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Abstract—Internet path changes are frequently linked to path
inflation and performance degradation; therefore, predicting
their occurrence is highly relevant for performance monitoring
and dynamic traffic engineering. In this paper we showcase Dis-
NETPerf and NETPerfTrace, two different and complementary
tools for distributed Internet paths performance analysis, using
machine learning models.

Index Terms—Distributed Active Measurements; Reverse
Traceroute; RIPE Atlas Measurement Framework; Machine
Learning; M-Lab.

I. INTRODUCTION

Monitoring Internet paths performance is critical for general
network management. DisNETPerf [1] and NETPerfTrace [2]
serve as powerful tools for tracking and analyzing Internet
paths. DisNETPerf is a distributed platform capable of doing
reverse traceroute measurements, collecting path mea-
surements from any source to any destination, even when
the source is not under the control of the experimenter.
DisNETPerf uses RIPE Atlas, a largely distributed active
measurements platform to perform traceroute measure-
ments from any arbitrarily selected server in the Internet.
NETPerfTrace is an Internet Path Tracking system capable of
forecasting path changes and path latency variations, by ana-
lyzing traceroute measurements through machine learning
models. NETPerfTrace can predict the remaining life time of a
path before it actually changes, the number of path changes in
a certain time-slot, as well as path latency metrics, providing
a system which could not only predict path changes but
also forecast their impact in terms of performance variations.
Both DisNETPerf and NETPerfTrace are distributed as open
software to the network measurement community.

II. REVERSE TRACEROUTE WITH DISNETPERF

The primary goal of DisNETPerf is to compute and monitor
the path from a given content server to a specific user. The
current version of DisNETPerf locates the closest RIPE Atlas
probe to this content server, and gathers information about
the path leading from the selected probe to the customer.
DisNETPerf is open source and freely available on GitHub
(https://github.com/SAWassermann/DisNETPerf).

DisNETPerf uses a combined topology- and delay-based
distance notion to locate a RIPE Atlas probe that is as close
as possible to a desired target destination, from which reverse
traceroute measurements should be run. By doing so,
DisNETPerf aims at locating probes which offer a very high
path similarity to the real reverse path.

Figure 1. DisNETPerf overview. The first step of DisNETPerf consists of
selecting a monitoring point or probe located as close as possible to a target
server, to later on perform traceroute measurements towards specific
destinations.

Fig. 1 describes the overall idea behind the DisNETPerf
approach. In a nutshell, given a certain content server with
IP address IPs, and a destination customer with IP address
IPd, DisNETPerf pinpoints the closest box, namely IPc, using
a combined topology- and delay-based distance: probes are
located first by AS – using BGP routing proximity to select
probes in the same AS as IPs – and then by propagation
delay – for electing the closest probe to IPs. DisNETPerf
then periodically runs traceroute measurements from IPc

to IPd, collecting different path performance metrics such as
RTT per hop, end-to-end RTT, etc. This data might then be
used to troubleshoot paths from the content server (mimicked
by IPc) to the target customer.

Current DisNETPerf implementation uses two different
probe-selection approaches for locating IPc, partially pro-
posed in the literature for IP geolocation [7], [8], [9]. We called
these selection approaches the smallest latency (SL) approach
and the landmark (LM) approach, which we describe next.

A. Probe Selection by Smallest Latency

The SL approach starts by determining whether RIPE Atlas
probes are located in the same AS as the targeted content
server IPs. If this is not the case, the SL approach tries to
locate probes in the neighbor ASes of IPs. Neighborhood
information is obtained through AS relationships. We use
CAIDA’s AS relationships dataset [10]. If no probes are found
in the neighbor ASes, then the SL approach randomly selects
a large (and configurable) set of boxes among all the available



ones. We call these pre-selected probes the “candidate probes”.
Once the candidate probes have been identified, the selection
of IPc can start.

The SL approach then selects as IPc the candidate probe
with the smallest latency to the target IPs. Latency is com-
puted on the basis of standard ping measurements; more
precisely, the SL approach issues 10 ping measurements from
each of the candidate probes toward IPs. The candidate probe
with the smallest minimum RTT to IPs is finally elected as
the representative probe of the content server, i.e., IPc. We
consider the minimum RTT as it provides a rough estimation
of the propagation delay between two IP addresses.

