostramos que hay una gran oportunidad para predecir TCI, y esta predicci贸n puede centrarse en un peque帽o subconjunto de mensajes. En base a nuestros hallazgos, implementamos el predictor OLSR-HBP y lo evaluamos con respecto al protocolo Optimized Link State Routing (OLSR). OLSR-HBP consigue disminuciones importantes de TCI (sobrecarga de se帽alizaci贸n), sin afectar al funcionamiento de la red, y necesita una cantidad de recursos peque帽a y asequible. Finalmente, en referencia al impacto de la predicci贸n en los datos de enrutamiento tanto de la informaci贸n de Calidad de Enlace como de Ruta (o Extremo-a-Extremo), demostramos que el An谩lisis de Series Temporales es un enfoque prometedor para predecir con precisi贸n, tanto la Calidad de Enlace como la Calidad de Extremo a Extremo en Redes Comunitarias.Everyday becomes more evident the key role that mobile computing and wireless technologies play in our daily activities. Being always connected, anytime, and anywhere is today more a necessity than a luxury. The ubiquitous computing scenarios created based on these technology advances allow people to provide and consume shared information. In these scenarios, the supporting communication networks are typically wireless and ad hoc. The dynamic and changing characteristics of the ad hoc networks, makes the work done by the routing layer to have a high impact on the performance of these networks. It is very important for the routing layer to quickly react to changes that happen, and even be advanced to what will happen in the near future, by applying prediction techniques. This thesis investigates whether prediction techniques can improve the routing layer of ad hoc networks. As a first step in this direction, in this thesis we explored the potentiality of a History-Based Predictor (HBP) strategy to predict the Topology Control Information (TCI) generated by routing protocols. We demonstrated that there is a high opportunity for predicting theTCI, and this prediction can be just focused on a small subset of messages. Based on our findings we implemented the OLSR-HBP predictor and evaluated it with regard to the Optimized Link State Routing (OLSR) protocol. OLSR History-Based Predictor (OLSR-HBP) achieved important decreases of TCI (signaling overhead), without disturbing the network operation, and requiring a small and affordable amount of resources. Finally, regarding the impact of Prediction on the routing data for both Link and Path (or End-to-End) Quality information, we demonstrated that Time-series analysis is a promising approach to accurately predict both Link and End-to-End Quality in Community Networks

    Predicting and tracking Internet path changes

    Full text link
    This paper investigates to what extent it is possible to use trace-route-style probing for accurately tracking Internet path changes. When the number of paths is large, the usual traceroute based approach misses many path changes because it probes all paths equally. Based on empirical observations, we argue that monitors can optimize probing according to the likelihood of path changes. We design a simple predictor of path changes using a nearest-neighbor model. Although predicting path changes is not very accurate, we show that it can be used to improve probe targeting. Our path tracking method, called DTRACK, detects up to two times more path changes than traditional probing, with lower detection delay, as well as providing complete load-balancer information. Copyright 2011 ACM
    corecore