
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

October 2019

Neural Models for Information Retrieval without Labeled Data Neural Models for Information Retrieval without Labeled Data

Hamed Zamani

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Recommended Citation Recommended Citation
Zamani, Hamed, "Neural Models for Information Retrieval without Labeled Data" (2019). Doctoral
Dissertations. 1787.
https://scholarworks.umass.edu/dissertations_2/1787

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/237407177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1787&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1787&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1787&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1787&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1787?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1787&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

NEURAL MODELS FOR INFORMATION RETRIEVAL
WITHOUT LABELED DATA

A Dissertation Presented

by

HAMED ZAMANI

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2019

College of Information and Computer Sciences

c© Copyright by Hamed Zamani 2019

All Rights Reserved

NEURAL MODELS FOR INFORMATION RETRIEVAL
WITHOUT LABELED DATA

A Dissertation Presented

by

HAMED ZAMANI

Approved as to style and content by:

W. Bruce Croft, Chair

James Allan, Member

Erik Learned-Miller, Member

Weibo Gong, Member

James Allan, Chair of the Faculty
College of Information and Computer Sciences

To my parents.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor and role model, Bruce Croft,

without whom this dissertation would not have been possible. Bruce provided me

with the perfect balance of guidance and freedom. Most importantly, he taught me

how to be a scientist and make significant impact on the community. His immense

support, visionary leadership, boundless intellectual curiosity, and constant enthusi-

asm had, and will continue to have, tremendous impact on my academic life. I am

also grateful to him for placing his trust and confidence in my abilities and giving

me the opportunity to teach the Information Retrieval course (CS646) at UMass,

collaborate broadly, write research grants, and organize workshops.

I must also acknowledge my committee members, James Allan, Erik Learned-

Miller, and Weibo Gong. Their insightful comments improved this dissertation in

many ways. In particular, I would like to thank James for his thought-provoking

feedback and detailed comments on the materials presented in this dissertation. I

must also thank Erik for his invaluable feedback during our close collaboration.

It was a great privilege to be part of the Center for Intelligent Information Re-

trieval (CIIR). I would like to thank all of my fellow graduate students at the Cen-

ter. In particular, I would like to thank Qingyao Ai, Dan Cohen, John Foley, Helia

Hashemi, Jiepu Jiang, and Youngwoo Kim for their nearly endless supply of profound

discussions. In addition, I am sincerely indebted to all the CIIR staff, for their ded-

icated support of my work. In particular, I would like to thank Stephen Harding,

Jean Joyce, Kate Morruzzi, Dan Parker, and Glenn Stowell for their administrative

and technical support.

v

I had the honor of collaborating with over 50 researchers so far, as either mentor,

mentee, or collaborator. I have not only learned a lot from them, but also made

many great friends. In particular, I would like to thank my Master’s advisor, Azadeh

Shakery, for introducing me to the field of information retrieval. I would also like

to thank my internship mentors and collaborators at Google Research and Microsoft

Research for giving me the opportunity to see what it was like to be a researcher

in industrial research labs. They include Michael Bendersky, Paul Bennett, Nick

Craswell, Susan Dumais, Gord Lueck, Bhaskar Mitra, Xia Song, Saurabh Tiwary,

Xuanhui Wang, and Mingyang Zhang. I must also acknowledge the help and support

of Nick Craswell, Mostafa Dehghani, Fernando Diaz, and Hang Li while organizing the

first international workshop on learning from limited or noisy data for information

retrieval (LND4IR) at SIGIR 2018. A special thanks to Mohammad Aliannejadi,

Mostafa Dehghani, Jaap Kamps, and Markus Schedl for the productive collaborations

we had throughout the last few years.

Last but not least, I would not be where I am today without the amazing support,

encouragement and love from my family. I am forever indebted to my parents, Razieh

and Mokhtar, for giving me the opportunities that have made me who I am. They

selflessly encouraged me to explore new directions in life. This journey would not

have been possible if not for them, and I dedicate this milestone to them. I would

like to thank my brother and sister, Mahdi and Mahsa, for their unfailing emotional

support. I am grateful to have them by my side. Finally, I would like to thank my

girlfriend, Helia, for her love and care while I was finishing this dissertation. This

paragraph is woefully inadequate to express the depth of support and love I received

from all of them.

This work was supported in part by the Center for Intelligent Information Re-

trieval. Any opinions, findings and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect those of the sponsor.

vi

ABSTRACT

NEURAL MODELS FOR INFORMATION RETRIEVAL
WITHOUT LABELED DATA

SEPTEMBER 2019

HAMED ZAMANI

B.Sc., UNIVERSITY OF TEHRAN

M.Sc., UNIVERSITY OF TEHRAN

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

Recent developments of machine learning models, and in particular deep neural

networks, have yielded significant improvements on several computer vision, natural

language processing, and speech recognition tasks. Progress with information retrieval

(IR) tasks has been slower, however, due to the lack of large-scale training data as

well as neural network models specifically designed for effective information retrieval.

In this dissertation, we address these two issues by introducing task-specific neural

network architectures for a set of IR tasks and proposing novel unsupervised or weakly

supervised solutions for training the models. The proposed learning solutions do not

require labeled training data. Instead, in our weak supervision approach, neural

models are trained on a large set of noisy and biased training data obtained from

external resources, existing models, or heuristics.

We first introduce relevance-based embedding models that learn distributed rep-

resentations for words and queries. We show that the learned representations can be

vii

effectively employed for a set of IR tasks, including query expansion, pseudo-relevance

feedback, and query classification.

We further propose a standalone learning to rank model based on deep neural

networks. Our model learns a sparse representation for queries and documents. This

enables us to perform efficient retrieval by constructing an inverted index in the

learned semantic space. Our model outperforms state-of-the-art retrieval models,

while performing as efficiently as term matching retrieval models.

We additionally propose a neural network framework for predicting the perfor-

mance of a retrieval model for a given query. Inspired by existing query performance

prediction models, our framework integrates several information sources, such as re-

trieval score distribution and term distribution in the top retrieved documents. This

leads to state-of-the-art results for the performance prediction task on various stan-

dard collections.

We finally bridge the gap between retrieval and recommendation models, as the

two key components in most information systems. Search and recommendation often

share the same goal: helping people get the information they need at the right time.

Therefore, joint modeling and optimization of search engines and recommender sys-

tems could potentially benefit both systems. In more detail, we introduce a retrieval

model that is trained using user-item interaction (e.g., recommendation data), with

no need to query-document relevance information for training.

Our solutions and findings in this dissertation smooth the path towards learn-

ing efficient and effective models for various information retrieval and related tasks,

especially when large-scale training data is not available.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES .xiii

LIST OF FIGURES . xvii

CHAPTER

1. INTRODUCTION . 1

1.1 Distributed Representation for Information Retrieval 2
1.2 Neural Ranking Models . 4
1.3 Neural Query Performance Prediction . 5
1.4 Joint Modeling of Search and Recommendation . 6
1.5 Contributions . 7

2. RELATED WORK . 10

2.1 Neural Approaches to Information Retrieval . 10

2.1.1 Word Embedding for Information Retrieval 10
2.1.2 Neural Ranking Models . 13

2.2 Machine Learning without Labeled Data . 16
2.3 Weak Supervision for Information Retrieval . 18

3. DISTRIBUTED REPRESENTATIONS FOR INFORMATION
RETRIEVAL . 20

3.1 Background: Word Embedding . 20
3.2 Relevance-based Word Embedding . 21

3.2.1 Neural Network Architecture . 22

ix

3.2.2 Modeling Relevance for Training without Labeled Data 24
3.2.3 Relevance Likelihood Maximization Model . 25
3.2.4 Relevance Posterior Estimation Model . 27

3.3 Applications to Information Retrieval . 29

3.3.1 Query Expansion . 29

3.3.1.1 Embedding-based Query Expansion Models 30
3.3.1.2 Embedding-based Relevance Models 32
3.3.1.3 Experiments . 34

3.3.2 Query Classification . 43

3.3.2.1 Estimating Embedding Vectors for Queries 44
3.3.2.2 Query Classification with k-Nearest Neighbors 48
3.3.2.3 Experiments . 49

3.4 Summary . 51

4. NEURAL RANKING MODELS . 53

4.1 Learning to Rank with Weak Supervision . 53

4.1.1 Preliminaries . 54

4.1.1.1 Learning to Rank Formulation . 54
4.1.1.2 Risk Minimization Framework . 55

4.1.2 Problem Statement . 56
4.1.3 Symmetric Ranking Loss . 56
4.1.4 Weak Supervision as Uniform Noisy Channel 58
4.1.5 Weak Supervision as Non-uniform Noisy Channel 60
4.1.6 A Study of Pairwise Loss Functions . 62
4.1.7 Experiments . 64

4.1.7.1 Evaluation on Synthetic Data . 64
4.1.7.2 Evaluation on Weak Supervision Data 65

4.2 A Standalone Neural Ranking Model with Weak Supervision 68

4.2.1 Design Desiderata . 68
4.2.2 Network Architecture . 70
4.2.3 Training . 73
4.2.4 Inverted Index Construction . 76
4.2.5 Retrieval . 77
4.2.6 Pseudo-Relevance Feedback . 78

x

4.2.7 SNRM Summary . 78
4.2.8 Experiments . 79

4.3 Summary . 89

5. NEURAL QUERY PERFORMANCE PREDICTION 90

5.1 Background: Query Performance Prediction . 90
5.2 A Neural Network Architecture for Query Performance Prediction 92

5.2.1 Component I: Retrieval Scores Analyzer . 94
5.2.2 Component II: Term Distribution Analyzer 95
5.2.3 Component III: Semantic Analyzer . 96

5.3 Learning from Multiple Weak Supervision Signals . 97

5.3.1 Training . 98
5.3.2 Component Dropout . 99
5.3.3 Weak Supervision Signals . 101

5.4 Experiments . 103

5.4.1 Data . 103
5.4.2 Evaluation . 104
5.4.3 Experimental Setup . 105
5.4.4 Results and Discussions . 105

5.5 Summary . 113

6. JOINT MODELING OF SEARCH AND
RECOMMENDATION . 114

6.1 Motivation . 114
6.2 Learning a Retrieval Model from User-Item Interactions 116

6.2.1 Problem Statement . 116
6.2.2 The JSR Framework . 117

6.2.2.1 Recommendation . 117
6.2.2.2 Item Text Reconstruction . 119
6.2.2.3 Optimization . 120

6.2.3 Training Efficiency in JSR . 120
6.2.4 Matrix Factorization Interpretation . 121
6.2.5 Item Retrieval using JSR . 122
6.2.6 Summary . 123

xi

6.3 Experiments . 124

6.3.1 Training . 124

6.3.1.1 Training Data . 124
6.3.1.2 Parameter Setting . 125

6.3.2 Evaluating the Retrieval Performance . 126

6.3.2.1 Evaluation Data . 126
6.3.2.2 Evaluation Metrics . 127
6.3.2.3 Experimental Setup . 128
6.3.2.4 Results and Discussion . 128

6.3.3 Evaluating the Recommendation Performance 130

6.3.3.1 Evaluation Data . 130
6.3.3.2 Evaluation Metrics . 131
6.3.3.3 Results and Discussion . 131

6.3.4 Additional Empirical Analysis . 134

6.3.4.1 Analyzing the Learned Representations 134
6.3.4.2 Investigating the Impact of Word Embedding

Vectors . 136

6.4 Potential Applications for JSR . 136
6.5 Summary . 138

7. CONCLUSIONS AND FUTURE WORK . 139

7.1 Overview of Weak Supervision for Information Retrieval 139
7.2 Key Findings and Results . 140
7.3 Future Work . 141

BIBLIOGRAPHY . 144

xii

LIST OF TABLES

Table Page

3.1 Collections statistics. 34

3.2 Comparing the proposed embedding-based query expansion methods
(EQE1 and EQE2) with the baselines. The superscript 1/2/3/4
denotes that the MAP improvements over
QL/GLM/VEXP/AWE are statistically significant. The highest
value in each row is marked in bold. 37

3.3 Evaluating the proposed methods in the pseudo-relevance feedback
scenario. The superscript 1/2 denotes that the MAP
improvements over QL/RM3 are statistically significant. The
highest value in each row is marked in bold. 38

3.4 The corpora used for training the embedding vectors. 38

3.5 The MAP values achieved by EQE1, EQE2, and ERM (MLE+ERM)
with different corpora for training the embedding vectors
(dimension = 300). 39

3.6 Evaluating relevance-based word embeddings in the context of query
expansion. The superscripts 0/1/2 denote that the MAP
improvements over MLE/word2vec/GloVe are statistically
significant. The highest value in each row is marked in bold. 40

3.7 Top 10 expansion terms obtained by the word2vec and the
relevance-based word embedding models for an example query:
“indian american museum”. 41

3.8 Top 10 expansion terms obtained by the word2vec and the
relevance-based word embedding models for an example query:
“tibet protesters”. 42

xiii

3.9 Evaluating relevance-based word embedding in pseudo-relevance
feedback scenario. The superscripts 1/2/3 denote that the MAP
improvements over RM3/EQE1 with Local Embedding/ERM
with Local Embedding are statistically significant. The highest
value in each row is marked in bold. 43

3.10 Evaluating embedding algorithms via query classification. The
superscripts 1/2 denote that the improvements over
word2vec/GloVe with the same query embedding method are
significant. The superscript * denotes that the improvements over
the AWE method with all embeddings are significant. The highest
value in each column is marked in bold. 50

4.1 Retrieval performance of weakly supervised neural ranking models
(FNRM) with different loss functions. The highest value per
column is marked in bold, and the superscripts 0/1/2 denote
statistically significant improvements compared to
QL/FNRM-CE/FNRM-L2, respectively. 67

4.2 Performance of the proposed models and baselines. The highest value
per column is marked in bold, and the superscripts 1/2/3/4/5/6
denote statistically significant improvements compared to
QL/SDM/RM3/FNRM/CNRM/SNRM, respectively. 82

4.3 Number of non-zero elements in the query and document
representations with 10, 000 output dimensionality. 87

4.4 Efficiency of SNRM compared to query likelihood, in terms of average
run time (milliseconds) per query. 87

4.5 Performance of SNRM on the Robust collection with respect to
different amount of random document removal at training time.
The superscript O denotes significant performance loss in
comparison with the setting where no document is removed (i.e.,
no removal). 88

5.1 Statistical properties of the four collections used. 103

5.2 Performance of query performance prediction models on four
collections, in terms of the Pearson’s ρ and the Kendall’s τ
correlations. The results are reported for estimating the
performance of each query in terms of AP@1000 as the target
metric. The highest value in each column is marked in bold, and
the superscripts † / ‡ denote statistically significant improvements
compared to all baselines at 95% / 99% confidence intervals. 106

xiv

5.3 Performance of query performance prediction models on four
collections, in terms of the Pearson’s ρ and the Kendall’s τ
correlations. The results are reported for estimating the
performance of each query in terms of nDCG@20 as the target
metric. The highest value in each column is marked in bold, and
the superscripts † / ‡ denote statistically significant improvements
compared to all baselines at 95% / 99% confidence intervals. 107

5.4 Performance of the NeuralQPP’s individual components as well as
the Component Dropout technique in case of existing multiple
components. The Pearson’s ρ and the Kendall’s τ correlations are
reported for the AP of the top 1000 documents per query. The
highest value in each column is marked in bold, and the
superscripts ‡ denotes statistically significant improvements
compared to all individual components at a 99% confidence
interval. 110

5.5 Performance of NeuralQPP trained with different weak labels, in
terms of correlation with the actual AP@1000 values. The highest
value in each column is marked in bold, and the superscript † / ‡

denote statistically significant improvements compared to all
individual weak signals as well as both All-MV and All-Ind
methods at 95% / 99% intervals. 111

5.6 Performance of the NeuralQPP model for predicting the average
precision of the top 1000 documents for popular retrieval
models. 113

6.1 Statistics of the data used in our experiments. 124

6.2 Two sample queries and their associated relevant movies from the
retrieval dataset. 127

6.3 Retrieval performance of JSR and the baselines. The highest value
per column is marked in bold, and the superscript * denotes
statistically significant improvements compared to all the
baselines. 129

6.4 Recommendation performance of JSR and the baselines. The highest
value per column is marked in bold, and the superscript * denotes
statistically significant improvements compared to all the
collaborative filtering baselines (i.e., ItemPopularity, BPR, eALS,
and NCF). 133

xv

6.5 The top 10 words selected by JSR for four sample movies. The words
are sorted in descending order in terms of their weights. The table
should be viewed in color. 134

6.6 The corpora used for training the embedding vectors. 135

6.7 Retrieval performance of JSR with different word embedding
initialization. The highest value per column is marked in bold,
and the superscript * denotes statistically significant
improvements compared to all the baselines. 136

xvi

LIST OF FIGURES

Figure Page

3.1 The relevance-based word embedding architecture. The objective is
to learn d-dimensional distributed representation for words based
on the notion of relevance, instead of term proximity. N denotes
the total number of vocabulary terms. 23

4.1 The retrieval performance on MQ2008 with respect to the uniform
noise probability (ρ < 0.5). 65

4.2 The retrieval performance on MQ2008 with respect to the
non-uniform maximum noise probability. 66

4.3 Learning a latent sparse representation for a document. 73

4.4 General schema of the SNRM at training time. 74

4.5 General schema of the SNRM after training. 77

4.6 Sensitivity of SNRM with PRF to the number of non-zero elements in
the updated query vector. 83

4.7 Sparsity ratio for query and document representations plus the L1

norm with respect to the training steps, for SNRM trained on the
Robust collection with 10, 000 output dimensionality and
λ = 1e−7. 85

4.8 The document frequency for the top 1000 dimensions in the actual
term space (blue), the latent dense space (red), and the latent
sparse space (green) for a random sample of 10k documents from
the Robust collection. 86

4.9 Retrieval performance and sparsity ratio on the Robust collection
with respect to different values of parameter λ. The output
dimensionality was set to 10,000. 88

xvii

5.1 NeuralQPP consists of the three components depicted above. The
representations learned by each of these components are then
aggregated using the arithmetic mean and then fed into a
fully-connected feed-forward network that produces a single score
for query performance prediction. 94

6.1 A high-level overview of the JSR framework that consists of three
major components φU, φI, and ψ. JSR is trained using two
objective functions: a recommendation objective and an item text
reconstruction objective. 117

xviii

CHAPTER 1

INTRODUCTION

Information Retrieval (IR) is a field of science concerned with finding material

of mostly unstructured nature to satisfy an information need [102].1 Information

retrieval technologies have impacted and are having increasing impact on people’s

everyday lives. They are a major source of revenue for the key players of the tech

industry, such as Google2 and Microsoft3. Search engines are probably the most

successful applications of information retrieval. Effective search engines mostly rely

on machine learning algorithms with carefully designed hand-crafted features trained

on large-scale data collected from past user interactions with the search engine [91].