B. Probe Selection using Landmarks

The first step of the LM approach is exactly the same as the
one followed by the SL approach, i.e., candidate probes are
firstly selected based on their AS. However, the continuation
is slightly different. The next step consists of grouping the
candidate probes in two different sets: the landmarks and the
probes that can be elected as IPc. Landmarks are chosen
randomly among all the candidate probes. Then, 10 ping
measurements are issued from each of the landmarks toward
IPs and toward all the candidate probes belonging to the
other set. For each pinged IP address, a feature vector d is
computed, containing the minimum RTT from each landmark
to this IP address. Finally, IPc is selected as the probe with
the most similar feature vector to the one of IPs, according
to the following normalized distance:

Dij =
1

K

K∑
l=1

|dil − djl|,

where K is the number of landmarks providing a RTT for both
IPi and IPj , and dil is the minimum RTT between IPi and
landmark l. When Dij is small, we assume that IPi and IPj

are close to each other. Current DisNETPerf implementation
uses 20 landmarks for each IPs.

III. PREDICTING INTERNET PATH DYNAMICS WITH
NETPERFTRACE

We define a path P as a sequence of links connecting a
certain fixed source s to a fixed destination d. At any time t,
path P (t) is realized by a specific route r: this route consists
of a specific sequence of links connecting s to d, and has an
associated initial time t0 when the route becomes active or
in-place, and a final time tf which corresponds to the time
when r changes to another route realization, i.e., when the
actual route changes. From now on, we therefore refer to route
changes instead of path changes. As such, a path P (t) can be
considered as a statistical time process, composed of a set
of time-contiguous routes ri(t

i
0, t

i
f ), each one with a duration

D(ri) = tif − ti0. For the sake of notation, we say that ri ∈ P .
We additionally define the duration of a route r as D(r) =

tf − t0, its current life time or route age at time t as Lr(t) =
t− t0, and its remaining life (i.e., time before a route change)
at time t as Rr(t) = tf − t. Finally, we define rcP (t) as the
total number of route changes observed so far at time t for

path P and rcPT
(t) as the number of route changes observed

so far at time t for path P in the current time-slot T .
Given a new traceroute measurement at time t, the

prediction problem solved by NETPerfTrace includes three
prediction targets: (i) the remaining life time Rr(t) of route
r, namely R̂r(t), (ii) the number of route changes a path P
experiences over a specific future time-window of length T ,
defined as r̂cPT

, and (iii) the average RTT that path P will
experience in the next traceroute measurement, defined
as ̂avgRTTP (t + ε), where ε represents the duration until
the next measurement. The first two targets correspond to
path dynamics prediction, whereas the third target consists of
path performance forecasting. In practice, when R̂r(t) comes
closer to zero, we would increase the sampling rate to better
monitor the path performance in the event of a route change.
Predicting r̂cPT

allows to dynamically identify which paths are
more prone to frequent changes, and thus better allocate new
traceroute measurements. Based on previous results on
route stability [6], [3] and similar to [4], we focus on predicting
the number of daily route changes for the next day, i.e., T = 24
hours from now on. At last, predicting the average RTT
that a certain path P would experience next becomes highly
relevant for dynamic traffic engineering purposes, and when
combined with the prediction of route changes, it can provide a
very powerful approach to forecast those performance-harmful
route changes. To predict these three targets, NETPerfTrace
uses a rich set of input features describing the statistical
properties of route dynamics and path latency [2]. NET-
PerfTrace is released as open software to the community -
https://github.com/SAWassermann/NETPerfTrace.

By carefully engineering NETPerfTrace underlying model
and input features, we show in [2] that NETPerfTrace highly
outperforms DTRACK [5], a previous system with the same
prediction targets. In particular, NETPerfTrace outperforms
DTRACK by a factor of 5 when forecasting the residual
lifetime of a path with relative prediction errors below 10%,
and by a factor of 7 in correctly predicting daily path changes.
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