120,501 research outputs found

    Evaluating the implicit feedback models for adaptive video retrieval

    Get PDF
    Interactive video retrieval systems are becoming popular. On the one hand, these systems try to reduce the effect of the semantic gap, an issue currently being addressed by the multimedia retrieval community. On the other hand, such systems enhance the quality of information seeking for the user by supporting query formulation and reformulation. Interactive systems are very popular in the textual retrieval domain. However, they are relatively unexplored in the case of multimedia retrieval. The main problem in the development of interactive retrieval systems is the evaluation cost.The traditional evaluation methodology, as used in the information retrieval domain, is not applicable. An alternative is to use a user-centred evaluation methodology. However, such schemes are expensive in terms of effort, cost and are not scalable. This problem gets exacerbated by the use of implicit indicators, which are useful and increasingly used in predicting user intentions. In this paper, we explore the effectiveness of a number of interfaces and feedback mechanisms and compare their relative performance using a simulated evaluation methodology. The results show the relatively better performance of a search interface with the combination of explicit and implicit features

    An evaluation and analysis of incorporating term dependency for ad-hoc retrieval

    Get PDF
    Although many retrieval models incorporating term dependency have been developed, it is still unclear whether term dependency information can consistently enhance retrieval performance for different queries. We present a novel model that captures the main components of a topic and the relationship between those components and the power of term dependency to improve retrieval performance. Experimental results demonstrate that the power of term dependency strongly depends on the relationship between these components. Without relevance information, the model is still useful by predicting the components based on global statistical information. We show the applicability of the model for adaptively incorporating term dependency for individual queries

    Noise-assisted Multibit Storage Device

    Get PDF
    In this paper we extend our investigations on noise-assisted storage devices through the experimental study of a loop composed of a single Schmitt trigger and an element that introduces a finite delay. We show that such a system allows the storage of several bits and does so more efficiently for an intermediate range of noise intensities. Finally, we study the probability of erroneous information retrieval as a function of elapsed time and show a way for predicting device performance independently of the number of stored bits.Comment: 5 figure

    IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models

    Get PDF
    This paper provides a unified account of two schools of thinking in information retrieval modelling: the generative retrieval focusing on predicting relevant documents given a query, and the discriminative retrieval focusing on predicting relevancy given a query-document pair. We propose a game theoretical minimax game to iteratively optimise both models. On one hand, the discriminative model, aiming to mine signals from labelled and unlabelled data, provides guidance to train the generative model towards fitting the underlying relevance distribution over documents given the query. On the other hand, the generative model, acting as an attacker to the current discriminative model, generates difficult examples for the discriminative model in an adversarial way by minimising its discrimination objective. With the competition between these two models, we show that the unified framework takes advantage of both schools of thinking: (i) the generative model learns to fit the relevance distribution over documents via the signals from the discriminative model, and (ii) the discriminative model is able to exploit the unlabelled data selected by the generative model to achieve a better estimation for document ranking. Our experimental results have demonstrated significant performance gains as much as 23.96% on Precision@5 and 15.50% on MAP over strong baselines in a variety of applications including web search, item recommendation, and question answering.Comment: 12 pages; appendix adde

    Modeling Temporal Structure in Music for Emotion Prediction using Pairwise Comparisons

    Get PDF
    The temporal structure of music is essential for the cognitive processes related to the emotions expressed in music. However, such temporal information is often disregarded in typical Music Information Retrieval modeling tasks of predicting higher-level cognitive or semantic aspects of music such as emotions, genre, and similarity. This paper addresses the specific hypothesis whether temporal information is essential for predicting expressed emotions in music, as a prototypical example of a cognitive aspect of music. We propose to test this hypothesis using a novel processing pipeline: 1) Extracting audio features for each track resulting in a multivariate "feature time series". 2) Using generative models to represent these time series (acquiring a complete track representation). Specifically, we explore the Gaussian Mixture model, Vector Quantization, Autoregressive model, Markov and Hidden Markov models. 3) Utilizing the generative models in a discriminative setting by selecting the Probability Product Kernel as the natural kernel for all considered track representations. We evaluate the representations using a kernel based model specifically extended to support the robust two-alternative forced choice self-report paradigm, used for eliciting expressed emotions in music. The methods are evaluated using two data sets and show increased predictive performance using temporal information, thus supporting the overall hypothesis
    corecore