Manual feature engineering has several disadvantages. First it is expensive, in

terms of both time and cost. Second, extracting effective complex features is difficult

or sometimes infeasible. Third, effective features are mostly application- and task-

specific, therefore, they must be carefully designed for each target application and

task, separately. One goal of this dissertation is to omit the need for manual feature

engineering. In more detail, we propose models based on the recent advances in

deep learning to learn latent features instead of manual feature engineering. Recent

deep learning techniques have shown impressive performance in various computer

1Information retrieval refers to a wide range of information seeking and organizing needs. Among
them, text retrieval has been the focus of the IR community since 1950s [142]. Text retrieval focuses
on helping people find documents that are relevant to their information needs. In this dissertation,
all references to information retrieval will be to text retrieval systems.

2https://www.google.com/

3https://www.microsoft.com/

1

vision, natural language processing, and speech recognition tasks. However, deep

neural networks require large-scale training data to perform well, which is not always

available. The academic community and small companies lack such data, which

prevents them from working on a set of cutting-edge technologies. Even within the

major tech industry, there are situations where data is extremely sparse; these include

enterprise systems, new or small international markets or demographics, and personal

systems [187]. As a result, dealing with limited data is an unavoidable problem in

both academia and industry. Therefore, a considerable portion of this dissertation

proposes approaches to deal with limited training data in its extreme case, where

there is no training data in hand.

Most approaches introduced in this dissertation are based on a weak supervision

solution, a machine learning strategy that does not require labeled data. In more

detail, our proposed models are mostly trained based on the output of an existing

unsupervised model for the underlying task [42, 180]. In the following sections, we

review a set of information retrieval tasks studied in this dissertation and briefly

introduce our contributions.

1.1 Distributed Representation for Information Retrieval

Representation learning for terms,4 queries, and documents is at the core of in-

formation retrieval. Assuming vocabulary terms being the atomic units of natural

languages, most information retrieval models represent each piece of text based on

the vocabulary terms it contains as well as their frequencies. For instance, in the

vector space model [143], each text is represented by a |V | dimensional vector, where

V denotes the vocabulary set. Each dimension corresponds to a vocabulary term

and the similarity between two vectors is often computed using dot product or co-

4Although there are some subtle differences between the meanings of “word” and “term”, they
are sometimes used interchangeably throughout this dissertation.

2

sine similarity functions. Using one dimension per vocabulary term is called local

representation.

In local representations, it is assumed that dimensions are independent, which

is not a true assumption in the context of natural language. The reason is that

there exist syntactic and semantic relations between terms in the vocabulary. This

assumption in traditional retrieval models has led to a long-standing problem called

vocabulary mismatch [30]. Vocabulary mismatch refers to a common phenomenon in

natural language where different vocabulary terms are used for the same (or similar)

concepts or entities. Vocabulary mismatch is particularly important for information

retrieval, since the language usage in queries and documents is different.

Using distributed representation for text is a potential solution for addressing the

vocabulary mismatch problem. Distributed representation refers to representing each

atomic unit of language by a pattern of activity distributed over several dimensions

in a vector space model [70]. This allows us to measure the similarity between any

arbitrary pair of vocabulary terms, and consequently any pair of text.

Latent semantic indexing (LSI) [39] is an early model that uses distributed rep-

resentation for information retrieval. LSI decomposes a document-term matrix com-

puted from the collection using singular value decomposition (SVD) into three ma-

trices. The latent representations learned by SVD are then considered as distributed

representations of terms and documents. Despite its clever idea, LSI is expensive or

infeasible to run on large collections [102]. More recently, with the rapid growth of

computational resources, distributed representations have again attracted much at-

tention. Among various approaches for learning distributed representation for terms,

word2vec [107] and GloVe [123] are notable. They are also called word embedding

models. These models are designed based on similar idea. Unlike LSI, they use a

small window context (e.g., five terms) instead of the whole document.

3

In this dissertation, we focus on learning distributed representations for informa-

tion retrieval. We argue that the objectives of existing word embedding models are

based on term adjacency, which differs from the main objective in information re-

trieval. In fact, the main goal in information retrieval is to capture relevance. There-

fore, we revisit the objective of word embedding models by predicting the terms

appeared in the relevant documents in response to an information need. This has

led to the development of relevance-based word embedding models [180]. It is notable

that our models do not require labeled data. In more detail, we assume that the

top retrieved documents in response to each query are relevant to the query and use

relevance models [87], state-of-the-art pseudo-relevance feedback models, to automat-

ically generate large-scale weakly supervised data.

To evaluate the effectiveness of word embedding models for information retrieval,

we propose a set of extrinsic evaluation methodologies for the tasks of query ex-

pansion [178, 3] and query classification [179]. We show that relevance-based word

embedding models outperform general-purpose word embedding models in these IR

tasks.

1.2 Neural Ranking Models

Developing efficient and effective retrieval models has always been at the core of

information retrieval [30]. Modern search engines use a multi-stage cascaded architec-

ture for ranking documents in response to each query [170]. The early stage rankers

are supposed to be efficient with high recall. They use an inverted index to efficiently

retrieve documents from a large-scale collection. On the other hand, the last stage

rankers are often expensive with high precision. They only re-rank a small subset of

the collection [176]. It has been over a decade since learning to rank models are used

as the last stage rankers in the search and recommendation industry [91].

4

To avoid the need for manual feature engineering, a set of learning to rank models

based on deep neural networks has been recently proposed to learn representation for

unstructured text [56, 108]. These models, called neural ranking models, often require

large-scale training data to perform effectively. To address this issue, Dehghani et

al. [42] have recently proposed a weak supervision approach that uses an existing

retrieval model, e.g., BM25 [134], as a weak labeler to produce a large volume of

training data.

In this dissertation, we theoretically study weak supervision in the context of

learning to rank [182, 183]. We model weak supervision as a noisy channel that

introduces noise to the true labels. Our study not only theoretically explains why

weak supervision models perform well, but also provides guidelines for training weakly

supervised learning to rank models. We further propose a standalone neural ranking

model [186] that is trained with weak supervision with no labeled data. Unlike existing

learning to rank models, including neural ranking models, our model can retrieve

documents from a large-scale collection. In other words, our model does not require

a multi-stage cascaded architecture. This enables us to train our model fully end-to-

end. We show that our model outperforms competitive baselines, while performing

as efficient as term matching models, such as query likelihood [126] and BM25 [134].

1.3 Neural Query Performance Prediction

Predicting the performance of a search engine for a given query is a fundamen-

tal and challenging task in information retrieval. The query performance prediction

(QPP) task is defined as predicting the quality of a retrieval model for a given query,

when neither explicit nor implicit relevance information is available [32]. Accurate

and real-time performance predictors could potentially be used in triggering a specific

action in the retrieval system, such as selecting an index traversal algorithm at query

time [101], choosing the correct number of documents to process in a cascaded mul-

5

tistage retrieval system [34], choosing the most effective ranking function per query,

selecting the best variant from multiple query reformulations, or requesting more in-

formation from users in cases of potential poor retrieval performance, particularly in

conversational systems.

In this dissertation, we propose a general end-to-end framework based on neural

networks for query performance prediction. Our framework, called NeuralQPP [184],

consists of multiple components, each analyzing a distinct aspect useful for perfor-

mance prediction. We implement NeuralQPP using three components and train it

using multiple weak supervision signals. Our model provides state-of-the-art results

for the query performance prediction task.

1.4 Joint Modeling of Search and Recommendation

A quarter-century has passed since Belkin and Croft [15] discussed the similarity

and unique challenges of information retrieval and information filtering systems. They

concluded that their underlying goals are essentially equivalent, and thus they are

two sides of the same coin. Search and recommendation are nowadays two major

components of information systems. For example, in e-commerce applications, such as

Amazon5 and eBay6, improving both search and recommendation engines is essential

for increasing user satisfactions. We believe that search engines and recommender

systems seek the same goal: helping people get the information they need at the right

time. Therefore, joint modeling and optimization of search engines and recommender

systems, if possible, could potentially benefit both systems.

In this dissertation, we propose to use joint modeling and optimization of search

and recommendation [181] in order to learn a retrieval model from recommendation

5https://www.amazon.com/

6https://www.ebay.com/

6

data (i.e., without labeled retrieval data). This is not only a theoretically interesting

problem, but also useful in practice. From theoretical perspective, it is a challenging

transfer learning problem that differs from typical domain adaptation tasks. From

practical perspective, it can lead to the development of search functionality for infor-

mation systems that only have a recommender system. Our multi-task learning model

takes advantage of weakly supervised relevance-based word embedding in addition to

user-item interaction data for learning item (document) representations.

1.5 Contributions

In this dissertation, we make the following contributions:

1. We introduce relevance-based word embedding and propose maximum likeli-

hood maximization and relevance posterior estimation as two models for learn-

ing relevance-based word embedding vectors. We further propose a weak super-

vision approach for training relevance-based word embedding models without

labeled data (Chapter 3).

2. We propose two embedding-based query expansion models as well as an embedding-

based pseudo-relevance feedback model based on the language modeling frame-

work. These models improve the retrieval performance by considering semantic

information. They also provide a set of extrinsic evaluation methodologies for

evaluating word embedding algorithms for information retrieval (Chapter 3).

3. We propose a model for estimating query embedding vectors from pre-trained

word representations, based on maximum likelihood estimation. We show that

average word embedding, which is a simple yet effective model for query repre-

sentation, is a special case of our model. Our model can also incorporate the

top documents retrieved for the query in order to estimate more accurate query

representations. We use our query embedding vectors for query classification

7

as an extrinsic evaluation methodology to evaluate word embedding algorithms

(Chapter 3).

4. We theoretically study learning to rank with weak supervision. Our study has

led to the definition of symmetric ranking loss functions. We study a set of

pairwise loss functions and prove that the pairwise L1 and the hinge loss are

symmetric. We theoretically and empirically show that learning to rank models

trained with noisy or weak labels should use a symmetric ranking loss function

(Chapter 4).

5. We propose an end-to-end standalone neural ranking model trained with weak

supervision, without labeled data. Our model learns a sparse representation for

each query and document. We use the learned high-dimensional sparse repre-

sentations to construct an inverted index in the latent space. This has led to

development of the first learning to rank model that can retrieve documents

from large-scale collections as efficiently as term matching models. Leveraging

pseudo-relevance feedback in the learned latent space has resulted in outper-

forming state-of-the-art baselines (Chapter 4).

6. We design a neural network architecture for the task of query performance pre-

diction. Inspired by the existing performance prediction models, our model

analyzes retrieval score distribution, term distribution in the top retrieved doc-

uments, and semantic coherence of the top documents. To train a robust and

effective model, we propose a weak supervision solution by learning from mul-

tiple weak signals. To regularize our model, we propose a component dropout

technique that improves the generalization of our model. Our model consis-

tently performs better than state-of-the-art performance prediction baselines

(Chapter 5).

8

7. We introduce a framework for joint modeling and optimization of search and

recommendation. Without query-document relevance information for training,

thanks to relevance-based word embedding, our model transfer knowledge from

user-item interactions (i.e., recommendation data) to learn item representation

suitable for information retrieval. The retrieval component is based on bag-of-

words. Our model outperforms state-of-the-art retrieval baselines and performs

comparably with competitive hybrid recommendation models, in terms of rec-

ommendation performance (Chapter 6).

9

CHAPTER 2

RELATED WORK

In this chapter, we review related work in two sections. We first explore neural

network approaches to information retrieval and then briefly review machine learning

techniques that do not require labeled training data, with a focus on weak supervision

training.

2.1 Neural Approaches to Information Retrieval

Deep neural network methods have been recently applied to various information

retrieval applications, including ad-hoc retrieval [42, 109, 172], web search [16, 188],

question answering [26, 62, 146], product search [4, 181], personal search [90, 149,

177], mobile search [5, 6], and conversational search [7, 175], and recommender sys-

tems [145, 189]. In the following, we focus on two categories of models that are most

related to this dissertation, including word embedding approaches applied to infor-

mation retrieval and neural ranking models. For more information on neural models

to other information retrieval tasks, we refer the readers to [108].

2.1.1 Word Embedding for Information Retrieval

Learning a semantic representation for text has been studied for many years.

Latent semantic indexing (LSI) [39] is considered as an early work in this area

that tries to map each text to a semantic space using singular value decomposi-

tion (SVD), a well-known matrix factorization algorithm. Subsequently, Clinchant

and Perronnin [25] proposed Fisher Vector (FV), a document representation frame-

work based on continuous word embeddings, which aggregates a non-linear mapping

10

of word vectors into a document-level representation. However, relatively simple term

matching retrieval models, such as BM25 [134] and query likelihood [126], often sig-

nificantly outperform the models that are solely based on semantic matching.

More recently, the rapid advances in computational resources (especially GPUs)

have led to the development of efficient word embedding algorithms that are much

more effective than their classic alternatives in measuring semantic similarity be-

tween words. Word embedding, also known as distributed representation of words,

refers to a set of machine learning algorithms that learn high-dimensional real-valued

dense vector representation ~w ∈ Rd for each vocabulary term w, where d denotes the

embedding dimensionality. GloVe [123] and word2vec [107] are two well-known word

embedding algorithms that learn embedding vectors based on the same idea, but using

different machine learning techniques. The idea is that the words that often appear

in similar contexts are similar to each other. Based on this idea, these algorithms try

to accurately predict the adjacent word(s) given a word or a context (i.e., a few words

appeared in the same context window). GloVe learns the word embedding vectors by

decomposing a global word-word co-occurrence matrix, while word2vec is based on

a feed-forward fully-connected neural network with a single hidden layer. Levy and

Goldberg [89] further showed that neural word embedding models are theoretically

equivalent to implicit matrix factorization models, under some constraints.

Recently, Rekabsaz et al. [131] proposed to exploit global context in word embed-

dings in order to avoid topic shifting. In more detail, they suggest using document-

level term co-occurrence to measure term relatedness by post filtering the related

terms with high word embedding similarities using various global context measures.

In another study, Diaz et al. [45] suggested using local information to train word em-

bedding vectors. Their approach is motivated by a widely known fact in the informa-

tion retrieval literature, indicating that there is a big difference between the unigram

distribution of words on sub-topics of a collection and the unigram distribution esti-

11

mated from the whole collection [173]. In more detail, Diaz et al. proposed training

word embedding vectors on the top retrieved documents for each query. However,

this model, called local embedding, is not always practical in real-word applications,

since the embedding vectors must be trained at query time.

Word embedding vectors have been successfully employed in several NLP and IR

tasks. Kusner et al. [83] proposed word mover’s distance (WMD), a function for

calculating semantic distance between two documents, which measures the minimum

traveling distance from the embedded vectors of individual words in one document to

the other one. Zhou et al. [197] introduced an embedding-based method for question

retrieval in the context of community question answering. Vulić and Moens [168]

proposed learning bilingual word embedding vectors from document-aligned compa-

rable corpora for the task of cross-lingual information retrieval (CLIR). Zheng and

Callan [196] presented a supervised embedding-based technique to re-weight terms in

the existing IR models, e.g., BM25. Based on the well-defined structure of the lan-

guage modeling framework in information retrieval [126], a number of methods have

been introduced to employ word embedding vectors within this framework in order

to improve the performance in IR tasks. For instance, Ganguly et al. [51] considered

the semantic similarities between vocabulary terms to smooth document language

models. Zuccon et al. [200] further proposed to employ word embeddings within the

translation model for IR. Their proposed method achieves comparable performance

to the mutual information-based translation language models of Karimzadehgan and

Zhai [78]. The main idea behind the methods proposed by Ganguly et al. and Zuc-

con et al. is similar. Both methods consider semantic similarity in computing the

probability of terms in the documents. Apart from estimating document language

models, ALMasri et al. [8] proposed a heuristic query expansion method based on

word embedding similarities. Their method is a term-by-term expansion. Kuzi et

al. [84] also employed word embedding for query expansion, both with and without

12

pseudo-relevance feedback. Sordoni et al. [155] earlier proposed a query expansion

method based on concept embedding. Their method is a supervised learning ap-

proach with the quantum entropy loss function that uses click-through data. All of

these approaches are based on word embedding vectors learned based on term prox-

imity information. PhraseFinder of Jing and Croft [76] is an early work that used

term proximity information for query expansion.

Most recently, word embedding algorithms went beyond the bag-of-words repre-

sentation and learn contextual representation for words and sentences. ELMo [125]

and BERT [43] are two successful implementations of contextual word embeddings.

The network architecture in ELMo is based on recurrent neural networks (RNNs),

while BERT uses Transformers [165], which are solely based on attention. The effi-

ciency of Transformers compared to RNNs enables us to train BERT on a large-scale

corpus and achieve a better performance, compared to ELMo. BERT has been re-

cently applied to information retrieval tasks, and led to significant improvements in

passage retrieval [117, 119].

Chapter 3 revisits the objective in word embedding algorithms and proposes to

learn relevance-based word embedding by predicted the distribution of terms in the

documents relevant to a specific information need. It also introduces a set of effective

and formally motivated query expansion and query classification techniques.

