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ABSTRACT

The temporal structure of music is essential for the cogni-
tive processes related to the emotions expressed in music.
However, such temporal information is often disregarded
in typical Music Information Retrieval modeling tasks of
predicting higher-level cognitive or semantic aspects of mu-
sic such as emotions, genre, and similarity. This paper
addresses the specific hypothesis whether temporal infor-
mation is essential for predicting expressed emotions in
music, as a prototypical example of a cognitive aspect of
music. We propose to test this hypothesis using a novel pro-
cessing pipeline: 1) Extracting audio features for each track
resulting in a multivariate ”feature time series”. 2) Using
generative models to represent these time series (acquiring
a complete track representation). Specifically, we explore
the Gaussian Mixture model, Vector Quantization, Autore-
gressive model, Markov and Hidden Markov models. 3)
Utilizing the generative models in a discriminative setting
by selecting the Probability Product Kernel as the natural
kernel for all considered track representations. We evaluate
the representations using a kernel based model specifically
extended to support the robust two-alternative forced choice
self-report paradigm, used for eliciting expressed emotions
in music. The methods are evaluated using two data sets
and show increased predictive performance using temporal
information, thus supporting the overall hypothesis.

1. INTRODUCTION

The ability of music to represent and evoke emotions is an
attractive and yet a very complex quality. This is partly a
result of the dynamic temporal structures in music, which
are a key aspect in understanding and creating predictive
models of more complex cognitive aspects of music such
as the emotions expressed in music. So far the approach
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of creating predictive models of emotions expressed in mu-
sic has relied on three major aspects. First, self-reported
annotations (rankings, ratings, comparisons, tags, etc.) for
quantifying the emotions expressed in music. Secondly,
finding a suitable audio representation (using audio or lyri-
cal features), and finally associating the two aspects using
machine learning methods with the aim to create predic-
tive models of the annotations describing the emotions ex-
pressed in music. However the audio representation has
typically relied on classic audio-feature extraction, often
neglecting how this audio representation is later used in the
predictive models.

We propose to extend how the audio is represented by
including feature representation as an additional aspect,
which is illustrated on Figure 1. Specifically, we focus on
including the temporal aspect of music using the added fea-
ture representation [10], which is often disregarded in the
classic audio-representation approaches. In Music Informa-
tion Retrieval (MIR), audio streams are often represented
with frame-based features, where the signal is divided into
frames of samples with various lengths depending on the
musical aspect which is to be analyzed. Feature extraction
based on the enframed signal results in multivariate time
series of feature values (often vectors). In order to use these
features in a discriminative setting (i.e. predicting tags, emo-
tion, genre, etc.), they are often represented using the mean,
a single or mixtures of Gaussians (GMM). This can reduce
the time series to a single vector and make the features
easy to use in traditional linear models or kernel machines
such as the Support Vector Machine (SVM). The major
problem here is that this approach disregards all temporal
information in the extracted features. The frames could be
randomized and would still have the same representation,
however this randomization makes no sense musically.

In modeling the emotions expressed in music, the tempo-
ral aspect of emotion has been centered on how the labels
are acquired and treated, not on how the musical content is
treated. E.g. in [5] they used a Conditional Random Field
(CRF) model to essentially smooth the predicted labels of
an SVM, thus still not providing temporal information re-
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Figure 1. Modeling pipeline.

