167 research outputs found

    An Interpretable Deep Hierarchical Semantic Convolutional Neural Network for Lung Nodule Malignancy Classification

    Full text link
    While deep learning methods are increasingly being applied to tasks such as computer-aided diagnosis, these models are difficult to interpret, do not incorporate prior domain knowledge, and are often considered as a "black-box." The lack of model interpretability hinders them from being fully understood by target users such as radiologists. In this paper, we present a novel interpretable deep hierarchical semantic convolutional neural network (HSCNN) to predict whether a given pulmonary nodule observed on a computed tomography (CT) scan is malignant. Our network provides two levels of output: 1) low-level radiologist semantic features, and 2) a high-level malignancy prediction score. The low-level semantic outputs quantify the diagnostic features used by radiologists and serve to explain how the model interprets the images in an expert-driven manner. The information from these low-level tasks, along with the representations learned by the convolutional layers, are then combined and used to infer the high-level task of predicting nodule malignancy. This unified architecture is trained by optimizing a global loss function including both low- and high-level tasks, thereby learning all the parameters within a joint framework. Our experimental results using the Lung Image Database Consortium (LIDC) show that the proposed method not only produces interpretable lung cancer predictions but also achieves significantly better results compared to common 3D CNN approaches

    Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing?

    Get PDF
    Machine learning (ML) is an interdisciplinary sector in the subset of artificial intelligence (AI) that creates systems to set up logical connections using algorithms, and thus offers predictions for complex data analysis. In the present review, an up-to-date summary of the current state of the art regarding ML and AI implementation for thyroid nodule ultrasound characterization and cancer is provided, highlighting controversies over AI application as well as possible benefits of ML, such as, for example, training purposes. There is evidence that AI increases diagnostic accuracy and significantly limits inter-observer variability by using standardized mathematical algorithms. It could also be of aid in practice settings with limited sub-specialty expertise, offering a second opinion by means of radiomics and computer-assisted diagnosis. The introduction of AI represents a revolutionary event in thyroid nodule evaluation, but key issues for further implementation include integration with radiologist expertise, impact on workflow and efficiency, and performance monitoring

    Differentiation of thyroid nodules on US using features learned and extracted from various convolutional neural networks

    Get PDF
    Thyroid nodules are a common clinical problem. Ultrasonography (US) is the main tool used to sensitively diagnose thyroid cancer. Although US is non-invasive and can accurately differentiate benign and malignant thyroid nodules, it is subjective and its results inevitably lack reproducibility. Therefore, to provide objective and reliable information for US assessment, we developed a CADx system that utilizes convolutional neural networks and the machine learning technique. The diagnostic performances of 6 radiologists and 3 representative results obtained from the proposed CADx system were compared and analyzed.ope

    LungVISX:explaining lung nodule malignancy classification

    Get PDF

    Are Deep Learning Classification Results Obtained on CT Scans Fair and Interpretable?

    Full text link
    Following the great success of various deep learning methods in image and object classification, the biomedical image processing society is also overwhelmed with their applications to various automatic diagnosis cases. Unfortunately, most of the deep learning-based classification attempts in the literature solely focus on the aim of extreme accuracy scores, without considering interpretability, or patient-wise separation of training and test data. For example, most lung nodule classification papers using deep learning randomly shuffle data and split it into training, validation, and test sets, causing certain images from the CT scan of a person to be in the training set, while other images of the exact same person to be in the validation or testing image sets. This can result in reporting misleading accuracy rates and the learning of irrelevant features, ultimately reducing the real-life usability of these models. When the deep neural networks trained on the traditional, unfair data shuffling method are challenged with new patient images, it is observed that the trained models perform poorly. In contrast, deep neural networks trained with strict patient-level separation maintain their accuracy rates even when new patient images are tested. Heat-map visualizations of the activations of the deep neural networks trained with strict patient-level separation indicate a higher degree of focus on the relevant nodules. We argue that the research question posed in the title has a positive answer only if the deep neural networks are trained with images of patients that are strictly isolated from the validation and testing patient sets.Comment: This version has been submitted to CAAI Transactions on Intelligence Technology. 202
    corecore