2.1.2 Neural Ranking Models

Learning to rank refers to a set of machine learning algorithms for producing a

ranked list of objects [91]. Conventional learning to rank models range from lin-

ear [105] to tree-based [19] to support vectors machines [77] to neural networks [18].

These models require careful feature engineering, which significantly affects their per-

formance.

13

Recent studies in the area of deep learning have enabled us to learn abstract

representations from raw data, such as image or text. This not only avoids the

troublesome and expensive feature engineering procedure, but also allows the model

to learn complex task-specific features from the data. The learning to rank models

based on such neural representation learning are called neural ranking models.1

Guo et al. [55] categorized neural ranking models to representation-focused and

interaction-focused models. Since representation-focused models also use the interac-

tion information for learning the representations, Dehghani et al. [42] suggested early

combination and late combination as the two categories of neural ranking models.

The early combination models are designed based on the interactions between query

and document as the networks’ input. For instance, the deep relevance matching

model (DRMM) [55] takes histogram-based features as input, representing the in-

teractions between query and document. DeepMatch [97] is another example that

maps the input to a sequence of terms and computes the matching score using a

feed-forward network. Dehghani et al. [42] also proposed simple pointwise and pair-

wise neural ranking models based on feed-forward networks. Their models use the

average word embedding of query and document as the input of the network. Xiong

et al. [172] proposed a neural ranking model, called KNRM, that applies different

kernel functions to the query-document interaction matrix. Dai et al. [36] extended

KNRM by considering soft matching of ngrams using convolutional neural networks

and proposed the Conv-KNRM model that outperforms the original KNRM model.

The late combination models, on the other hand, separately learn a representation

for query and document and then compute the relevance score using a matching

function applied on the learned representations. DSSM [74] is an example of late

1All the learning to rank models based on neural networks are sometimes referred to as neural
ranking models. However, we use the phrase “neural ranking models” for the models that do not
require manual feature engineering.

14

combination models that learns representations using feed-forward networks and then

uses cosine similarity as the matching function. DSSM was further extended by

making use of convolutional neural networks, called C-DSSM [150].

Furthermore, Mitra et al. [109] combined both early and late combination ideas.

Their duet model consists of two components: local and distributed. The local com-

ponent takes the query-document term matching matrix and produces a retrieval

score, while the distributed component learns distributed representations for both

query and document and compares them. The final score is obtained by summing

the local and distributed retrieval scores.

The aforementioned neural ranking models assume that each document is an un-

structured text, however, documents in most applications, including web search, prod-

uct search, and email search, contain multiple fields (i.e., semi-structured documents).

Zamani et al. [188] proposed NRM-F, a neural model for ranking semi-structured doc-

uments. NRM-F was evaluated in the context of web search and has shown significant

improvements compared to state-of-the-art learning to rank models. Liu et al. [95]

enhanced document representation in neural ranking models by incorporating entity

representations and utilizing knowledge graphs. Besides document representation,

Zamani et al. [177] proposed a context-aware neural ranking model that takes con-

textual information into account for learning more accurate query representation.

Their network is based on a deep and wide architecture. For more information on

neural ranking models, we refer the readers to the recent survey by Guo et al. [56].

All the existing learning to rank algorithms, including neural ranking models, re-

rank a small subset of documents retrieved by a set of efficient early stage rankers. In

Chapter 4, we propose a standalone neural ranking model, that unlike existing learn-

ing to rank models, can efficiently retrieve documents from a large-scale collection.

15

2.2 Machine Learning without Labeled Data

Many machine learning algorithms are trained using labeled training data. Labels

can be obtained using expert annotators, crowdsourcing, explicit feedback, or implicit

feedback from user interactions with a system. As machine learning models get more

complex, they generally require more labeled data to train. Deep neural networks

nowadays consist of hundreds of millions of parameters, which necessitates the need

for large-scale training data. However, collecting large-scale labeled data is time-

consuming, expensive and sometimes infeasible. In this section, we briefly review a

set of learning approaches that do not require labeled training data.

Unsupervised Learning: Unsupervised learning is a type of machine learning al-

gorithms used to draw inferences from test data. Cluster analysis is a typical unsuper-

vised learning task. Besides clustering, there exist a number of unsupervised dimen-

sionality reduction methods, such as principal component analysis (PCA) [72, 122]

and linear discriminant analysis (LDA) [50]. In the realm of neural networks, au-

toencoders are popular unsupervised learning models that are employed for represen-

tation learning and dimensionality reduction by input reconstruction as the learning

objective [53]. Restricted Boltzmann machines can be also trained unsupervised [71].

Generative adversarial networks (GANs) [54] are a class of unsupervised machine

learning algorithms, implemented by a system of two neural networks (i.e., generative

and discriminative models) contesting with each other in a zero-sum game framework.

GANs have recently shown promising results in a set of computer vision tasks [53].

Unsupervised learning models only identify commonalities in the data.

Self-Supervised Learning: Self supervision refers to a learning category in which

models are trained to predict a part of the data that is withheld. Language modeling

is a good example of self supervision that has been used in various natural language

related tasks. General-purpose word embedding algorithms, such as word2vec [107]

16

and GloVe [123], are also categorized as self-supervised learning approaches that

predict a term given a context or vice versa. Self-supervised models also do not require

manually labeled data; they automatically generate training data by withholding a

part of the data.

Transfer Learning: Transfer learning refers to a category of models that transfer

knowledge learned in one or more source tasks and use it to improve learning in

a related target task. Transfer learning is particularly useful when the target task

suffers from lack of large-scale training data. Research in transfer learning began

in early 1990’s [127] and has attracted increasing attention. A simple approach for

transfer learning is to train a model using the source training data and use it as

a pre-trained model for the target task. Multi-task learning is also a subcategory

of transfer learning algorithms that simultaneously optimizes multiple objectives for

different tasks.

Weakly Supervised Learning: In weak supervision, the objective is the same as

in the supervised setting, however instead of a ground-truth labeled training set we

have a set of noisy labels, called weak labels. Weak supervision is a broad concept

that refers to learning from any inaccurate, noisy, or biased labels. In this disserta-

tion, we refer to weak supervision as a technique that does not require manual labeled

data or implicit feedback. Therefore, learning from crowdsourced data or click data

collected from user interactions with the system does not consider as weak supervision

in this dissertation. In fact, weak supervision refers to methods that can automat-

ically generate large-scale training data. They can be based on heuristics, external

resources, or existing models. This is a student-teacher learning, in which the teacher

is an unsupervised weak labeler. This can be used to either improve efficiency [27]

or effectiveness [42, 79]. Distant supervision is also a type of weak supervision that

makes use of an existing resource, such as knowledge base, to generate training data.

17

Most of the approaches presented in this dissertation are based on weak supervision.

We use existing models for a target task to generate large-scale training data and

leverage it for training our neural network models.

2.3 Weak Supervision for Information Retrieval

Limited training data has been a perennial problem in information retrieval [187].

This has motivated researchers to explore building models using pseudo-labels. For

example, pseudo-relevance feedback (PRF) [13, 31] assumes that the top retrieved

documents in response to a given query are relevant to the query. Although this

assumption does not necessarily hold, PRF has been proven to be effective in many

retrieval settings [87, 135, 191]. Building pseudo-collections and simulated queries for

various IR tasks could be considered as another set of approaches that tackle this

issue [11, 14].

As widely known, deep neural networks often require a large volume of training

data. Recently, weak supervision has been started to be explored in information re-

trieval. It was firstly proposed in SIGIR 2017 by Dehghani et al. [42] for training

neural ranking models and by Zamani and Croft [180] for learning IR-specific word

representations. Since then, weak supervision has been studied from various perspec-

tives for different applications. Following Dehghani et al. [42], weak supervision has

been explored for ranking tasks. For instance, Nie et al. [116] proposed a convolutional

neural ranking model trained with weak supervision for ad-hoc retrieval. MacAvaney

et al. [100] explored a number of different methods for generating weak supervision

data using the content information. Weak supervision has been also explored for

passage retrieval by Xu et al. [174]. Recently, Haddad and Ghosh [59] proposed a

sampling strategy to reduce the training time in weakly supervised neural ranking

models.

18

In addition to ranking, weak supervision has been employed for some other IR

tasks. For example, Xiao et al. [171] proposed a weak supervision method for query

re-writing in the context of e-commerce applications. Chaidaroon et al. [23] proposed

a weak supervision solution for text semantic hashing. Learning knowledge graph

representation [167] is another application addressed by weak supervision training.

There is a line of research for combining supervised and weakly supervised signals

to learn more accurate models. Dehghani et al. [40, 41] proposed weighting methods

for controlling the learning rate of each mini-batch during training. Luo et al. [98]

proposed to use click data for training weakly supervised ranking models. In addi-

tion, Shnarch et al. [151] proposed a method for blending weak supervision and strong

supervision data for training a model for argumentation mining. Recent data pro-

gramming frameworks, such as Snorkel [130],2 have smoothed the path for generating

weak supervision data for a wide variety of tasks.

In this dissertation, we show that weak supervision is a general solution for many

information retrieval tasks. For example. we provide successful implementation of

weakly supervised models for representation learning (Chapter 3), ranking (Chap-

ter 4), and query performance prediction (Chapter 5). In addition, we provide a

theoretical study for weak supervision training (Chapter 4). Learning from multiple

weak supervision signals have been also explored in the dissertation (Chapter 5).

2https://hazyresearch.github.io/snorkel/

19

CHAPTER 3

DISTRIBUTED REPRESENTATIONS FOR
INFORMATION RETRIEVAL

Information retrieval is mainly concerned with retrieving relevant documents from

a large document collection in response to a query. This requires developing computa-

tional representations for queries and documents. The quality of these representations

directly impacts the retrieval performance. This is why building useful query and doc-

ument representations has been always at the core of information retrieval research.

Learning IR-specific representations often require query-document relevance signal.

In this chapter, we mainly focus on representation learning for words as the atomic

units of natural languages. We propose relevance-based word embedding and discuss

how to train the model using weak supervision. In fact, we use Lavrenko and Croft’s

relevance models [87] to automatically generate training data for our model.

This chapter is structured as follows: Section 3.1 briefly reviews word embedding

models. Section 3.2 introduces our models for learning IR-specific distributed repre-

sentations. Section 3.3 studies the application of word embedding in a number of IR

tasks.

3.1 Background: Word Embedding

Learning a semantic representation for text has been studied for many years.

Latent semantic indexing (LSI) [39] can be considered as early work in this area

that tries to map each text to a semantic space using singular value decomposition

(SVD), a well-known matrix factorization algorithm. Subsequently, Clinchant and

20

Perronnin [25] proposed Fisher Vector (FV), a document representation framework

based on continuous word embeddings, which aggregates a non-linear mapping of

word vectors into a document-level representation. However, a number of popular

IR models, such as BM25 and language models, often significantly outperform the

models that are based on semantic similarities. More recently, efficient algorithms

for learning word representations have been proposed that model semantic similarly

between words, effectively.

Word embedding, also known as distributed representation of words, refers to a set

of machine learning algorithms that learn high-dimensional real-valued dense vector

representation ~w ∈ Rd for each vocabulary term w, where d denotes the embedding

dimensionality. GloVe [123] and word2vec [107] are two well-known word embedding

algorithms that learn embedding vectors based on the same idea, but using different

machine learning techniques. The idea is that the words that often appear in similar

contexts are similar to each other. These algorithms try to accurately predict the

adjacent word(s) given a word or a context (i.e., a few words appeared in the same

context window). The word2vec algorithm uses a fully-connected feed-forward net-

work with a single hidden layer to learn distributed representation of words. On the

other hand, GloVe employs a matrix factorization algorithm to decompose a global

word-word co-occurrence matrix to two lower ranked matrices. Both of these two

models have shown promising results in a set of natural language processing tasks.

3.2 Relevance-based Word Embedding

As introduced earlier in Section 3.1, typical word embedding algorithms, such as

word2vec [107] and GloVe [123], learn high-dimensional real-valued embedding vectors

based on the proximity of terms in a training corpus, i.e., co-occurrence of terms in

the same context window. Although these approaches could be useful for learning

the embedding vectors that can capture semantic and syntactic similarities between

21

vocabulary terms and have shown to be useful in many NLP and IR tasks, there is a

large gap between their learning objective (i.e., term proximity) and what is needed

in many information retrieval tasks. For example, consider the query expansion task

and assume that a user submitted the query “dangerous vehicles”. One of the most

similar terms to this query based on the typical word embedding algorithms (e.g.,

word2vec and GloVe) is “safe”, and thus it would get a high weight in the expanded

query model. The reason is that the words “dangerous” and “safe” often share similar

contexts. However, expanding the query with the word “safe” could lead to poor

retrieval performance, since it changes the meaning and the intent of the query.

This example together with many others have motivated us to revisit the objective

used in the learning process of word embedding algorithms in order to obtain the word

vectors that better match with the needs in IR tasks. The primary objective in many

IR tasks is to model the notion of relevance. Several approaches, such as the relevance

models proposed by Lavrenko and Croft [87], have been proposed to model relevance.

Given the successes achieved by these models, we propose to revisit the objective for

learning word embedding vectors as follows:

The objective is to accurately predict the terms that are observed in a set of documents

relevant to a particular information need.

In the following, we first describe our neural network architecture, and then ex-

plain how to build a training set for learning relevance-based word embeddings. We

further introduce two models, relevance likelihood maximization (RLM) and relevance

posterior estimation (RPE), with different objectives using the described neural net-

work.

3.2.1 Neural Network Architecture

We use a simple yet effective feed-forward neural network with a single linear hid-

den layer. The architecture of our neural network is similar to that of the word2vec

22

query sparse
vector

…
…

...

…
…

...

W1

hidden
layer

output layer

W2

W3

WNd neurons

N neurons

qs

Figure 3.1: The relevance-based word embedding architecture. The objective is to
learn d-dimensional distributed representation for words based on the notion of rele-
vance, instead of term proximity. N denotes the total number of vocabulary terms.

model [107] and is depicted in Figure 3.1. The input of the model is a sparse query

vector ~qs with the length of N , where N denotes the total number of vocabulary

terms. This vector can be obtained by a projection function given the vectors corre-

sponding to individual query terms. In our model, we simply consider average as the

projection function. Hence, ~qs = 1
|q|
∑

w∈q ~ew, where ~ew and |q| denote the one-hot

vector representation of term w and the query length, respectively. The hidden layer

in this network maps the given query sparse vector to a query embedding vector ~q,

as follows:

~q = ~qs ×WQ (3.1)

where WQ ∈ RN×d is a weight matrix for estimating query embedding vectors and

d denotes the embedding dimensionality. The output layer of the network is a fully-

connected layer given by:

σ(~q ×Ww + bw) (3.2)

23

where Ww ∈ Rd×N and bw ∈ R1×N are the weight and the bias matrices for estimat-

ing the probability of each term. σ is the activation function which is discussed in

Sections 3.2.3 and 3.2.4.

To summarize, our network contains two sets of embedding parameters, WQ and

Ww. The former aims to map the query into the “query embedding space”, while the

latter is used to estimate the weights of individual terms.

3.2.2 Modeling Relevance for Training without Labeled Data

Relevance feedback has been shown to be highly effective in improving retrieval

performance [135, 30]. In relevance feedback, a set of documents relevant to a given

query is considered for estimating accurate query models. Since explicit relevance

signals for a given query are not always available, pseudo-relevance feedback (PRF)

assumes that the top retrieved documents in response to the given query are relevant

to the query and uses these documents in order to estimate better query models. The

effectiveness of PRF in various retrieval scenarios indicates that useful information

can be captured from the top retrieved documents [87, 86, 191]. We make use of

this well-known assumption to train our model. It should be noted that there is a

significant difference between PRF and the proposed models: In PRF, the feedback

model is estimated from the top retrieved documents of the given query in an online

setting. In other words, PRF retrieves the documents for the initial query and then

estimates the feedback model using the top retrieved documents. We propose to train

the model in an offline setting. Moving from the online to the offline setting would

lead to substantial improvements in efficiency, because an extra retrieval run is not

required in the offline setting. To learn a model in an offline setting, we consider a

fixed-length dense vector for each vocabulary term and estimate these vectors based

on the information extracted from the top retrieved documents for large numbers of

training queries. Note that our models do not require labeled training data. However,

24

if explicit or implicit relevance signals, such as click data, are available, without loss

of generality, they can be employed for training the models.

To formally describe our training data, let T = {(q1,R1), (q2,R2), · · · , (qm,Rm)}

be a training set with m training queries. The ith element of this set is a pair of query

qi and the corresponding pseudo-relevance feedback distribution. These distributions

are estimated based on the top k retrieved documents (in our experiments, we set k

to 10) for each query. The distributions can be estimated using any PRF model, such

as those proposed in [87, 157, 185, 191]. In our model, we focus on a variant of the

relevance models (i.e., RM3) [2, 87] that estimates the relevance distribution as:

p(w|Ri) ∝
∑
d∈Fi

p(w|d)
∏
w′∈qi

p(w′|d) (3.3)

where Fi denotes a set of top retrieved documents for query qi. Note that the proba-

bility of terms that do not appear in the top retrieved documents is equal to zero.

3.2.3 Relevance Likelihood Maximization Model

In this model, the goal is to learn the relevance distribution R. Given a set

of training data, we aim to find a set of parameters θR in order to maximize the

likelihood of generating relevance model probabilities for the whole training set. The

likelihood function is defined as follows:

m∏
i=1

∏
w∈Vi

p̂(w|qi; θR)p(w|Ri) (3.4)

where p̂ is the relevance distribution that can be obtained given the learning param-

eters θR and p(w|Ri) denotes the relevance model distribution estimated for the ith

query in the training set (see Section 3.2.2 for more detail). Vi denotes a subset of

vocabulary terms that appeared in the top ranked documents retrieved for the query

qi. The reason for iterating over the terms that appeared in this set instead of the

25

whole vocabulary set V is that the probability p(w|Ri) is equal to zero for all terms

w ∈ V − Vi.