garding the features. In [12] a step to include some temporal
information regarding the audio features was made, by in-
cluding some first and second order Markov properties for
their CRF model, however still averaging the features for
one second windows. Other approaches have ranged from
simple feature stacking in [13] to actually using a genera-
tive temporal model to represent features in [17]. The latter
showed that using a Dynamical Texture Mixture model to
represent the feature time series of MFCCs, taking tempo-
ral dynamics into account, carried a substantial amount of
information about the emotional content. In the present
work, in contrast to prior work, we focus on creating a com-
mon framework by using generative models to represent
the multivariate feature time series for the application of
modeling aspects related to the emotions expressed in mu-
sic. Since very little work has been done within this field,
we make a broad comparison of a multitude of generative
models of time series data. We consider how the time se-
ries are modeled on two aspects: whether the observations
are continuous or discrete, and whether temporal informa-
tion should be taken into account or not. This results in
four different combinations, which we investigate: 1) a
continuous, temporal, independent representation which
includes the mean, single Gaussian and GMM models; 2) a
temporal, dependent, continuous representation using Au-
toregressive models; 3) a discretized features representation
using vector quantization in a temporally independent Vec-
tor Quantization (VQ) model; and finally 4) a representation
including the temporal aspect fitting Markov and Hidden
Markov Models (HMM) on the discretized data. A mul-
titude of these models have never been used in MIR as
a track-based representation in this specific setting. To
use these generative models in a discriminative setting, the
Product Probability Kernel (PPK) is selected as the natural
kernel for all the feature representations considered. We
extend a kernel-generalized linear model (kGLM) model
specifically for pairwise observations for use in predicting
emotions expressed in music. We specifically focus on
the feature representation and the modeling pipeline and
therefore use simple, well-known, frequently used MFCC
features. In total, eighteen different models are investigated
on two datasets of pairwise comparisons evaluated on the
valence and arousal dimensions.

2. FEATURE REPRESENTATION

In order to model higher order cognitive aspects of music,
we first consider standard audio feature extraction which
results in a frame-based, vector space representation of the
music track. Given T frames, we obtain a collection of T
vectors with each vector at time t denoted by xt ∈ RD,
where D is the dimension of the feature space.The main
concern here is how to obtain a track-level representation
of the sequence of feature vectors for use in subsequent
modelling steps. In the following, we will outline a number
of different possibilities — and all these can be considered
as probabilistic densities over either a single feature vector
or a sequence of such (see also Table. 1).

Continuous: When considering the original feature
space, i.e. the sequence of multivariate random variables,
a vast number of representations have been proposed de-
pending on whether the temporal aspects are ignored (i.e.
considering each frame independently of all others) or mod-
eling the temporal dynamics by temporal models.

In the time-independent case, we consider the feature as
a bag-of-frames, and compute moments of the independent
samples; namely the mean. Including higher order moments
will naturally lead to the popular choice of representing the
time-collapsed time series by a multivariate Gaussian dis-
tribution (or other continuous distributions). Generalizing
this leads to mixtures of distributions such as the GMM
(or another universal mixture of other distributions) used in
an abundance of papers on music modeling and similarity
(e.g. [1, 7]).

Instead of ignoring the temporal aspects, we can model
the sequence of multivariate feature frames using well-
known temporal models. The simplest models include AR
models [10].

Discrete: In the discrete case, where features are natu-
rally discrete or the original continuous feature space can
be quantized using VQ with a finite set of codewords re-
sulting in a dictionary(found e.g. using K-means). Given
this dictionary each feature frame is subsequently assigned
a specific codeword in a 1-of-P encoding such that a frame
at time t is defined as vector x̃t with one non-zero element.

At the track level and time-independent case, each frame
is encoded as a Multinomial distribution with a single draw,
x̃ ∼ Multinomial(λ, 1), where λ denotes the probability
of occurrence for each codeword and is computed on the
basis of the histogram of codewords for the entire track.
In the time-dependent case, the sequence of codewords,
x̃0, x̃1, ..., x̃T , can be modeled by a relatively simple (first
order) Markov model, and by introducing hidden states this
may be extended to the (homogeneous) Hidden Markov
model with Multinomial observations (HMMdisc).

2.1 Estimating the Representation

The probabilistic representations are all defined in terms
of parametric densities which in all cases are estimated
using standard maximum likelihood estimation (see e.g. [2]).
Model selection, i.e. the number of mixture components,
AR order, and number of hidden states, is performed using



Obs. Time Representation Density Model θ Base
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Indp.

Mean p (x|θ) ≡ δ (µ) µ, σ Gaussian

Gaussian p (x|θ) = N (x|µ,Σ) µ,Σ Gaussian

GMM p (x|θ) =
L∑

i=1

λiN (x|µi,Σi) {λi, µi,Σi}i=1:L Gaussian

Temp. AR p (x0,x1, ..,xP |θ) = N
(
[x0,x1, ..,xP ]

>|m,Σ|A,C

)
m,Σ|A,C Gaussian

D
is

cr
et

e Indp. VQ p (x̃|θ) = λ λ Multinomial

Temp. Markov p (x̃0, x̃1, .., x̃T |θ) = λx̃0

T∏
t=1

Λx̃t,x̃t−1 λ,Λ Multinomial

HMMdisc p (x̃0, x̃1, .., x̃T |θ) =
∑
z0:T

λz0

T∏
t=1

Λzt,zt−1Φt λ,Λ,Φ Multinomial

Table 1. Continuous, features, x ∈ RD, L is the number of components in the GMM, P indicates the order of the AR
model, A and C are the coefficients and noise covariance in the AR model respectively and T indicates the length of the
sequence. Discrete, VQ: x̃ ∼ Multinomial (λ), Λzt,zt−1 = p (zt|zt−1), Λx̃t,x̃t−1 = p (x̃t|x̃t−1), Φt = p (x̃t|zt). The
basic Mean representation is often used in the MIR field in combination with a so-called squared exponential kernel [2],
which is equivalent to formulating a PPK with a Gaussian with the given mean and a common, diagonal covariance matrix
corresponding to the length scale which can be found by cross-validation and specifically using q = 1 in the PPK.

Bayesian Information Criterion (BIC, for GMM and HMM),
or in the case of the AR model, CV was used.

2.2 Kernel Function

The various track-level representations outlined above are
all described in terms of a probability density as outlined in
Table 1, for which a natural kernel function is the Probabil-
ity Product Kernel [6]. The PPK forms a common ground
for comparison and is defined as,

k
(
p (x|θ) , p

(
x|θ′

))
=

∫ (
p (x|θ) p

(
x|θ′

))q
dx, (1)

where q > 0 is a free model parameter. The parameters of
the density model, θ, obviously depend on the particular
representation and are outlined in Tab.1. All the densities
discussed previously result in (recursive) analytical compu-
tations. [6, 11]. 1

3. PAIRWISE KERNEL GLM

The pairwise paradigm is a robust elicitation method to the
more traditional direct scaling approach and is reviewed
extensively in [8]. This paradigm requires a non-traditional
modeling approach for which we derive a relatively simple
kernel version of the Bradley-Terry-Luce model [3] for
pairwise comparisons. The non-kernel version was used for
this particular task in [9].

In order to formulate the model, we will for now assume
a standard vector representation for each of N audio ex-
cerpts collected in the set X = {xi|i = 1, ..., N}, where
xi ∈ RD, denotes a standard, D dimensional audio fea-
ture vector for excerpt i. In the pairwise paradigm, any
two distinct excerpts with index u and v, where xu ∈ X
and xv ∈ X , can be compared in terms of a given aspect

1 It should be noted that using the PPK does not require the same length
T of the sequences (the musical excerpts). For latent variable models,
such as the HMM, the number of latent states in the models can also be
different. The observation space, including the dimensionality D, is the
only thing that has to be the same.

(such as arousal/valance). WithM such comparisons we de-
note the output set as Y = {(ym;um, vm)|m = 1, ...,M},
where ym ∈ {−1,+1} indicates which of the two excerpts
had the highest valence (or arousal). ym = −1 means that
the um’th excerpt is picked over the vm’th and visa versa
when ym = 1.

The basic assumption is that the choice, ym, between the
two distinct excerpts, u and v, can be modeled as the differ-
ence between two function values, f(xu) and f(xv). The
function f : X → R hereby defines an internal, but latent,
absolute reference of valence (or arousal) as a function of
the excerpt (represented by the audio features, x).