In this method, we model the probability distribution p̂ using the softmax function

(i.e., the function σ in Equation (3.2)) as follows:

p̂(w|q; θR) =
exp (~wT~q)∑

w′∈V exp (~w′
T
~q)

(3.5)

where ~w denotes the learned embedding vector for term w and ~q is the query vector

came from the output of the hidden layer in our network (see Section 3.2.1). Accord-

ing to the softmax modeling and the log-likelihood function, we have the following

objective:

arg max
θR

m∑
i=1

∑
w∈Vi

p(w|Ri)

(
log exp (~wT ~qi)− log

∑
w′∈V

exp (~w′
T
~qi)

)
(3.6)

Computing this objective function and its derivatives would be computationally

expensive (due to the presence of the normalization factor
∑

w′∈V exp (~w′
T
~q) in the

objective function). Since all the word embedding vectors as well as the query vector

are changed during the optimization process, we cannot simply omit the normal-

ization term as is done in [179] for estimating query embedding vectors based on

pre-trained word embedding vectors. To make the computations more tractable, we

consider a hierarchical approximation of the softmax function, which was introduced

by Morin and Bengio [112] in the context of neural network language models and

then successfully employed by Mikolov et al. [107] in the word2vec model.

The hierarchical softmax approximation uses a binary tree structure to represent

the vocabulary terms, where each leaf corresponds to a unique word. There exists

a unique path from the root to each leaf, and this path is used for estimating the

probability of the word representing by the leaf. Therefore, the complexity of cal-

culating softmax probabilities goes down from O(|V |) to O(log(|V |)) which is the

26

height of the tree. This leads to a huge improvement in computational complexity.

We refer the reader to [110, 112] for the details of calculating the hierarchical softmax

approximation.

3.2.4 Relevance Posterior Estimation Model

As an alternative to maximum likelihood estimation, we can estimate the rele-

vance posterior probability. In the context of pseudo-relevance feedback, Zhai and

Laffery [191] assumed that the language model of the top retrieved documents is es-

timated based on a mixture model. In other words, it is assumed that there are two

language models for the feedback set: the relevance language model1 and a back-

ground noisy language model. They used an expectation-maximization algorithm to

estimate the relevance language model. In this model, we make use of this assumption

in order to cast the problem of estimating the relevance distribution R as a classi-

fication task: Given a pair of word w and query q, does w come from the relevance

distribution of the query q? Instead of p(w|R), this model estimates p(R = 1|w, q; θR)

where R is a Boolean variable and R = 1 means that the given term-query pair (w, q)

comes from the relevance distribution R. θR is a set of parameters that is going to

be learned during the training phase.

Therefore, the problem is cast as a binary classification task that can be modeled

by logistic regression (which means the function σ in Equation (3.2) is the sigmoid

function):

p̂(R = 1|~w, ~q; θR) =
1

1 + e(−~wT ~q) (3.7)

where ~w is the relevance-based word embedding vector for term w. Similar to the

previous model, ~q is the output of the hidden layer of the network, representing the

query embedding vector.

1The phrase “topical language model” was used in the original work [191]. We call it “relevance
language model” to have consistent definitions in our both models.

27

In order to address this binary classification problem, we consider a cross-entropy

loss function. In theory, for each training query, our model should learn to model

relevance for the terms appearing in the corresponding pseudo-relevant set and non-

relevance for all the other vocabulary terms, which could be impractical, due to the

large number of vocabulary terms. Similar to [107], we propose to use the noise

contrastive estimation (NCE) [58] which hypothesizes that we can achieve a good

model by only differentiating the data from noise via a logistic regression model. The

main concept in NCE is similar to those proposed in the divergence from random-

ness model [9] and the divergence minimization feedback model [191]. Based on the

NCE hypothesis, we define the following negative cross-entropy objective function for

training our model:

arg max
θR

m∑
i=1

 η+∑
j=1

Ewj∼p(w|Ri) [log p̂(R = 1| ~wj, ~qi; θR)]

+

η−∑
j=1

Ewj∼pn(w) [log p̂(R = 0| ~wj, ~qi; θR)]

 (3.8)

where pn(w) denotes a noise distribution and η = (η+, η−) is a pair of hyper-parameters

to control the number of positive and negative instances per query, respectively. We

can easily calculate p̂(R = 0| ~wj, ~qi) = 1 − p̂(R = 1| ~wj, ~qi). The noise distribution

pn(w) can be estimated using a function of unigram distribution U(w) in the whole

training set. Similar to [107], we use pn(w) ∝ U(w)3/4 which has been empirically

shown to work effectively for negative sampling.

It is notable that although this model learns embedding vectors for both queries

and words, it is not obvious how to calculate the probability of each term given a

query; because Equation (3.7) only gives us a classification probability and we cannot

simply use the Bayes rule here (since, not all probability components are known).

This model can perform well when computing the similarity between two terms or

28

two queries, but not a query and a term. However, we can use the model presented

in [179] to estimate the query model using the word embedding vectors (not the ones

learned for query vectors) and then calculate the similarity between a query and a

term.

3.3 Applications to Information Retrieval

Word embedding vectors enable us to compute the similarity of any two words

in the vocabulary that exist in the training set. Since most IR models rely on exact

term matching, these vectors can potentially be useful in a number of IR tasks.

Sections 3.3.1 and 3.3.2 study the effectiveness of word embedding vectors in query

expansion and query classification tasks, respectively.

3.3.1 Query Expansion

Vocabulary mismatch, i.e., the mismatch of different vocabulary terms that refer

to the same concept, is a long-standing problem in information retrieval. For instance,

in the language modeling framework [126], the retrieval score of a query-document

pair is often computed using negative KL-divergence as follows [85]:

score(Q,D) = −D(θQ||θD) = −
∑
w∈q

p(w|θQ) log
p(w|θQ)

p(w|θD)
(3.9)

where θQ and θD denote the query and the document language models, respectively.

The query language model is often estimated using maximum likelihood estimation,

while in the document language model the maximum likelihood estimation is often

smoothed with the collection language model [192]. This addresses the zero probabil-

ity problem for the query terms not appearing in the document. As formulated above,

the retrieval score is only computed for the words in the query, which shows that

vocabulary mismatch affects the retrieval score. Query expansion is a well-known

technique to alleviate this problem. In query expansion, the goal is to estimate a

29

more accurate query model (i.e., θQ) by adding new terms to the query, alongside

their weights. In the following, we explain how word embedding vectors can be used

for query expansion.

3.3.1.1 Embedding-based Query Expansion Models

We propose two novel estimations for the query language models by making use of

semantic similarity between the terms coming from the similarity between the word

embedding vectors. These two estimations have different simplifying assumptions.

The first method considers that there is a conditional independence assumption be-

tween the query terms; while the second method assumes that the semantic similarity

between two given terms is independent of the query. Interestingly, as we will see in

the following, the first assumption leads to an expansion method based on multiplica-

tive similarity, i.e., the expanded terms should be similar to all query terms. On the

other hand, the second assumption leads to an additive similarity (a mixture model).

EQE1: Conditional Independence of Query Terms: To estimate p(w|θQ), we

first consider the Bayes rule as follows:

p(w|θQ) =
p(θQ|w)p(w)

p(Q)
∝ p(θQ|w)p(w) (3.10)

In the above equation, we ignore p(Q) since it is independent of the term w. We

assume that query terms are independent of each other, but we keep their dependence

on w. Therefore, we can estimate the query language model as follows:

p(w|θQ) ∝ p(q1, q2, . . . , qk|w)p(w) = p(w)
k∏
i=1

p(qi|w) (3.11)

where q1, q2, . . . , qk are the query terms and k is the query length. To compute p(qi|w),

we consider the word embedding similarities which can capture the semantic similarity

30

between vocabulary terms. To do so, we compute this probability as follows:

p(qi|w) =
δ(qi, w)∑

w′∈V δ(w
′, w)

(3.12)

where δ and V denote the similarity function (e.g., the softmax function over the dot

product similarity) and the vocabulary set, respectively. Considering the law of total

probability, we compute p(w) using the following equation:2

p(w) =
∑
w′∈V

p(w,w′) ∝
∑
w′∈V

δ(w,w′) (3.13)

The generated language model θQ can be linearly interpolated with the maximum

likelihood estimation of the query language model with the coefficient of α.

EQE2: Query-Independent Term Similarities: To estimate the query lan-

guage model θQ, we first use the law of total probability as follows:

p(w|θQ) =
∑
w′∈V

p(w,w′|θQ) =
∑
w′∈V

p(w|w′, θQ)p(w′|θQ) (3.14)

In the above calculations, we use the Bayes rule. We assume that the semantic

similarity between the terms is independent of the query language model. Therefore,

p(w|w′, θQ) can be computed as follows:

p(w|w′, θQ) = p(w|w′) =
δ(w,w′)∑

w′′∈V δ(w
′′, w′)

(3.15)

where δ denotes the semantic similarity between two given terms and can be calculated

by transforming the cosine similarity values using the sigmoid function.

2Intuitively, a word with higher semantic similarity with all the other words will achieve higher
probability. In other words, general terms are supposed to have high probabilities according to this
definition, which is also consistent with the other definitions for p(w), such as the frequency ratio of
the word w in a large corpus.

31

Considering the maximum likelihood estimation, we can rewrite Equation 3.14 as

follows:

p(w|θQ) ∝
∑
w′∈Q

δ(w,w′)∑
w′′∈V δ(w

′′, w′)
× c(w′, Q)

|Q|
(3.16)

where c(w′, Q) and |Q| denote the count of term w′ in the query and the query length,

respectively.

Similar to the previous embedding-based estimation of query models, the gener-

ated query language model can be linearly interpolated with the maximum likelihood

estimation of the query language model with a coefficient of α.

3.3.1.2 Embedding-based Relevance Models

Pseudo-relevance feedback has been shown to be highly effective in improving

the retrieval performance [10, 87, 99, 191]. In PRF, it is assumed that the top-

retrieved documents are relevant to the query, and thus they can be used to im-

prove the query language model accuracy. We propose an embedding-based rele-

vance model (ERM), a method inspired by the relevance model approach proposed

by Lavrenko and Croft [87], which has been shown to be one of the most effective

and robust PRF methods [99].

We compute the feedback language model as follows:

p(w|θF) ∝
∑
D∈F

p(w,Q,D) =
∑
D∈F

p(Q|w,D)p(w|D)p(D) (3.17)

where θF and F respectively denote the feedback language model and the set of

feedback documents, i.e., the top-retrieved documents. To compute p(Q|w,D), we

consider both term matching and semantic similarities. This probability can be com-

puted via a linear interpolation with the coefficient of β:

p(Q|w,D) = β ptm(Q|w,D) + (1− β) psem(Q|w,D) (3.18)

32

where ptm and psem denote the probabilities coming from the term matching similar-

ities and the semantic similarities, respectively. Similar to RM3 [2, 87], ptm(Q|w,D)

can be estimated by considering the independence assumption of terms (query terms

and w) as follows:

ptm(Q|w,D) =
k∏
i=1

p(qi|D) (3.19)

where qi denotes the ith term of the query Q with the length of k. To compute

psem(Q|w,D), we assume that query terms are independent of each other, but we

keep their dependence to the term w and document D. Therefore, we can calculate

this probability as follows:

psem(Q|w,D) =
k∏
i=1

psem(qi|w,D)
∆
=

k∏
i=1

δ(qi, w)c(qi, D)

Z
(3.20)

where δ computes the semantic similarity between two given terms and c(qi, D) is

the count of term qi in the document D. Z is a normalization factor, which is only

needed to be a summation over the terms appeared in the document D (instead of

all vocabulary terms), and thus it is not computationally expensive.

Similar to RM3, we compute p(w|D) (see Equation (3.17)) using the maximum

likelihood estimation (MLE) smoothed by a reference language model.3 We assume

that there is no prior knowledge about the pseudo-relevant documents, and thus

we calculate p(D) using a uniform distribution. It is notable that the proposed

embedding-based relevance model satisfies the “semantic effect” constraint recently

proposed by Montazeralghaem et al. [111]. The updated query language model can

be calculated using the linear interpolation of the original query language model with

the computed feedback language model:

3We also considered embedding-based semantic similarities in computing this probability using
the law of total probability (p(w|D) =

∑
w′∈V p(w,w′|D)), but there is no significant improvement

over the MLE estimation in our experiments. Therefore, we keep it as simple as possible.

33

Table 3.1: Collections statistics.

collection queries (title only) #docs avgdl #qrels

Associated Press 88-89
TREC 1-3 Ad-Hoc Track,

topics 51-200
165k 287 15,838

TREC Disks 4&5 minus
Congressional Record

TREC 2004 Robust Track,
topics 301-450 & 601-700

528k 254 17,412

2004 crawl of
.gov domains

TREC 2004-06 Terabyte
Track, topics 701-850

25m 648 26,917

p(w|θ∗Q) = α p(w|θQ) + (1− α) p(w|θF) (3.21)

Note that the original query language model can be computed using either the

maximum likelihood estimation, or one of the embedding based query language mod-

els proposed in Section 3.3.1.1.

3.3.1.3 Experiments

Data: To evaluate the proposed methods, we used three standard TREC collections:

AP (Associated Press 1988-1989), Robust (TREC Robust Track 2004 collection), and

GOV2 (TREC Terabyte Track 2004-2006 collection). The first two collections contain

high-quality news articles and the last one is a large web collection. The statistics

of these collections are reported in Table 3.1. We considered the title of topics as

queries in our experiments. The standard INQUERY stopword list was used in all

experiments, and no stemming was performed.

We employed the KL-divergence retrieval model [85] with the Dirichlet prior

smoothing method. All experiments were carried out using the Galago toolkit.4 In all

the experiments, we used the word embeddings produced by the GloVe method [123]

trained on a 6 billion token collection (i.e., the Wikipedia dump 2014 plus the Gi-

4http://www.lemurproject.org/galago.php

34

gawords 5). Note that we considered only the queries where the embedding vectors

of all query terms are available. The employed embedding vectors contain all query

terms for 146 (out of 150), 241 (out of 250), and 147 (out of 150) queries in AP,

Robust, and GOV2, respectively.

Parameters Setting: In all the experiments, the Dirichlet prior smoothing param-

eter µ was set to Galago’s default value of 1500. In the experiments related to the

pseudo-relevance feedback, the number of feedback documents was set to the typi-

cal value of 10. In all the experiments (except in those explicitly mentioned), the

parameters α (the linear interpolation coefficient), m (the number of terms added

to the queries), and β (see Section 3.3.1.2) were set using 2-fold cross-validation to

optimize MAP over the queries of each collection. We swept the parameters α and

β between {0.1, . . . , 0.9}. The value of the parameter m and the number of feedback

documents (for PRF experiments) were also selected from {10, 20, ..., 100}. The free

hyper-parameters of the baselines were also set using the same procedure. In all ex-

periments unless explicitly mentioned, the dimension of embedding vectors was set

to 200.

Evaluation Metrics: Mean Average Precision (MAP) of the top-ranked 1000 doc-

uments is selected as the main evaluation metric to evaluate the retrieval effectiveness.

Furthermore, we also consider the precision of the top 5 and 10 retrieved documents

(P@5 and P@10). Statistically significant differences of performances are determined

using the two-tailed paired t-test computed at a 95% confidence level based on the

average precision per query.

To evaluate the robustness of methods, we consider the robustness index (RI) [28]

which is defined as N+−N−
|Q| , where |Q| denotes the number of queries, and N+/N−

shows the number of queries improved/decreased by each method compared to the

maximum likelihood estimation baseline. To avoid the influence of very small average

35

precision differences in the RI values, we only consider the improvements/losses higher

than 10% (relative). The RI value is in the [−1, 1] interval and higher RI values

determine more robust methods.

Experiment I: Comparison of Embedding-based Query Expansion Mod-

els Against Other Embedding-based Models in Information Retrieval: In

the first set of experiments, we compare the proposed global embedding-based query

expansion methods (EQE1 and EQE2) against other embedding-based models in

information retrieval. To do so, we consider the following baselines: (i) query likeli-

hood with no query expansion (QL), (ii) embedding-based document language model

smoothing (called GLM), (iii) a heuristic-based query expansion model based on word

embeddings (VEXP) [51], and (iv) a query expansion method based on the embed-

ding similarity of words with average word embedding of query terms (AWE) [8]. In

this set of experiments, we only focus on the embedding vectors produced by GloVe

as explained earlier.

The results achieved by the proposed methods (EQE1 and EQE2) and the base-

lines are reported in Table 3.2. According to this table, both proposed methods

outperform all the baselines in all collections, in terms of MAP, P@5, P@10, and

RI. The t-test results show that the MAP improvements of EQE1 compared to the

baselines are significant, except the VEXP model in the Robust collection. Although

in some cases EQE2 outperforms EQE1, we can generally claim that in most cases

EQE1 has superior performance. Note that EQE1 is based on multiplicative similar-

ity, while EQE2 is based on additive similarity. Multiplicative similarity means that

the expanded terms should be close to all query terms.

As shown in Table 3.2, the improvements over the MLE baseline in AP and Robust

are higher than those in the GOV2 collection. The reason could be related to the

corpus used for extracting the embedding vectors. This corpus mostly contains formal

36

Table 3.2: Comparing the proposed embedding-based query expansion methods
(EQE1 and EQE2) with the baselines. The superscript 1/2/3/4 denotes that the
MAP improvements over QL/GLM/VEXP/AWE are statistically significant. The
highest value in each row is marked in bold.

Dataset Metric QL GLM VEXP AWE EQE1 EQE2

AP

MAP 0.2236 0.2254 0.2338 0.2304 0.23881234 0.23911234

P@5 0.4260 0.4369 0.4412 0.4356 0.4397 0.4466
P@10 0.4014 0.4051 0.4038 0.4058 0.4075 0.4014
RI – 0.10 0.18 0.14 0.32 0.32

Robust

MAP 0.2190 0.2244 0.2253 0.2224 0.2292124 0.22571

P@5 0.4606 0.4523 0.4722 0.4680 0.4739 0.4622
P@10 0.3979 0.3929 0.4133 0.4066 0.4162 0.4183
RI – 0.22 0.17 0.14 0.30 0.22

GOV2

MAP 0.2696 0.2684 0.2687 0.2657 0.27451234 0.27274

P@5 0.5592 0.5537 0.5932 0.5537 0.5959 0.5810
P@10 0.5531 0.5483 0.5537 0.5503 0.5660 0.5517
RI – -0.14 0.10 -0.18 0.20 0.08

texts. Therefore, the context of the employed word embedding vectors is more similar

to the context of the newswire collections rather than the GOV2 collection.

In Table 3.3, we compare our embedding-based relevance model with three dif-

ferent initial retrievals (QL+ERM, EQE1+ERM, and EQE2+ERM) against query

likelihood and RM3, a state-of-the-art variant of the relevance models proposed by

Lavrenko and Croft [87]. According to the results, RM3 significantly outperforms QL

in all collections in terms of MAP. This shows the effectiveness of pseudo-relevance

feedback in information retrieval. The results suggest that QL+ERM outperforms

RM3 (QL+RM1), in terms of MAP, P@5, P@10, and RI, in all collections (the same

RI value achieved in the Robust collection). The MAP improvements of QL+ERM

over RM3 are always statistically significant. QL+ERM achieves high P@5 and P@10

values compared to RM3, especially in GOV2. This shows the importance of capturing

semantic similarities for the PRF task. Among all the considered feedback methods,

EQE1+ERM outperforms all the other methods in AP and GOV2, in terms of MAP,

37

Table 3.3: Evaluating the proposed methods in the pseudo-relevance feedback sce-
nario. The superscript 1/2 denotes that the MAP improvements over QL/RM3 are
statistically significant. The highest value in each row is marked in bold.

Dataset Metric QL RM3 QL+ERM EQE1+ERM EQE2+ERM

AP

MAP 0.2236 0.3051 0.310212 0.317812 0.314012

P@5 0.4260 0.4644 0.4699 0.4822 0.4644
P@10 0.4014 0.4500 0.4521 0.4568 0.4479
RI – 0.47 0.52 0.47 0.52

Robust

MAP 0.2190 0.2677 0.271112 0.273112 0.275012

P@5 0.4606 0.4581 0.4639 0.4797 0.4730
P@10 0.3979 0.4191 0.4241 0.4307 0.4369
RI – 0.31 0.31 0.32 0.36

GOV2

MAP 0.2696 0.2938 0.300512 0.301212 0.29571

P@5 0.5592 0.5592 0.5823 0.5850 0.5782
P@10 0.5531 0.5599 0.5830 0.5844 0.5782
RI – 0.15 0.22 0.20 0.20

Table 3.4: The corpora used for training the embedding vectors.

ID corpus #tokens #vocab

Wiki Wikipedia 2014 & Gigawords 5 6b 400k
Web 42b Web crawl 42b 1.9m
Web 840b Web crawl 840b 2.2m

P@5, and P@10. In Robust, EQE2+ERM performs well, in terms of MAP and P@10.

Note that as reported in [99], the RM3 method is a robust PRF method, and the

experiments show that RM3 is less robust than the proposed methods.

Experiment II: Sensitivity of Embedding-based Query Expansion Perfor-

mance to the Word Embedding Quality: To analyze the robustness of the

proposed methods to the choices made in training the word embedding vectors, we

consider three external corpora: Wiki, Web 42b, and Web 840b. The Wiki corpus

mostly contains articles with formal language; while the other two corpora are two

web collections containing 42 and 840 billion tokens. The statistics of these corpora

38

Table 3.5: The MAP values achieved by EQE1, EQE2, and ERM (MLE+ERM) with
different corpora for training the embedding vectors (dimension = 300).

Dataset Method Wiki Web 42b Web 840b

AP
(146 queries)

EQE1 0.2402 0.2356 0.2362
EQE2 0.2408 0.2352 0.2400
ERM 0.3106 0.3094 0.3081

Robust
(240 queries)

EQE1 0.2294 0.2255 0.2273
EQE2 0.2271 0.2237 0.2266
ERM 0.2713 0.2705 0.2683

GOV2
(146 queries)

EQE1 0.2745 0.2729 0.2767
EQE2 0.2726 0.2713 0.2743
ERM 0.3013 0.2989 0.3021

are reported in Table 3.4.5 The dimension of embedding vectors learned from these

corpora is 300. The results are reported in Table 3.5. According to this table, the

results are robust to the corpus that is used for training the word embedding vectors.

There is no significant differences between the values obtained by employing different

corpora for learning the embedding vectors. In the GOV2 collection, the Web 840b

corpus seems to be slightly better than the other ones. Despite the large gap between

the size of Wiki and the other two corpora, the results achieved by Wiki are higher

than those obtained by the other ones, in the newswire collections.

Experiment III: Query Expansion with Relevance-based Word Embedding:

In this set of experiments, we focus on EQE1 as our best global embedding-based

query expansion model and evaluate the performance of different word embedding

algorithms. To do so, we compare the proposed relevance-based word embedding

models (RLM and RPE) with word2vec and GloVe. All the models were trained

on the target retrieval collections. The results are reported in Table 3.6. According

to the results, although word2vec performs slightly better than GloVe, no signifi-

5The embedding data is available at http://nlp.stanford.edu/projects/glove/.

39

Table 3.6: Evaluating relevance-based word embeddings in the context of query
expansion. The superscripts 0/1/2 denote that the MAP improvements over
MLE/word2vec/GloVe are statistically significant. The highest value in each row
is marked in bold.

Collection Metric MLE word2vec GloVe
Rel.-based Embedding

RLM RPE

AP
MAP 0.2197 0.2420 0.2389 0.2580012 0.2543012

P@20 0.3503 0.3738 0.3631 0.3886012 0.3812034

NDCG@20 0.3924 0.4181 0.4098 0.4242012 0.4226012

Robust
MAP 0.2149 0.2215 0.2172 0.2450012 0.2372012

P@20 0.3319 0.3337 0.3281 0.3476012 0.34090

NDCG@20 0.3863 0.3881 0.3844 0.3982012 0.39550

GOV2
MAP 0.2702 0.2723 0.2709 0.2867012 0.2855012

P@20 0.5132 0.5172 0.5128 0.5367012 0.5358012

NDCG@20 0.4482 0.4509 0.4485 0.457602 0.45570

cant differences can be observed between their performances. Both relevance-based

embedding models outperform the baselines in all the collections, which shows the

importance of taking relevance into account for training embedding vectors. These

improvements are often statistically significant compared to all the baselines. The

relevance likelihood maximization model (RLM) performs better than the relevance

posterior estimation model (RPE) in all cases and the reason is related to their objec-

tive function. RLM learns the relevance distribution for all terms, while RPE learns

the classification probability of being relevance for vocabulary terms (see Section 3.2).

To get a sense of what is learned by each of the embedding models, Tables 3.7 and

3.8 report the top 10 expansion terms for two sample queries from the TREC Robust

Track in 2004. According to these tables, the terms added to the queries by the

word2vec model are syntactically or semantically related to individual query terms.

For the query “indian american museum” as an example, the terms “history”, “art”,

and “culture” are related to the query term “museum”, while the terms “united”

and “states” are related to the query term “american”. In contrast, looking at the

40

Table 3.7: Top 10 expansion terms obtained by the word2vec and the relevance-based
word embedding models for an example query: “indian american museum”.

word2vec
Rel.-based Embedding

RLM RPE

powwows chumash heye
smithsonian heye collection
afro artifacts chumash
mesoamerica smithsonian smithsonian
smithsonians collection york
native washington new
heye institution apa
hopi york native
mayas native americans
cimam apa history

expansion terms obtained by the relevance-based word embeddings, we can see that

some relevant terms to the whole query were selected. For instance, “chumash” (a

group of native americans)6, “heye” (the national museum of the American Indian in

New York), “smithsonian” (the national museum of the American Indian in Washing-

ton DC), and “apa” (the American Psychological Association that actively promotes

American Indian museums). A similar observation can be made for the other sample

query (i.e., “tibet protesters”). For example, the word “independence” is related to

the whole query that was only selected by the relevance-based word embedding mod-

els, while the terms “protestors”, “protests”, “protest”, and “protesting” that are

syntactically similar to the query term “protesters” were considered by the word2vec

model. We believe that these differences are due to the learning objective of the

models. Interestingly, the expansion terms added to each query by the two relevance-

based models look very similar, but according to Table 3.6, their performances are

quite different. The reason is related to the weights given to each term by the two

6see https://en.wikipedia.org/wiki/Chumash_people

41

Table 3.8: Top 10 expansion terms obtained by the word2vec and the relevance-based
word embedding models for an example query: “tibet protesters”.

word2vec
Rel.-based Embedding

RLM RPE

tibetan tibetan tibetan
lhasa lama tibetans
demonstrators tibetans lama
tibetans lhasa independence
marchers dalai lhasa
lhasas independence dalai
jokhang protest open
demonstrations open protest
dissidents zone zone
barkhor followers jokhang

models. The weights given to the expansion terms by RPE are very close to each

other because its objective is to just classify each term and all of these terms are

classified with a high probability as “relevant”.

In the next experiment, we consider the methods that use the top retrieved doc-

uments for query expansion: the relevance model (RM3) [2, 87], and the local em-

bedding approach proposed by Diaz et al. [45] with the general idea of training word

embedding models on the top ranked documents retrieved in response to a given

query. Similar to [45], we use the word2vec model to train word embedding vectors

on top 1000 documents. The results are reported in Table 3.9. The ERM model that

uses the relevance-based word embedding (RLM7) outperforms all the other meth-

ods. These improvements are statistically significant in most cases. By comparing

the results obtained by local embedding and those reported in Table 3.6, it can be

observed that there are no substantial differences between the results for local embed-

ding and word2vec. This is similar to what is reported by Diaz et al. [45] when the

7We only consider RLM which shows better performance compared to RPE in query expansion.

42

Table 3.9: Evaluating relevance-based word embedding in pseudo-relevance feed-
back scenario. The superscripts 1/2/3 denote that the MAP improvements over
RM3/EQE1 with Local Embedding/ERM with Local Embedding are statistically
significant. The highest value in each row is marked in bold.

Collection Metric RM3
EQE1 ERM

Local Emb. Local Emb. RLM

AP
MAP 0.2927 0.2412 0.3047 0.311912

P@20 0.4034 0.3742 0.4105 0.423312

NDCG@20 0.4368 0.4173 0.4411 0.4495123

Robust
MAP 0.2593 0.2235 0.2643 0.2761123

P@20 0.3486 0.3366 0.3498 0.3605123

NDCG@20 0.4011 0.3868 0.4080 0.4173123

GOV2
MAP 0.2863 0.2748 0.2924 0.2986123

P@20 0.5318 0.5271 0.5379 0.541712

NDCG@20 0.4503 0.4576 0.4584 0.4603123

embedding vectors are trained on the top documents in the target collection, similar

to our setting. Note that the relevance-based model was also trained on the target

collection.

An interesting observation from Tables 3.6 and 3.9 is that the RLM performance

(without using pseudo-relevant documents) in Robust and GOV2 is very close to the

RM3 performance, and is slightly better in the GOV2 collection. Note that RM3

needs two retrieval runs and uses top retrieved documents, while RLM only needs

one retrieval run. This is an important issue in many real-world applications, since

the efficiency constraints do not always allow them to have two retrieval runs per

query.

3.3.2 Query Classification

Query classification, also known as query categorization, has the goal of classifying

search queries into a number of pre-defined categories. Two types of classification

have been studied. In the first, the labels are query types, such as navigational

43

queries, informational queries, and transactional queries, e.g., [17, 88]. The other

task is classifying queries based on their topics. Query classification methods are

often based on the k-nearest neighbors approach; they classify each query based on

the labels of the most similar queries by majority voting. In the following, we estimate

distributed query representations from the learned word embedding vectors, and use

the obtained representations for computing query similarity.

3.3.2.1 Estimating Embedding Vectors for Queries

Estimating accurate query models is a crucial component in every retrieval frame-

work. It has been extensively studied in existing retrieval models and several ap-

proaches have been proposed for estimating query models, especially in the language

modeling framework. Here, we focus on query representation in a pre-trained em-

bedding semantic space: how to estimate accurate embedding vectors for queries?

Formally, let E denote a set of d-dimensional embedding vectors for each vocabulary

term w. Given a query q = {w1, w2, · · · , wk} with the length of k, the problem is to

estimate a d-dimensional vector ~q, henceforth called query embedding vector, for the

query q.

We propose a probabilistic framework to estimate query embedding vectors based

on maximum likelihood estimation. The main idea behind our approach is to max-

imize the likelihood of an accurate query language model and a probabilistic distri-

bution that can be calculated using the embedding semantic space for each query

vector. To do so, let δ(·, ·) denote a similarity function that computes the similarity

between two embedding vectors. Hence, the probability of each term w given a query

vector ~q, henceforth called the query embedding distribution, can be calculated as:

p(w|~q) =
δ(~w, ~q)

Z
(3.22)

44

where ~w ∈ E denotes the embedding vector of the given term w. The normalization

factor Z can be calculated as follows:

Z =
∑
w′∈V

δ(~w′, ~q) (3.23)

where V denotes the set of all vocabulary terms.8 On the other hand, assume that

there is a query language model θq for the query q, that shows how much each word

contributes to the query. Our claim is that a query embedding vector ~q∗ is a proper

query embedding vector, if the query embedding distribution (see Equation (3.22))

is “close to” the query language model θq. In other words, our purpose is to find a

query embedding vector that maximizes the following log-likelihood function:

~q∗ = arg max
~q

∑
w∈V

p(w|θq) log p(w|~q) (3.24)

The high computational complexity of the normalization factor in calculating

the query embedding distribution (see Equation (3.23)) makes optimizing the log-

likelihood function expensive. Note that since the normalization factor Z depends

on the query embedding vector, it cannot be computed offline. Therefore, similar

to many other optimization problems, we need to relax our objective function. To

this end, we assume that the normalization factor Z in Equation (3.22) is equal for

all query vectors. Although this simplifying assumption is not true, our observations

indicate that this is not a harmful assumption. To give an intuition about the validity

of this assumption, we consider many (> 200, 000) random query vectors and calculate

the normalization factor Z for all of these query vectors. The mean and standard

deviation for all Z values are (1.7±0.15)∗104. The mean value is an order of magnitude

larger than the standard deviation, and this shows that most of the Z values are close

8In this work, we assume that the embedding vectors of all query terms are available.

45

to the mean value, which indicates that our assumption is reasonable. It is worth

noting that all the following calculations can be done without this assumption, but

with high computational cost.

Therefore, based on this relaxation, we can re-write our objective function as

follows:

arg max
~q

∑
w∈V

p(w|θq) log δ(~w, ~q) (3.25)

As shown in Equation (3.25), our framework consists of two main components:

the query language model θq and the similarity function δ. Since the output of δ(~w, ~q)

is dependent on the query vector ~q, the function δ can affect the way that we can

optimize the objective function.

The similarity function δ for computing the similarity between two embedding

vectors can be calculated using the softmax function as follows:

δ(~w, ~w′) = exp

(∑d
i=1 ~wi

~w′i

‖~w‖‖ ~w′‖

)
(3.26)

where d denotes the dimension of embedding vectors. Without loss of generality,

assume that the embedding vectors of all vocabulary terms are unit vectors, and thus

their norms are equal to 1. Therefore, our objective function (see Equation (3.25))

can be re-written as follows:

arg max
~q

∑
w∈V

p(w|θq).
∑d

i=1 ~wi~qi
‖~q‖

(3.27)

To make this objective function even simpler, we add a constraint to force the

query vector be a unit vector. In other words, we consider the following constraint:

‖q‖ = 1. Based on this constraint, we obtain the Lagrange function as follows:

L(~q, λ) =
∑
w∈V

(
p(w|θq)

d∑
i=1

~wi~qi

)
+ λ

(
1−

d∑
i=1

(~qi)
2

)
(3.28)

46

where λ denotes the Lagrange multiplier. Using the mathematical optimization

method of Lagrange multipliers, we compute the first derivatives of the Lagrange

function as follows:
∂L
∂~qi

=
∑

w∈V ~wip(w|θQ)− 2λ~qi

∂L
∂λ

= 1−
∑d

i=1 (~qi)
2

(3.29)

where ~qi denotes the ith element of the query vector ~q. By setting the above partial

derivatives to zero, we can find the stationary point of our objective function as below:

~qi =

∑
w∈V ~wip(w|θQ)√∑d

j=1 (
∑

w∈V ~wip(w|θQ))2

(3.30)

Therefore, the query embedding vector can be calculated using the above closed-

form formula.

Estimating Query Language Model using Maximum Likelihood: Maximum

likelihood estimation (MLE) is a simple yet effective approach for estimating query

language models. MLE for a given query q can be calculated by relative counts:

p(w|θq) =
count(w, q)

|q|
(3.31)

where θq, count(w, q), and |q| denote the unigram query language model, the count

of term w in the query q, and the query length, respectively.

As shown earlier, each element of the query embedding vector can be calculated

using Equation (3.30). In this equation, the denominator is just a normalization

factor to force the embedding vector be a unit vector. Now, assume that the query

language model θq is estimated using maximum likelihood estimation. Therefore, the

query embedding vector is calculated as:

~qi ∝
∑
w∈q

count(w, q)

|q|
. ~wi (3.32)

47

where ~qi denotes the ith element of the query vector. In the above equation, the

summation is just over the query terms, since the count of other terms is equal to zero,

and thus they will not affect the result. The above equation is equivalent to average

word embedding (AWE). To summarize, when the similarity of embedding vectors

is calculated using the softmax function and the query language model is estimated

using maximum likelihood estimation, the proposed framework will produce the AWE

method.