Modeling such comparisons can be accomplished by the
Bradley-Terry-Luce model [3, 16], here referred to more
generally as the (logistic) pairwise GLM model. The choice
model assumes logistically distributed noise [16] on the
individual function value, and the likelihood of observing a
particular choice, ym, for a given comparison m therefore
becomes

p (ym|fm) ≡ 1

1 + e−ym·zm
, (2)

with zm = f(xum
)−f(xvm) and fm = [f(xum

), f(xvm)]T .
The main question is how the function, f(·), is modeled. In
the following, we derive a kernel version of this model in the
framework of kernel Generalized Linear Models (kGLM).
We start by assuming a linear and parametric model of
the form fi = xiw

> and consider the likelihood defined
in Eq. (2). The argument, zm, is now redefined such that
zm =

(
xum

w> − xvmw>
)
. We assume that the model

parameterized by w is the same for the first and second in-
put, i.e. xum

and xvm . This results in a projection from the
audio features x into the dimensions of valence (or arousal)
given by w, which is the same for all excerpts. Plugging
this into the likelihood function we obtain:

p (ym|xum
,xvm ,w) =

1

1 + e−ym((xum
−xum)w>)

. (3)



Following a maximum likelihood approach, the effective
cost function, ψ(·), defined as the negative log likelihood
is:

ψGLM (w) = −
∑M

m=1
log p (ym|xum

,xvm
,w). (4)

Here we assume that the likelihood factorizes over the ob-
servations, i.e. p (Y|f) =

∏M
m=1 p (ym|fm). Furthermore,

a regularized version of the model is easily formulated as

ψGLM−L2 (w) = ψGLM + γ ‖w‖22 , (5)

where the regularization parameter γ is to be found using
cross-validation, for example, as adopted here. This cost is
still continuous and is solved with a L-BFGS method.

This basic pairwise GLM model has previously been
used to model emotion in music [9]. In this work, the
pairwise GLM model is extended to a general regularized
kernel formulation allowing for both linear and non-linear
models. First, consider an unknown non-linear map of an
element x ∈ X into a Hilbert space,H, i.e., ϕ(x) : X 7→ H.
Thus, the argument zm is now given as

zm = (ϕ (xum)− ϕ (xvm)) wT (6)

The representer theorem [14] states that the weights, w —
despite the difference between mapped instances — can be
written as a linear combination of the inputs such that

w =
∑M

l=1
αl (ϕ (xul

)− ϕ (xvl)) . (7)

Inserting this into Eq. (6) and applying the ”kernel trick” [2],
i.e. exploiting that 〈ϕ (x)ϕ (x′)〉H = k (x,x′), we obtain

zm = (ϕ (xum)− ϕ (xvm))

M∑
l=1

αl (ϕ(xul
)− ϕ(xvl))

=

M∑
l=1

αl(ϕ (xum
)ϕ(xul

)− ϕ (xum
)ϕ(xvl)

− ϕ (xvm
)ϕ(xul

) + ϕ (xvm)ϕ(xvl))

=

M∑
l=1

αl(k (xum
,xul

)− k (xum
,xvl)

− k (xvm ,xul
) + k (xvm ,xvl))

=

M∑
l=1

αlk ({xum ,xvm}, {xul
,xvl}). (8)

Thus, the pairwise kernel GLM formulation leads exactly to
standard kernel GLM like [19], where the only difference is
the kernel function which is now a (valid) kernel between
two sets of pairwise comparisons 2 . If the kernel function
is the linear kernel, we obtain the basic pairwise logistic
regression presented in Eq. (3), but the the kernel formula-
tion easily allows for non-vectorial inputs as provided by
the PPK. The general cost function for the kGLM model is

2 In the Gaussian Process setting this kernel is also known as the Pair-
wise Judgment kernel [4], and can easily be applied for pairwise leaning
using other kernel machines such as support vector machines

defined as,

ψkGLM−L2 (α) = −
M∑

m=1

log p (ym|α,K) + γα>Kα,

i.e., dependent on the kernel matrix, K, and parameters
α. It is of the same form as for the basic model and we
can apply standard optimization techniques. Predictions for
unseen input pairs {xr,xs} are easily calculated as

∆frs = f (xr)− f (xs) (9)

=
∑M

m=1
αm k ({xum

,xvm
}, {xr,xs}). (10)

Thus, predictions exist only as delta predictions. However
it is easy to obtain a “true” latent (arbitrary scale) function
for a single output by aggregating all the delta predictions.