Estimating Query Language Model using Pseudo-Relevance Feedback:

Pseudo-relevance feedback (PRF) has been shown to be highly effective at improving

retrieval effectiveness. PRF in the language modeling framework estimates a query

language model from a small set of top-retrieved documents. In PRF, in addition to

updating the weights of query terms, a number of new terms will be added to the

query. We consider the relevance model with the i.i.d. sampling assumption [87], a

state-of-the-art PRF method, to estimate the query language model as follows:

p(w|θq) ∝
∑
d∈F

p(w|d)
∏
w′∈q

p(w′|d) (3.33)

where F denotes the set of feedback documents. The probability of each term in the

document (e.g., p(w|d)) can be computed by smoothing the maximum likelihood es-

timation probability. The top m terms with highest probabilities are usually selected

in the feedback language models. We call the query embedding vectors estimated

using the PRF distributions, pseudo query vectors (PQV).

3.3.2.2 Query Classification with k-Nearest Neighbors

To classify each query, we consider a very simple approach based on query em-

bedding vectors. We first compute the probability of each category/label given each

query q and then select the top t categories with highest probabilities. In fact, this

48

method is based on k-nearest neighbors classification. The probability p(Ci|q) can be

easily computed using the following formula:

p(Ci|q) =
δ(~Ci, ~q)∑
j δ(

~Cj, ~q)
∝ δ(~Ci, ~q) (3.34)

where Ci denotes the ith category. ~Ci is the centroid vector of all query embedding

vectors with the label of Ci. In the above equation, we drop the normalization factor,

since it is the same for all categories. For PQV methods, we linearly interpolate the

above probability with those computed using the MLE method with the interpolation

coefficient of α.

3.3.2.3 Experiments

Data: We consider the dataset that was previously employed to evaluate the query

classification approaches submitted to the KDD Cup 2005: Internet user search query

categorization [93]. This evaluation set contains 800 web queries that were issued by

real users. These queries were randomly selected and do not contain junk and non-

English words/phrases. The queries were tagged by three individual human editors.

The KDD Cup 2005 organizers pre-defined 67 categories (labels) and each editor

selected up to 5 labels among them for each query. The embedding vectors of all

query terms of 700 out of 800 queries are available in our embedding collection. We

only consider these 700 queries in our evaluations. The spelling errors in queries are

corrected in a pre-processing phase.

In our evaluations, we consider 5-fold cross-validation over the queries and the

reported results are the average of all results obtained over the test folds. In each

step we have 560 and 140 training and test queries, respectively.

In the experiments related to PQV, we use the Robust collection (see Table 3.1

for details) to retrieve pseudo-relevant documents. In all experiments, stopwords

49

Table 3.10: Evaluating embedding algorithms via query classification. The super-
scripts 1/2 denote that the improvements over word2vec/GloVe with the same query
embedding method are significant. The superscript * denotes that the improvements
over the AWE method with all embeddings are significant. The highest value in each
column is marked in bold.

Query Emb. Method Word Embedding Precision F1-measure

AWE

word2vec 0.3712 0.4008
GloVe 0.3643 0.3912
Rel.-based Embedding - RLM 0.394312 0.426712

Rel.-based Embedding - RPE 0.396112 0.429412

PQV

word2vec 0.3803 0.4227
GloVe 0.3777 0.4142
Rel.-based Embedding - RLM 0.406912* 0.446012*

Rel.-based Embedding - RPE 0.408612* 0.448312*

were removed from the queries and no stemming was performed. We employed the

INQUERY stopword list.

Parameters Setting: In all experiments unless explicitly mentioned, the param-

eters α (the linear interpolation coefficient), and n (the number of feedback terms

considered in the PQV methods) were tuned on the training data. We swept the

parameter α between {0.1, . . . , 0.9}. The values of parameter n were also selected

from {10, 20, ..., 100}.

Evaluation Metrics: We consider two widely used evaluation metrics that were

also used in KDD Cup 2005 [93]: precision and F1-measure. Since the labels assigned

by the three human editors differ in some cases, all the label sets should be taken into

account. We compute these two metrics in the same way as was used to evaluate the

KDD Cup 2005 submissions [93]. Statistically significant differences are determined

using the two-tailed paired t-test computed at a 95% confidence level.

50

Results: We compare our models against the word2vec and GloVe methods. In our

experiment, we use two different query embedding approach, one using average word

embedding of query terms (AWE) and one based on the pseudo-query vector (PQV)

that uses the top 10 retrieved documents to estimate query embedding. The results

are reported in Table 3.10, where the relevance-based embedding models significantly

outperform the baselines in terms of both metrics. An interesting observation here is

that contrary to the query expansion experiments, RPE performs better than RLM

in query classification. The reason is that in query expansion the weight of each term

is considered in order to generate the expanded query language model. Therefore, in

addition to the order of terms, their weights should be also effective for improving the

retrieval performance with query expansion. In query classification, we only assign a

few categories to each query, and thus as long as the order of categories is correct, the

similarity values between the queries and the categories do not matter. The results

also demonstrate the pseudo-query vector method significantly outperforms the AWE

method.

3.4 Summary

In summary, we presented a neural network architecture, similar to word2vec [107],

for learning relevance-based word embedding. Our model is based on the bag-of-

words assumption. We presented two objectives for training the model: relevance

likelihood maximization (RLM) and relevance posterior estimation (RPE). We trained

our model using weak supervision. In more detail, we employed the Lavrenko and

Croft’s relevance models [87] (i.e., RM3) for generating training data.

The learned word representations were extrinsically evaluated using two down-

stream tasks: query expansion (with and without pseudo-relevance feedback) and

query classification. Our experiments on multiple datasets demonstrate the effective-

51

ness of the proposed solutions to the bag-of-words word embedding models, such as

word2vec [107] and GloVe [123].

52

CHAPTER 4

NEURAL RANKING MODELS

Developing efficient and effective retrieval models has always been at the core of

information retrieval research. In this chapter, we study how to train learning to rank

models without labeled data using weak supervision. In more detail, we use existing

term matching retrieval models, such as BM25 or query likelihood, to automatically

generate pairwise training data. The goal is to learn a retrieval model using the

generated data, such that it outperforms the weak labeler. This chapter provides

theoretical evidence and guideline for weakly supervised neural ranking models. In

addition, we present empirical results showing that the proposed model outperforms

state-of-the-art retrieval models.

This chapter is structured as follows: Section 4.1 theoretically studies weak super-

vision for learning to rank models. Leveraging weak supervision, Section 4.2 proposes

a standalone neural ranking model, called SNRM, as an efficient and effective retrieval

model.

4.1 Learning to Rank with Weak Supervision

Despite the advances in computer vision, speech recognition, and NLP tasks using

unsupervised deep neural networks, such advances have not been observed in ranking,

as a core information retrieval task. A plausible explanation is the complexity of the

ranking problem in IR, in the sense that it is not obvious how to learn a ranking model

from queries and documents when no supervision in form of the relevance information

is available. To overcome this issue, Dehghani et al. [42] have recently proposed to

53

leverage large amounts of data to infer noisy or weak labels and use that signal for

learning models without labeled data. In more detail, they used an existing retrieval

model, such as BM25, to retrieve documents in response to a large number of queries.

They further trained a simple neural ranking model based on the generated training

data and showed significant improvements compared to the weak labeler.

In the following, we present a set of theoretical results on learning to rank from

weakly supervised data. We define symmetric ranking loss functions and further study

the problem under uniformity and non-uniformity assumptions. Finally, we study a

set of pairwise loss functions to determine which ones are symmetric.

4.1.1 Preliminaries

In the following, we briefly review preliminary information used in the rest of the

chapter. In more detail, we first formulate the task of learning to rank objects, and

then introduce the risk minimization framework for statistical learning.

4.1.1.1 Learning to Rank Formulation

Suppose X is the input space and Y is the output space for a ranking problem.

Each element of X , denoted as x, is a list of n feature vectors corresponding to n

objects that should be ranked, i.e., x = [x1, x2, · · · , xn]. Each element of Y , de-

noted as y, is also a list of n labels corresponding to the objects appeared in x, i.e.,

y = [y1, y2, · · · , yn]. Let P (X, Y) be an unknown joint distribution, where random

variables X and Y respectively take x and y as their values.

Assume thatM is a ranking model that takes x as input and generates a rank list

from the objects appearing in x. Without loss of generality, we assume that M pro-

duces a score for each object in x and the objects are then sorted based on their scores

in descending order. Therefore,M(x) can be written as [M(x1),M(x2), · · · ,M(xn)].

In typical statistical learning to rank problems, we are given a training set T =

{(x1,y1), (x2,y2), · · · , (xm,ym)} with m elements, each representing a rank list for n

54

objects. The training instances are assumed to be drawn iid according to an unknown

distribution over X × Y . In document ranking, e.g., ad-hoc retrieval, xi is equal to

{(qi, di1), (qi, di2), · · · , (qi, din)}, where qi denotes the ith query in the training set and

dij denotes the jth candidate document that should be ranked in response to the

query qi. yi is also a list of n labels representing the relevance judgments for the

corresponding query-document pairs.

4.1.1.2 Risk Minimization Framework

In this subsection, we briefly explain the risk minimization framework in statistical

learning. The risk function for a given ranking modelM and loss function L is defined

as follows:

RL(M) = EP [L(M(x),y)] =

∫ ∫
L(M(x),y)P (x,y) dx dy (4.1)

where E denotes expectation and its subscript is a distribution (or a random variable)

with respect to which the expectation is taken. As mentioned earlier, P denotes

an unknown true distribution over the X × Y space. L(·, ·) is a loss function that

computes the difference between its inputs which are two lists with the size of n.

Given the training data T , the empirical risk is defined as follows:

R̂L(M) = E(x,y)∈T [L(M(x),y)] =
1

m

m∑
i=1

L(M(xi),yi) (4.2)

Under the risk minimization framework, the objective is to learn a ranking model

M that is a global minimizer of the risk function R̂L, which depends on the ranking

loss function L.1

1Since ranking metrics are often non-differentiable, a surrogate loss function is often used. We
can assume that L is a surrogate ranking loss.

55

4.1.2 Problem Statement

As pointed out earlier in this chapter, weak supervision is a learning strategy

that does not require labeled training data. Let M be a weak supervision sig-

nal that automatically produces a label for any given input. This gives us a set

of weakly labeled training data T̂ = {(x1, ŷ1), (x2, ŷ2), · · · , (xm, ŷm)}, where ŷi =

[M(xi1),M(xi2), · · · ,M(xin)]. The input feature vectors x in weakly labeled data are

the same as the ones in T described in Section 4.1.1.1.

The weakly supervised labels are generated automatically and thus are not accu-

rate. In the following, we theoretically study how to effectively train a ranking model

on such noisy labels. Without loss of generality, we can look at weak supervision as a

noisy channel that applies some noise on the actual true labels. Therefore, ŷ = M(x)

is modeled as a noisy channel that introduces noise on the true label y.

Let us first define noise tolerance in ranking based on the risk minimization frame-

work as follows:

Definition 1. [Noise Tolerance in Learning to Rank] Under the ranking loss function

L, risk minimization is noise tolerant if:

Pr[M(x)
rank

= y] = Pr[M̂(x)
rank

= y] ∀(x,y) ∈ T (4.3)

where ·
rank

= · denotes that the two given score lists are equal in terms of ranking (i.e.,

the corresponding objects are in the same order when sorted by their scores). M and

M̂ respectively denote the ranking models trained on the true data T and the weakly

supervised data T̂ .

4.1.3 Symmetric Ranking Loss

Motivated by the symmetry condition defined for binary classification [52], we

define symmetric ranking loss function as follows:

56

Definition 2. [Symmetric Ranking Loss Function] A ranking loss function L is sym-

metric, if it satisfies the following constraint:

∑
y∈Y

L(M(x),y) = c ∀x,∀M (4.4)

where c is a constant number.

Note that the above definition assumes that the output space Y is finite and

discrete, which is a reasonable assumption for a ranking task, where the order of

objects matters and the number of items is finite (i.e., equal to n in our setting). In

case of binary relevance judgments, the output space Y is {0, 1}n, thus |Y| = 2n.

Theorem 1. In case of binary relevance judgments (labels), any ranking loss function

L based on a pairwise classification loss Lpair is symmetric, if the following condition,

called the sufficient symmetric pairwise loss (SSPL) constraint, holds:

Lpair(M(x)−M(x′),−1) + Lpair(M(x)−M(x′), 1) = c ∀x, x′,∀M (4.5)

where c is a constant number.2

Proof. If the ranking loss function L is computed based on pairwise misclassifications,

then without loss of generality, we have:

∑
y∈Y

L(M(x),y) =
1

Z

∑
y∈Y

n∑
i=1

n∑
j=i+1

Lpair(M(xi)−M(xj), yi − yj)

=
1

Z

n∑
i=1

n∑
j=i+1

∑
y∈Y

Lpair(M(xi)−M(xj), yi − yj) (4.6)

2We assume that the pairwise loss for two objects with the same label is zero (or constant).

57

where Z is a constant normalization factor. Since the labels are binary, thus Y =

{0, 1}n. The terms inside the summations in Equation (4.6) only depend on the ith

and the jth element of y. Therefore, we can rewrite the above equations as below:

=
2n−2

Z

n∑
i=1

n∑
j=i+1

∑
(yi,yj)∈{0,1}2

Lpair(M(xi)−M(xj), yi − yj)

=
2n−2

Z

n∑
i=1

n∑
j=i+1

Lpair(M(xi)−M(xj),−1)− Lpair(M(xi)−M(xj), 1) (4.7)

Note that the pairwise loss for two objects with the same labels is assumed to be

zero. Given the SSPL condition mentioned in Equation (4.5), we rewrite the above

equation as:

⇒
∑
y∈Y

L(M(x),y) =
2n−2

Z

n∑
i=1

n∑
j=i+1

c = c′ (4.8)

which shows that L is a symmetric ranking function, and completes the proof.

In Section 4.1.6, we study a number of well-known pairwise loss functions and

discuss whether they satisfy the SSPL constraint. At this step, it is sufficient to know

that there exist some loss functions that satisfy the SSPL constraint, and thus the

following theoretical findings are useful in practice.

4.1.4 Weak Supervision as Uniform Noisy Channel

We generalize Ghosh et al.’s findings [52] on binary classification to ranking and we

assume that independent from the input x, the noisy channel applies a uniform noise

on the true label and produces the weak label. Although, this is a strong assumption

that does not hold in many real-world situations, it gives insights into understanding

learning from weak supervision, and is a first step towards more complex situations

(e.g., the non-uniformity assumption).

58

Theorem 2. In learning to rank from weak supervision, where the weak signal is

drawn from the true label with a uniform noise, let L be a symmetric ranking loss

function (see Definition 2). Then, L is noise tolerant (see Definition 1) under the

noise probability ρ < 2n−1
2n

.

Proof. We prove this theorem based on the risk minimization framework. To do so,

we show that any ranking model M̂∗ that is a global minimizer for the empirical risk

function on the weak data is also a global minimizer of the true empirical risk.

The empirical risk function for a ranking modelM over the weak data T̂ is defined

as:

R̂′L(M) = E(x,ŷ)∈T̂ [L(M(x), ŷ)] = Ex Ey|x Eŷ|x,y[L(M(x), ŷ)] (4.9)

Given the uniform noise assumption, the expected value of the loss for the weak

supervision label is equal to the loss for the true label with the probability of 1 − ρ

and the probability of ρ
2n−1

for any other labels with binary judgments. Hence, the

empirical risk R̂′L(M) is equal to:

Ex Ey|x

(1− ρ)L(M(x),y) +
ρ

2n − 1

∑
y′∈Y\{y}

L(M(x),y′)

 (4.10)

Since Ex Ey|x = Ex,y and L is a symmetric ranking loss, given the definition of

empirical risk for true labels, we have:

R̂′L(M) = (1− ρ)R̂L(M) +
ρ

2n − 1
(c− R̂L(M))

=
cρ

2n − 1
+ (1− 2nρ

2n − 1
)R̂L(M) (4.11)

Now assume that M̂∗ is a global minimizer for the risk function R̂′L, thus for any

ranking model M, we have:

59

R̂′L(M̂∗)− R̂′L(M) ≤ 0 (4.12)

On the other hand, from Equation (4.11) we have:

R̂′L(M̂∗)− R̂′L(M) = (1− 2nρ

2n − 1
)(R̂L(M̂∗)− R̂L(M)) (4.13)

According to Equations (4.12) and (4.13) and because ρ < 2n−1
2n

, then R̂L(M̂∗)−

R̂L(M) ≤ 0 and thus M̂∗ is also a global minimizer for the true empirical risk function

R̂L. Therefore, risk minimization under symmetric ranking losses is noise tolerant,

which completes the proof.

This theorem shows that symmetric ranking losses are robust to uniform noise

used to generate weak supervision labels. Note that the only condition is ρ being less

than 2n−1
2n

. This means that the weak signal should be better than random, which

is not a restrictive condition. Interestingly, this finding is independent of the size of

training data.

4.1.5 Weak Supervision as Non-uniform Noisy Channel

Section 4.1.4 assumes that the error probability of weak labeler is the same for all

training instances. This means that the quality of weak supervision signal is the same

for all queries, which is not a true assumption in practice, i.e., some queries are more

difficult and some are easier to respond. In Theorem 3, we relax this assumption and

find an upper bound for the empirical risk function.

Theorem 3. Let L be a symmetric ranking loss function (see Definition 2). For

each pair (x, ŷ) ∈ T̂ , assume that the weak label ŷ is equal to the true label with

a probability of ρx which depends on the input x. Then, the empirical risk function

R̂L(M̂∗) is upper bounded by R̂L(M∗)/(1 − 2nρmax
2n−1

), where R̂L is empirical risk on

the true data, ρmax is the maximum error probability, and M̂∗ andM∗ are the global

minimizers of the weak risk R̂′L and the true risk R̂L, respectively.

60

Proof. Similar to Equation (4.10), the empirical risk function for any ranking model

M over the weakly labeled data T̂ is defined as:

R̂′L(M) = Ex,y

(1− ρx)L(M(x),y) +
ρx

2n − 1

∑
y′∈Y\{y}

L(M(x),y′)

= Ex,y

[
(1− ρx)L(M(x),y) +

ρx
2n − 1

(c− L(M(x),y))

]
= Ex,y

[
cρx

2n − 1

]
+ Ex,y

[
(1− 2nρx

2n − 1
)L(M(x),y)

]
(4.14)

Note that the term Ex,y

[
cρx

2n−1

]
is independent of the ranking model. Let M̂∗ and

M∗ be the global minimizers of the empirical risk functions R̂′L and R̂L, respectively.

Therefore, we have:

R̂′L(M̂∗)− R̂′L(M∗) ≤ 0 (4.15)

According to Equation (4.14), we can rewrite the above inequality as:

Ex,y

[(
1− 2nρx

2n − 1

)(
L(M̂∗(x),y)− L(M∗(x),y)

)]
≤ 0

⇒ min
ρx

{
1− 2nρx

2n − 1

}
Ex,y

[(
L(M̂∗(x),y)− L(M∗(x),y)

)]
≤ 0

⇒ (1− 2nρmax
2n − 1

)Ex,y[L(M̂∗(x),y)] ≤ Ex,y[L(M∗(x),y)]

⇒ R̂L(M̂∗) ≤ 1

1− 2nρmax
2n−1

R̂L(M∗) (4.16)

Therefore, the true empirical risk for M̂∗ is upper bounded by R̂L(M∗)/(1 −
2nρmax
2n−1

). This completes the proof.

Theorem 3 shows that the ratio of empirical risk for the global minimizer of the

weak risk to to the one for the global minimizer of the true risk is upper bounded by

1

1− 2nρmax
2n−1

.

61

Remark 1. Theorem 3 shows that if the minimum empirical risk on the true labeled

data is equal to 0, then the model M̂∗ is the global minimizer of the empirical risk on

the true labeled data. Therefore, if R̂L(M∗) = 0, then any symmetric ranking loss L

is robust to non-uniform noise.

4.1.6 A Study of Pairwise Loss Functions

In the following, we study a number of pairwise loss functions to identify the ones

that satisfy the SSPL constraint introduced by Theorem 1. Without loss of generality,

assume that M(x) ∈ [0, 1] : ∀x which can be obtained via a sigmoid function. With

some relaxation of notation throughout this section, for a pair of objects (o, o′) with

feature vectors (x, x′), let so≥o′ =M(x)−M(x′) denote the score of o being ranked

higher than o′ by the ranking model M. Therefore, so≥o′ = −so<o′ ∈ [−1, 1]. Let

yo≥o′ ∈ {−1, 1} be a pairwise label indicating whether o should be ranked higher than

o′ or not.

Lemma 1. In pairwise learning to rank if M(x) ∈ [0, 1] : ∀x, hinge loss and mean

absolute error (L1 loss) satisfy the SSPL constraint. On contrary, cross entropy loss

and mean square error (L2 loss) do not satisfy the SSPL constraint.

Proof. In the following, we study the loss functions mentioned in the lemma one by

one.

• Hinge loss: Hinge loss, also known as the max-margin loss, is defined as follows:

max{0, 1− yo≥o′so≥o′} (4.17)

where yo≥o′ ∈ {−1, 1}. Given the above definition, we have:

Lhinge(so≥o′ ,−1) + Lhinge(so≥o′ , 1)

= max{0, 1− so≥o′}+ max{0, 1 + so≥o′} (4.18)

62

Since so≥o′ ∈ [−1, 1], the above equation is equal to 2, and thus hinge loss satisfies

the SSPL constraint.

• Mean absolute error or L1 loss: Given the definition of L1 loss, we have:

LMAE(so≥o′ ,−1) + LMAE(so≥o′ , 1)

= |1− so≥o′|+ | − 1− so<o′ |+ | − 1− so≥o′|+ |1− so<o′ | (4.19)

Since so≥o′ = −so<o′ ∈ [−1, 1], then the above equation is equal to 4, and thus

mean absolute error satisfies the SSPL constraint.

• Cross entropy loss: Given the definition of cross entropy loss, we have:

Lce(so≥o′ ,−1) + Lce(so≥o′ , 1)

= log po≥o′ + log(1− po≥o′)

= log po≥o′(1− po≥o′) (4.20)

Note that we should use the pairwise probability po≥o′ for the cross entropy loss.

The above equation is neither constant, nor bounded. Therefore, the cross entropy

loss function does not satisfy the SSPL constraint.

• Mean square error or L2 loss: Given the definition of L2 loss, we have:

LMSE(so≥o′ ,−1) + LMSE(so≥o′ , 1)

= 2(1− so≥o′)2 + 2(1 + so≥o′)
2 (4.21)

Thus, the L2 loss function does not satisfy the SSPL constraint. However, the

above equation is bounded by [4, 8].

63

4.1.7 Experiments

In this section, we first provide the results on a synthetic noisy data, and then

experiment with real weak supervision data for the ad-hoc retrieval task.

4.1.7.1 Evaluation on Synthetic Data

In the first set of experiments, we empirically validate our theoretical findings. To

do so, we create a synthetic data based on the MQ2008 dataset, which is a part of the

LETOR 4.0 dataset [128].3 Each training and test instance in this dataset contains 46

features, extracted via various retrieval techniques. In our experiments, we performed

5-fold cross-validation based on the queries. We trained a fully-connected feed-forward

neural network on the training data. The network consists of two hidden layers with

500 and 100 neurons. Relu was used as the non-linear activation function in the

hidden layers, and sigmoid was used as the output activation. We trained the model

using a pairwise setting; any pair of documents with different labels with respect to

each query was considered as a pairwise training instance. The model was trained

for one epoch using the Adam optimizer [80], and the learning rate was selected from

{0.0001, 0.0005, 0.001} based on the performance on the validation set. The batch size

was set to 128. We evaluated the performance of the models in terms of normalized

discounted cumulative gain for the top 20 documents (nDCG@20).

Uniform noise: In the first set of experiments, we applied a uniform noise on the

training data. The pairwise noise probability was swept from 0.0 to 0.45. Note that

the pairwise noise should be less than 0.5 which means that the weak labeler should

perform better than random. We evaluated models with the same neural architec-

ture, but different pairwise loss functions. The results are plotted in Figure 4.1. As

depicted, performance of the models based on the L2 and cross entropy (CE) loss func-

3The LETOR dataset is available at https://www.microsoft.com/en-us/research/project/
letor-learning-rank-information-retrieval/.

64

Figure 4.1: The retrieval performance on MQ2008 with respect to the uniform noise
probability (ρ < 0.5).

tions significantly drops when the noise probability increases. However, the models

with the L1 and the hinge loss functions are robust to uniform noise. This observation

empirically validates our theoretical findings on the robustness of symmetric ranking

losses to uniform noise.

Non-uniform noise: In the next set of experiments, we applied non-uniform noise

on the training data. In other words, the probability of noise varies across queries.

We swept the maximum noise probability from 0.0 to 0.9. The results are plotted

in Figure 4.2. According to this plot, the performance of all the models significantly

drop when the maximum noise probability passes the 0.7 threshold. Figure 4.2 shows

that the models with symmetric ranking losses (i.e., L1 and hinge loss) perform sub-

stantially better than those based on the L2 and cross entropy loss functions, when

the maximum noise probability is high (i.e., > 0.7).

4.1.7.2 Evaluation on Weak Supervision Data

In this subsection, we focus on a real weak supervision setting for ad-hoc retrieval.

To do so, we trained a fully-connected feed-forward pairwise model (FNRM), exactly

the same as the RankModel introduced in [42]. Network parameters were optimized

65

Figure 4.2: The retrieval performance on MQ2008 with respect to the non-uniform
maximum noise probability.

using the Adam optimizer [80]. In this experiment, the learning rate and the batch

size were selected from [5e−5, 1e−4, 5e−4, 1e−3, 5e−3] and {32, 64, 128}, respectively.

The hidden layer sizes were selected from {100, 300, 500}. We initialized the word

embedding matrix by pre-trained GloVe [123] vectors learned from Wikipedia dump

2014 plus Gigawords 5.4 The embedding dimensionality was set to 300. All retrieval

experiments were carried out using the Galago search engine [30]. We performed

2-fold cross-validation over the queries in each collection for hyper-parameter tuning.

We collected our training queries from AOL query logs [121]. We only used the

query strings, and no session and click information was obtained from the query

logs. We filtered out the navigational queries containing URL substrings, i.e., “http”,

“www.”, “.com”, “.net”, “.org”, “.edu”. All non-alphabetical characters were re-

moved from the queries. As a sanity check, we made sure that no queries from the

training set appear in our evaluation query sets. Applying all of these constraints

leads to over 6 million unique queries as our training query set. We used query like-

lihood [126] with Dirichlet prior smoothing [191] as the weak supervision signal. In

4https://nlp.stanford.edu/projects/glove/

66

Table 4.1: Retrieval performance of weakly supervised neural ranking models
(FNRM) with different loss functions. The highest value per column is marked in
bold, and the superscripts 0/1/2 denote statistically significant improvements com-
pared to QL/FNRM-CE/FNRM-L2, respectively.

Method
Robust ClueWeb

MAP P@20 nDCG@20 MAP P@20 nDCG@20

QL 0.2499 0.3556 0.4143 0.1044 0.3139 0.2294
FNRM-CE 0.27430 0.36820 0.42720 0.12330 0.32860 0.23080

FNRM-L2 0.27650 0.36960 0.42900 0.12140 0.32710 0.23150

FNRM-L1 0.2831012 0.3769012 0.4333012 0.1321012 0.3368012 0.2386012

FNRM-Hinge 0.2815012 0.3752012 0.4327012 0.1329012 0.3351012 0.2392012

more detail, for each training query, we retrieved 100 documents from the target eval-

uation collection using the query likelihood model and created our pairwise training

instances based on the query likelihood scores.

We evaluate our models using the following two TREC collections: The first

collection, Robust, consists of thousands of news articles and is considered as a ho-

mogeneous collection. Robust was previously used in TREC 2004 Robust Track. The

second collection, ClueWeb, is a challenging and large-scale web collection contain-

ing heterogeneous and noisy documents. ClueWeb (i.e., ClueWeb09-Category B) is

a common web crawl collection that only contains English web pages. ClueWeb was

previously used in TREC 2009-2012 Web Track. We cleaned the ClueWeb collec-

tion by filtering out the spam documents, using the Waterloo spam scorer5 [29] with

the threshold of 60%. Stopwords were removed from all collections. For Robust,

TREC topics 301-450 & 601-700, and for ClueWeb, topics 1-200 were used for the

experiments.

Results: The results reported in Table 4.1 show that all weakly supervised models

outperform the query likelihood (QL) model, which is our weak labeler. The results

5http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/

67

demonstrate that the models with L1 and hinge loss functions significantly outperform

the models with L2 or cross entropy as the loss function. The statistical differences

are computed using the two-tailed paired t-test at 95% confidence interval (p value <

0.05). Recall that the L1 loss and the hinge loss satisfy the SSPL constraint, while

the L2 and the cross entropy loss function do not. This is an empirical validation on

real weak supervision data for our theory presented in this chapter.

4.2 A Standalone Neural Ranking Model with Weak Super-

vision

In this section, we introduce SNRM as a standalone neural ranking model based on

learning a latent sparse representation. Section 4.2.1 describes the desirable properties

of the model. Section 4.2.2 details the neural network architecture. The general design

of our model consists of three phases: (i) the training phase (Section 4.2.3), (ii) the

offline inverted index construction phase (Section 4.2.4), and (iii) the retrieval phase

with or without feedback (Sections 4.2.5 and 4.2.6).

4.2.1 Design Desiderata

Designing a standalone neural ranking model that can retrieve documents from

a large-scale collection, instead of re-ranking a small set of documents returned by a

first stage ranker, could potentially be used in various retrieval engines. Conventional

term matching retrieval models, such as TF-IDF, BM25, or query likelihood, derive

query and document representations based on the atomic units of natural languages

(e.g., words); hence they carry the desirable property of sparsity which helps efficient

retrieval on large-scale collections. They each use an inverted index built on the

search collection. Based on the idea of using an inverted index for efficient retrieval,

we introduce SNRM, a neural network model for learning standalone rankers based

on latent sparse representations.

68

Similar to representation-focused neural ranking models, e.g., [42, 74, 150, 188],

our neural framework consists of three major components: the query representation

φQ, the document representation φD, and the matching function ψ. The retrieval

score for each query-document pair (q, d) is then computed as follows:

retrieval score(q, d) = ψ (φQ(q), φD(d)) (4.22)

Our goal to build a responsive standalone ranker leads to a number of requirements

on these three components:

• φD is a query independent component, and thus can be computed offline. In con-

trast to previous neural ranking models that learn low-dimensional dense represen-

tations, φD should output a high-dimensional sparse vector. This will allow us to

construct an inverted index based on the learned representations.

• The components φQ and ψ should be run at query or inference time (i.e., when

producing the ranked output). To obtain a real-time ranking model, it is necessary

to minimize the amount of computation in these two components.

• The ith element of φQ and φD should represent the same latent feature. In other

words, the two components φQ and φD should provide representations in the same

semantic space, which also implies |φQ| = |φD|. Considering the first property, this

property also means that the query representation should be sparse.

• The matching function ψ should return zero if there is no overlap between the

indices of non-zero elements in φQ and φD. This property, in addition to the

previous one, is necessary to build and use an inverted index for efficient retrieval.

• Functions φQ and φD use the full capacity of the output space and do not map

queries and documents to a particular subspace. In other words, for each dimension

69

in the output space, there exists at least one query q or document d such that φQ(q)

or φD(d) leads to a non-zero value for that dimension.

We claim that if the design of a neural ranking model satisfies the above properties,

and the learned query and document representations are sufficiently sparse, we are

then able to construct an inverted index from the learned representation by φD and

retrieve documents in response to a given query as a standalone ranking, without the

need for a first stage retrieval model.

4.2.2 Network Architecture

Since the representations learned by φQ and φD in SNRM should represent the

same semantic space, we design our architecture to share parameters between these

components. Furthermore, we need different levels of sparsity in the query and doc-

ument representations. This is mainly motivated by efficiency, as a key feature of a

standalone ranker, since the matching function will compute the retrieval score for all

the documents that have a non-zero value for at least one of the non-zero latent ele-

ments in the query representation. So the sparser the representation of the query is,

the less computation is expected. Furthermore, queries are intuitively much shorter

than documents and contain less information, so to express queries, it makes sense

to have fewer non-zero elements in their representations compared to the document

representations. Using a simple fully-connected feed-forward network for implement-

ing these components is not an appropriate solution as in this case (due to the shared

parameters between φQ and φD) both query and document representations would

become similar in terms of sparsity ratio, i.e., percentage of zero elements (see Equa-

tion (4.25)). This results in long queries in the learned latent space, leading to an

expensive matching function.

Based on this argument, we need a representation learning model in which the

representation sparsity is a function of the input length. We propose an architecture

70

based on ngram representation learning. The intuition behind our model is that we

first learn a sparse representation for each continuous n words in the given document

or query. The learned sparse representations are then aggregated via average pool-

ing. In fact, our document representation (and similarly our query representation) is

obtained as follows:

φD(d) =
1

|d| − n+ 1

|d|−n+1∑
i=1

φngram(wi, wi+1, · · · , wi+n−1) (4.23)

where w1, w2, · · · , w|d| denote the terms appearing in document d with the same order.

φngram learns a sparse representation for the given ngram. The query representation

is also computed using the same function. This approach provides two important

advantages:

• The number of representations averaged in Equation (4.23) has a direct relationship

with the input document/query length. Therefore, the level of the sparsity in the

final learned representations depends on the length of the input text. This results

in more sparse representations for queries in comparison to documents, which is

desired.

• Using the sliding window for encoding the input words as a set of ngrams helps to

capture the local interaction among terms, hence the model considers term depen-

dencies. Term dependencies have been widely known to be useful for improving

the retrieval performance [106].

We model our ngram representation function φngram by a fully-connected feed-

forward network that reads the input words using a sliding window over the sequence

of their embeddings and encodes their ngrams. To this end, we first collect the

embedding vectors for each term in the given ngram from an embedding matrix E ∈

R|V |×m where V and m denote the vocabulary set and the embedding dimensionality,

71

respectively. As discovered in Chapter 3, using relevance-based embedding vectors

trained to optimize IR objectives can lead to significant improvements, compared to

those trained by general-purpose word embedding vectors, such as word2vec [107] or

GloVe [123]. Therefore, E is part of our network parameters that is learned in an

end-to-end training setting. The collected n embedding vectors for the given ngram

are then concatenated and fed into a stack of fully-connected layers. These fully-

connected layers have an hourglass structure that forces the information of the input

data to be compressed and passed through a small number of units in the middle layers

that are meant to learn the low dimensional manifold of the data. Then, the number

of hidden units increases in upper layers to give us a high-dimensional output, e.g.,

20, 000. Note that in terms of the structure and the dimension of layers, the model

looks like an autoencoder. However, unlike autoencoders, we have no reconstruction

loss. We will discuss our training in Section 4.2.3. We employ rectified linear unit

(ReLU) as the activation function in our model.

Our neural architecture for query and document representation can also be seen

as a multi-layer one-dimensional convolutional network in which the window sizes for

all layers except the first one are set to 1. The window size for the first layer is equal

to n, and the strides are all set to 1. Figure 4.3 illustrates how a sequence of words

is mapped to a latent sparse representation. This building block of the model is then

used in the offline process of encoding documents to sparse latent representations to

build an inverted index and also used at inference time to encode submitted queries.

The architecture of this block is parallelizable, which supports an efficient procedure

for encoding queries at inference time.