4. DATASET & EVALUATION APPROACH

To evaluate the different feature representations, two datasets
are used. The first dataset (IMM) consists ofNIMM = 20 ex-
cerpts and is described in [8]. It comprises all MIMM = 190
unique pairwise comparisons of 20 different 15-second
excerpts, chosen from the USPOP2002 3 dataset. 13 par-
ticipants (3 female, 10 male) were compared on both the
dimensions of valence and arousal. The second dataset
(YANG) [18] consists of MYANG = 7752 pairwise compar-
isons made by multiple annotators on different parts of the
NYANG = 1240 different Chinese 30-second excerpts on
the dimension of valence. 20 MFCC features have been
extracted for all excerpts by the MA toolbox 4 .

4.1 Performance Evaluation

In order to evaluate the performance of the proposed repre-
sentation of the multivariate feature time series we compute
learning curves. We use the so-called Leave-One-Excerpt-
Out cross validation, which ensures that all comparisons
with a given excerpt are left out in each fold, differing from
previous work [9]. Each point on the learning curve is
the result of models trained on a fraction of all available
comparisons in the training set. To obtain robust learning
curves, an average of 10-20 repetitions is used. Further-
more a ’win’-based baseline (Baselow) as suggested in [8]
is used. This baseline represents a model with no informa-
tion from features. We use the McNemar paired test with
the Null hypothesis that two models are the same between
each model and the baseline, if p < 0.05 then the models
can be rejected as equal on a 5% significance level.

5. RESULTS

We consider the pairwise classification error on the two out-
lined datasets with the kGLM-L2 model, using the outlined
pairwise kernel function combined with the PPK kernel
(q=1/2). For the YANG dataset a single regularization pa-
rameter γ was estimated using 20-fold cross validation used

3 http://labrosa.ee.columbia.edu/projects/
musicsim/uspop2002.html

4 http://www.pampalk.at/ma/



Obs. Time Models Training set size
1% 5% 10% 20% 40% 80 % 100 %

C
on

tin
uo

us

Indp.

Mean 0.468 0.386 0.347 0.310 0.277 0.260 0.252
N (x|µ, σ) 0.464 0.394 0.358 0.328 0.297 0.279 0.274
N (x|µ,Σ) 0.440 0.366 0.328 0.295 0.259 0.253 0.246
GMMdiag 0.458 0.378 0.341 0.304 0.274 0.258 0.254
GMMfull 0.441 0.362 0.329 0.297 0.269 0.255 0.252

Temp.
DARCV 0.447 0.360 0.316 0.283 0.251 0.235 0.228
VARCV 0.457 0.354 0.316 0.286 0.265 0.251 0.248

D
is

cr
et

e

Indp.
VQp=256 0.459 0.392 0.353 0.327 0.297 0.280 0.279*
VQp=512 0.459 0.394 0.353 0.322 0.290 0.272 0.269
VQp=1024 0.463 0.396 0.355 0.320 0.289 0.273 0.271

Temp.

Markovp=8 0.454 0.372 0.333 0.297 0.269 0.254 0.244
Markovp=16 0.450 0.369 0.332 0.299 0.271 0.257 0.251
Markovp=24 0.455 0.371 0.330 0.297 0.270 0.254 0.248
Markovp=32 0.458 0.378 0.338 0.306 0.278 0.263 0.256
HMMp=8 0.461 0.375 0.335 0.297 0.267 0.250 0.246
HMMp=16 0.451 0.370 0.328 0.291 0.256 0.235 0.228
HMMp=24 0.441 0.366 0.328 0.293 0.263 0.245 0.240
HMMp=32 0.460 0.373 0.337 0.299 0.268 0.251 0.247
Baseline 0.485 0.413 0.396 0.354 0.319 0.290 0.285

Table 2. Classification error on the IMM dataset applying
the pairwise kGLM-L2 model on the valence dimension.
Results are averages of 20 folds, 13 subjects and 20 rep-
etitions. McNemar paired tests between each model and
baseline all result in p� 0.001 except for results marked
with * which has p > 0.05 with sample size of 4940.

across all folds in the CV. The quantization of the multi-
variate time series, is performed using a standard online
K-means algorithm [15]. Due to the inherent difficulty of
estimating the number of codewords, we choose a selection
specifically (8, 16, 24 and 32) for the Markov and HMM
models and (256, 512 and 1024) for the VQ models. We
compare results between two major categories, namely with
continuous or discretized observation space and whether
temporal information is included or not.

The results for the IMM dataset for valence are pre-
sented in Table 2. For continuous observations we see a
clear increase in performance between the Diagonal AR
(DAR) model of up to 0.018 and 0.024, compared to tra-
ditional Multivariate Gaussian and mean models respec-
tively. With discretized observations, an improvement of
performance when including temporal information is again
observed of 0.025 comparing the Markov and VQ mod-
els. Increasing the complexity of the temporal represen-
tation with latent states in the HMM model, an increase
of performance is again obtained of 0.016. Predicting the
dimension of arousal shown on Table 3, the DAR is again
the best performing model using all training data, outper-
forming the traditional temporal-independent models with
0.015. For discretized data the HMM is the best performing
model where we again see that increasing the complex-
ity of the temporal representation increases the predictive
performance. Considering the YANG dataset, the results
are shown in Table 4. Applying the Vector AR models
(VAR), a performance gain is again observed compared to
the standard representations like e.g. Gaussian or GMM.
For discretized data, the temporal aspects again improve
the performance, although we do not see a clear picture that
increasing the complexity of the temporal representation
increases the performance; the selection of the number of
hidden states could be an issue here.

Obs. Time Models Training set size
1% 5% 10% 20% 40% 80 % 100 %

C
on

tin
uo

us

Indp.

Mean 0.368 0.258 0.230 0.215 0.202 0.190 0.190
N (x|µ, σ) 0.378 0.267 0.241 0.221 0.205 0.190 0.185
N (x|µ,Σ) 0.377 0.301 0.268 0.239 0.216 0.208 0.201
GMMdiag 0.390 0.328 0.301 0.277 0.257 0.243 0.236
GMMfull 0.367 0.303 0.279 0.249 0.226 0.216 0.215

Temp.
DARCV 0.411 0.288 0.243 0.216 0.197 0.181 0.170
VARCV 0.393 0.278 0.238 0.213 0.197 0.183 0.176

D
is

cr
et

e

Indp.
VQp=256 0.351 0.241 0.221 0.208 0.197 0.186 0.183
VQp=512 0.356 0.253 0.226 0.211 0.199 0.190 0.189
VQp=1024 0.360 0.268 0.240 0.219 0.200 0.191 0.190

Temp.

Markovp=8 0.375 0.265 0.238 0.220 0.205 0.194 0.188
Markovp=16 0.371 0.259 0.230 0.210 0.197 0.185 0.182
Markovp=24 0.373 0.275 0.249 0.230 0.213 0.202 0.200
Markovp=32 0.374 0.278 0.249 0.229 0.212 0.198 0.192
HMMp=8 0.410 0.310 0.265 0.235 0.211 0.194 0.191
HMMp=16 0.407 0.313 0.271 0.235 0.203 0.185 0.181
HMMp=24 0.369 0.258 0.233 0.215 0.197 0.183 0.181
HMMp=32 0.414 0.322 0.282 0.245 0.216 0.200 0.194
Baseline 0.483 0.417 0.401 0.355 0.303 0.278 0.269

Table 3. Classification error on the IMM dataset applying
the pairwise kGLM-L2 model on the arousal dimension.
Results are averages of 20 folds, 13 participants and 20
repetitions. McNemar paired tests between each model and
baseline all result in p� 0.001 with a sample size of 4940.

Obs. Time Models Training set size
1% 5% 10% 20% 40% 80 % 100 %

C
on

tin
uo

us
Indp.

Mean 0.331 0.300 0.283 0.266 0.248 0.235 0.233
N (x|µ, σ) 0.312 0.291 0.282 0.272 0.262 0.251 0.249
N (x|µ,Σ) 0.293 0.277 0.266 0.255 0.241 0.226 0.220
GMMdiag 0.302 0.281 0.268 0.255 0.239 0.224 0.219
GMMfull 0.293 0.276 0.263 0.249 0.233 0.218 0.214

Temp.
DARp=10 0.302 0.272 0.262 0.251 0.241 0.231 0.230
VARp=4 0.281 0.260 0.249 0.236 0.223 0.210 0.206

D
is

cr
et

e

Indp.
VQp=256 0.304 0.289 0.280 0.274 0.268 0.264 0.224
VQp=512 0.303 0.286 0.276 0.269 0.261 0.254 0.253
VQp=1024 0.300 0.281 0.271 0.261 0.253 0.245 0.243

Temp.

Markovp=8 0.322 0.297 0.285 0.273 0.258 0.243 0.238
Markovp=16 0.317 0.287 0.272 0.257 0.239 0.224 0.219
Markovp=24 0.314 0.287 0.270 0.252 0.235 0.221 0.217
Markovp=32 0.317 0.292 0.275 0.255 0.238 0.223 0.217
HMMp=8 0.359 0.320 0.306 0.295 0.282 0.267 0.255
HMMp=16 0.354 0.324 0.316 0.307 0.297 0.289 0.233
HMMp=24 0.344 0.308 0.290 0.273 0.254 0.236 0.234
HMMp=32 0.344 0.307 0.290 0.272 0.254 0.235 0.231
Baseline 0.500 0.502 0.502 0.502 0.503 0.502 0.499

Table 4. Classification error on the YANG dataset applying
the pairwise kGLM-L2 model on the valence dimension.
Results are averages of 1240 folds and 10 repetitions. Mc-
Nemar paired test between each model and baseline results
in p� 0.001. Sample size of test was 7752.

6. DISCUSSION

In essence we are looking for a way of representing an entire
track based on the simple features extracted. That is, we are
trying to find generative models that can capture meaningful
information coded in the features specifically for coding
aspects related to the emotions expressed in music.

Results showed that simplifying the observation space
using VQ is useful when predicting the arousal data. Intro-
ducing temporal coding of VQ features by simple Markov
models already provides a significant performance gain,
and adding latent dimensions (i.e. complexity) a further
gain is obtained. This performance gain can be attributed
to the temporal changes in features and potentially hidden
structures in the features not coded in each frame of the fea-
tures but, by their longer term temporal structures, captured
by the models.

We see the same trend with the continuous observations,
i.e. including temporal information significantly increases



predictive performance. These results are specific for the
features used, the complexity, and potentially the model
choice might differ if other features were utilized. Future
work will reveal if other structures can be found in features
that describe different aspects of music; structures that are
relevant for describing and predicting aspects regarding
emotions expressed in music.

Another consideration when using the generative models
is that the entire feature time series is replaced as such
by the model, since the distances between tracks are now
between the models trained on each of the tracks and not
directly on the features 5 . These models still have to be
estimated, which takes time, but this can be done offline
and provide a substantial compression of the features used.

7. CONCLUSION

In this work we presented a general approach for evaluat-
ing various track-level representations for music emotion
prediction, focusing on the benefit of modeling temporal as-
pects of music. Specifically, we considered datasets based
on robust, pairwise paradigms for which we extended a
particular kernel-based model forming a common ground
for comparing different track-level representations of mu-
sic using the probability product kernel. A wide range
of generative models for track-level representations was
considered on two datasets, focusing on evaluating both
using continuous and discretized observations. Modeling
both the valence and arousal dimensions of expressed emo-
tion showed a clear gain in applying temporal modeling
on both the datasets included in this work. In conclusion,
we have found evidence for the hypothesis that a statisti-
cally significant gain is obtained in predictive performance
by representing the temporal aspect of music for emotion
prediction using MFCC’s.
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