We define the matching function ψ as the dot product of the query and document

representations. It can be simply proved that dot product has all the properties

mentioned earlier in Section 4.2.1. Making the model as efficient as possible is our

main reason behind using such a simple function to measure the query-document

72

Figure 4.3: Learning a latent sparse representation for a document.

relevance scores. This component plays a key role in efficiency of the model, since it

is frequently used at inference time (see Section 4.2.5).

4.2.3 Training

To train the SNRM framework we have two objectives: the retrieval objective

with the goal of improving retrieval accuracy and the sparsity objective with the goal

of increasing sparseness in the learned query and document representations.

Let T = {(q1, d11, d12, y1), · · · , (qN , dN1, dN2, yN)} denote a set of N training in-

stances; each containing a query string qi, two candidate documents di1 and di2, and

a label yi ∈ {−1, 1} indicating which document is more relevant to the query. In the

following, we explain how we optimize our model to achieve both of the mentioned

goals.

73

Figure 4.4: General schema of the SNRM at training time.

Retrieval Objective: We train our model using a pairwise setting as depicted in

Figure 4.4. Motivated by our theoretical results presented in Section 4.1, we employ

hinge loss (max-margin loss function) that has been widely used in the learning to

rank literature for pairwise models [91]. Hinge loss is a linear loss function that

penalizes examples violating a margin constraint. The hinge loss for the ith training

instance is defined as follows:

L = max {0, ε− yi [ψ(φQ(qi), φD(di1))− ψ(φQ(qi), φD(di2))]} (4.24)

where ε is a hyper-parameter determining the margin of hinge loss.

Sparsity Objective: In addition to improving the retrieval accuracy, our model

aims at maximizing the sparsity ratio, which is defined as follows:

74

sparsity ratio (~v) =
total number of zero elements in ~v

|~v|
(4.25)

Defining 00 = 0, maximizing the sparsity ratio is equivalent to minimizing the L0

norm:

L0(~v) =

|~v|∑
i=1

|~vi|0 (4.26)

Therefore, minimizing the L0 norm for the final query and document representations

is also one of our main objectives. However, the L0 norm is non-differentiable, which

makes it impossible to train our model with the backpropagation algorithm. In fact,

L0 minimization is a non-convex optimization problem, and even finding a solution

that approximates the true minimum for L0 is NP-hard [114]. Therefore, a tractable

surrogate loss function should be considered. An alternative would be minimizing

L1 norm (i.e., L1(~v) =
∑|~v|

i=1 |~vi|). Although it is clear that we can minimize L1 as

a term in our loss function, it is not immediately obvious how minimizing L1 would

lead to sparsity in the query and document representations. Employing the L1 norm

to promote sparsity has a long history, dating back at least to 1930s for the Fourier

transform extrapolation from partial observations [37]. L1 has been also employed

in the information theory literature for recovering band-limited signals [47]. Later

on, sparsity minimization has received significant attention as a method for hyper-

parameter optimization in regression, known as the Lasso [160].

The theoretical justification for the hypothesis that L1 minimization would lead to

sparsity in our model relies on two points: (1) the choice of rectified linear unit (ReLU)

as the activation function forces the non-positive elements to be zero (ReLU(x) =

max{0, x}), and (2) the gradient of L1(~v) for an element of ~v is constant and thus

independent of its value. Therefore, the gradient optimization approach used in the

backpropagation algorithm [140] reduces the elements of the query and document

representation vectors independent of their values. This moves small values toward

zero and thus the desired sparsity is obtained.

75

Loss Function: The final loss function for the ith training instance is defined as

follows:

L(qi, di1, di2, yi) + λ L1(φQ(qi)||φD(di1)||φD(di2)) (4.27)

where || means concatenation. The hyper-parameter λ controls the sparsity of the

learned representations.

Training with Weak Supervision: Following Dehghani et al. [42], we train our

model with weak supervision that benefits from the pseudo-labels obtained by an ex-

isting retrieval model, called weak labeler. In more detail, given a large set of queries

and a collection of documents, we first retrieve the documents for each training query

qi using the query likelihood retrieval model [126] with Dirichlet prior smoothing [192]

as our weak labeler. Each training instance (qi, di1, di2, yi) is then obtained by sam-

pling two candidate documents from the result list or one from the result list and one

random negative sample from the collection. yi is defined as:

yi = sign (pQL(qi|di1)− pQL(qi|di2)) (4.28)

where pQL denotes the query likelihood probability.

4.2.4 Inverted Index Construction

The training phase in SNRM is followed by an inverted index construction phase.

In this phase, as shown in Figure 4.5, we first feed each document in the collection into

the trained document representation component. We look at each index of the learned

representation as a “latent term”. In other words, let M denote the dimensionality

of document representation, e.g., 20, 000. Thus, we assume that there exist M latent

terms. Therefore, if the ith element of φD(d) is non-zero, then the document d would

be added to the inverted index for the latent term i. The value of this element is the

weight of the latent term i in the learned high-dimensional latent vector space.

76

Figure 4.5: General schema of the SNRM after training.

Since documents of a collection can be assumed to be independent, the inverted

index construction phase will be memory efficient, and we can feed documents to

the document representation component using mini-batches. Note that in case of

incorporating new documents, there is no need to train the network from scratch;

we can obtain representation for every new document. In Section 4.2.8, we have

some experiments that support this claim. However, due to the temporal property

of natural languages and invention of new vocabulary terms, the model can be re-

trained, periodically. This indicates that SNRM is applicable in real-world scenarios.

4.2.5 Retrieval

As illustrated in Figure 4.5, at inference time, we first feed the query q into the

query representation sub-network φQ to obtain the learned sparse representation ~q.

Given the dot product definition of ψ at training time, the retrieval score for each

document d at inference time is computed as:

77

retrieval score(q, d) =
∑
~qi|>0

~qi~di (4.29)

which is a summation over the non-zero elements of ~q. With the constructed in-

verted index, the documents with non-zero elements in the ith index can be retrieved

efficiently. Similar to the existing term matching retrieval models, such as query

likelihood and BM25, retrieval scores can be computed via the Map Reduce frame-

work [38].

4.2.6 Pseudo-Relevance Feedback

Pseudo-relevance feedback (PRF) is an approach that assumes that the top re-

trieved documents in response to a given query are relevant, and uses those documents

for query expansion. This is also known as a local approach for query expansion [173].

PRF has been proven to be highly effective in various retrieval tasks [30]. We can also

take advantage of PRF in SNRM. To do so, we use the Rocchio’s relevance feedback

algorithm [135] for vector space models. Let {d1, d2, · · · , dk} be the top k documents

retrieved by SNRM in response to the query q. The updated query vector is computed

as:

~q∗ = ~q + α
1

k

k∑
i=1

~di (4.30)

where α controls the weight of the feedback vector. Following previous work on

PRF [87, 99, 185, 191], we only keep the top t terms with the highest values in the

updated query vector ~q∗. We then retrieve documents as described in Section 4.2.5.

4.2.7 SNRM Summary

In this subsection, we look at the proposed model as a whole and discuss what

can actually be learned by the model. From a high-level perspective, SNRM first

maps each text to a dense representation in a low-dimensional semantic space and

then transforms it to a high-dimensional sparse representation. Based on our re-

trieval function (see Equation (4.29)), our model retrieves documents based on the

78

“bag of latent terms” assumption. However, query and document representations are

obtained by aggregating ngram representations that capture local term dependen-

cies. Therefore, what SNRM does is mapping the input text from a natural language

in which sequences of words matter to a new “latent language” in which term se-

quences should not play a significant role. Conceptually speaking, SNRM is learning

a new “language” with new “vocabulary” terms as its atomic components, and we

can benefit from the sparsity of these atomic components in our retrieval framework.

4.2.8 Experiments

In the following we empirically evaluate and analyze SNRM. We first introduce

the data, the experimental setup, and the evaluation metrics. We then report a range

of experiments to evaluate and better understand the proposed model.

Data: Similar to Section 4.1.7.2, we use Robust and ClueWeb to evaluate SNRM.

For weak supervision training, we again use the AOL query logs [121]. For more

information about the collection, the training query set, and the pre-processing steps,

refer to Section 4.1.7.2.

Experimental Setup: We implemented and trained our models using Tensor-

Flow [1].6 The network parameters were optimized with Adam [80] based on the

backpropagation algorithm [140]. In our experiments, the learning rate and the batch

size were selected from [5e−5, 1e−4, 5e−4, 1e−3, 5e−3] and {32, 64, 128}, respectively.

Two or three hidden layers were used for the ngram representation network (φngram)

where n is set to 5. The hidden layer sizes were selected from {100, 300, 500}. The

output layer size was also chosen from {5k, 10k, 20k}.7 We select the parameter λ

(see Equation (4.27)) from the [1e−7, 5e−9] interval. The dropout keep probability

6https://www.tensorflow.org/

7Due to the GPU memory constraints, we used a maximum of 20k dimensions.

79

was selected from {0.6, 0.8, 1}. We initialized the embedding matrix E by pre-trained

GloVe [123] vectors learned from Wikipedia dump 2014 plus Gigawords 5. The em-

bedding dimension was set to 300. All retrieval experiments were carried out using

the Galago search engine [30].8 We performed 2-fold cross-validation over the queries

in each collection for tuning the hyper-parameters of our models as well as baselines.

Evaluation Metrics: To study the effectiveness of SNRM, we report four standard

evaluation metrics: mean average precision (MAP) of the top ranked 1000 documents,

precision of the top 20 retrieved documents (P@20), normalized discounted cumula-

tive gain [75] calculated for the top 20 retrieved documents (nDCG@20), and recall in

the top 1000 documents (Recall). Statistically significant differences of MAP, P@20,

nDCG@20, and Recall values were computed using the two-tailed paired t-test with

Bonferroni correction at a 95% confidence level.

Experiment I: Comparison of SNRM against the baselines: We compare

our model against the following baselines:

• QL: The query likelihood retrieval model [126] with Dirichlet prior smoothing [192].

The smoothing parameter µ is a hyper-parameter selected from {100, 300, 500, 1000,

1500, 2000}.

• SDM: The sequential dependence model of Metzler and Croft [106] that takes ad-

vantage of term dependencies using Markov random fields in the language modeling

framework. The weight of the unigram query component, the ordered window, and

the unordered window were selected from [0, 1] with the step size of 0.05, as the

hyper-parameters of the model. We made sure that they sum to 1.

• RM3: A variant of the relevance model proposed by Lavrenko and Croft [87] that is

considered as a state-of-the-art pseudo-relevance feedback model [99]. We selected

8https://www.lemurproject.org/galago.php

80

the number of feedback documents from {5, 10, 15, 20, 30, 50}, the feedback term

count from {10, 20, · · · , 100}, and the feedback coefficient from [0, 1] with the step

size of 0.05.

• FNRM: A pairwise neural ranking model recently proposed by Dehghani et al. [42]

(i.e., Rank Model) that uses fully-connected feed-forward networks. This model is

based on the bag of words assumption and uses weighted average of word embedding

vectors for query and document representations. As suggested in [42], this model re-

ranks the top 2000 documents retrieved by query likelihood. Similar to SNRM, this

model is trained using the hinge loss in a pairwise setting. The hyper-parameters

of this model as listed in the original paper [42] were optimized exactly in the same

way as our model.

• CNRM: A neural ranking model based on convolutional networks to take term

dependencies into account. In fact, this model uses a convolutional layer on top of

the word embedding representations, and then an average pooling layer followed by

multiple fully-connected layers is employed. This model is similar to CDSSM [150]

and NRM-F [188], except in the use of word embedding instead of trigram hashing.

This model is also trained with the same weak supervision data. Hyper-parameter

tuning and training setting of this model are similar to those of FNRM.

Table 4.2 reports the results for the proposed model against the baselines. Ac-

cording to the results, neural ranking models trained with query likelihood as the

weak supervision signal (i.e., FNRM, CNRM, and SNRM) significantly outperform

the query likelihood model. This indicates that the neural models can generalize their

observations from the weak labeler. This happens since the query likelihood model is

restricted to term matching and thus suffers from the vocabulary mismatch problem,

however, these neural models can do semantic matching learned from a large set of

data labeled by QL as the weak labeler. This learning strategy makes it possible to

81

Table 4.2: Performance of the proposed models and baselines. The highest value
per column is marked in bold, and the superscripts 1/2/3/4/5/6 denote statisti-
cally significant improvements compared to QL/SDM/RM3/FNRM/CNRM/SNRM,
respectively.

Method
Robust

MAP P@20 nDCG@20 Recall

QL 0.2499 0.3556 0.4143 0.6820
SDM 0.2524 0.36791 0.42421 0.6858
RM3 0.286512 0.377312 0.429512 0.749412

FNRM 0.281512 0.375212 0.432712 0.723412

CNRM 0.280112 0.376412 0.4341123 0.718312

SNRM 0.285612 0.376612 0.431012 0.74811245

SNRM with PRF 0.2971123456 0.3948123456 0.4391123456 0.7716123456

Method
ClueWeb

MAP P@20 nDCG@20 Recall

QL 0.1044 0.3139 0.2294 0.3286
SDM 0.1078 0.3141 0.2320 0.33851

RM3 0.1068 0.3157 0.2309 0.3298
FNRM 0.1329123 0.3351123 0.239213 0.3426123

CNRM 0.1286123 0.3317123 0.23371 0.334513

SNRM 0.1290123 0.3336123 0.235113 0.3393135

SNRM with PRF 0.1475123456 0.3461123456 0.2482123456 0.3618123456

train generalized neural models with no labeled training data. They can potentially

improve their weak labelers. The results achieved by SNRM and RM3 are compa-

rable on the Robust collection, while SNRM significantly outperforms RM3 on the

ClueWeb collection. Our results also suggest that SNRM performs on par with the

FNRM and CNRM baselines, in terms of MAP, P@20, and nDCG@20. It is impor-

tant to keep in mind that these two baselines are expensive (or even infeasible) to

run on large set of documents and thus, as suggested in [42], they only re-rank the

top 2000 documents retrieved by query likelihood as the first stage ranker. Therefore,

their performance is bounded by the first stage performance, in terms of recall. How-

ever, our model, which is able to retrieve documents from its own constructed latent

82

Figure 4.6: Sensitivity of SNRM with PRF to the number of non-zero elements in
the updated query vector.

inverted index, can bring up additional relevant documents, even those with no strict

vocabulary overlap with the query. It is notable that the Recall@2000 for the QL

model is 0.7409 and 0.3551 on Robust and ClueWeb, respectively. Interestingly, the

Recall@1000 achieved by SNRM on the Robust collection is higher than the obtained

recall by QL on the top 2000 documents. Since FNRM and CNRM are re-ranking the

top 2000 documents, our Recall@1000 is even higher than the upper-bound value that

can be achieved by any re-ranking baselines, including FNRM and CNRM, on the

Robust collection. Note that given the shallow-depth pooling done for assessing the

ClueWeb documents, it is not an ideal collection for studying recall-oriented metrics.

It is also worth noting that having a stack of rankers is a common practice in

large-scale real-world search engines. Although most existing neural ranking models

focus on re-ranking as the final ranker in the stack, our model can be used as an

early stage ranker, and improving recall is desirable in such a ranker. Although our

learning objective does not directly optimize recall, our model improves the baselines

in terms of this metric. This indicates that the learned “latent terms” may carry

semantic information that is useful for information retrieval purposes.

83

Experiment II: Analyzing SNRM with Pseudo-Relevance Feedback: In

the next set of experiments, we study the effect of PRF in the new semantic space

learned by SNRM. We selected the hyper-parameters α (the feedback weight in Equa-

tion (4.30)), the number of feedback documents, and the number of feedback “terms”

(the number of non-zero elements in the updated query vector) using the same cross-

validation procedure explained earlier in the experiments.

According to Table 4.2, PRF shows promise in the learned latent space. The rea-

son is that it uses local information obtained from the top retrieved documents. In

fact, the top retrieved documents help us to find a better query representation com-

pared to the one obtained by the original short query. SNRM with PRF outperforms

all the baselines, including RM3. All the improvements are statistically significant.

The performance of the proposed model with respect to the number of of non-

zero elements in the updated query vector (i.e., parameter t) is shown in Figure 4.6.

As suggested by TREC 2004 Robust Track and TREC 2009-2012 Web Track, we

use MAP for Robust and nDCG@20 for ClueWeb as the main evaluation metrics.

According to Figure 4.6, the best value for parameter t is 10 for ClueWeb and 20 for

Robust, hence dependent on the collection.

Experiment III: Analyzing Sparsity in SNRM: Increasing the sparsity in the

leaned representations is one of the objectives of the model and we translate this into

minimizing the L1 norm. In order to study whether minimizing the L1 norm promotes

sparsity in the representations, we plot the L1 norm of the learned representations,

as well as the sparsity ratio for the input query and documents with respect to the

training steps. The definition of sparsity ratio is given in Equation (4.25). In this

experiment, we set the output dimensionality to 10k and the parameter λ (see Equa-

tion 4.27) to 1e−7. The results for the model trained on the Robust collection are

plotted in Figure 4.7. These curves show that decreasing in the L1 norm increases the

sparsity in both query and document representations. Besides this observation, it is

84

Figure 4.7: Sparsity ratio for query and document representations plus the L1 norm
with respect to the training steps, for SNRM trained on the Robust collection with
10, 000 output dimensionality and λ = 1e−7.

also shown in Figure 4.7 that the sparsity in query representations is higher compared

to the document representations.

Experiment IV: Analyzing the Efficiency of SNRM: As mentioned earlier,

the efficiency brought by term matching models comes from the use of inverted index,

which is made possible by the sparsity nature of natural languages. Figure 4.8 shows

that similar to the natural languages, our learned representations also drawn from

a Zipfian-like distribution.9 In addition, Table 4.3 reports the number of non-zero

elements (i.e., the number of unique latent terms) in the representations learned for

queries and documents of Robust and ClueWeb. According to the results, the learned

query vectors are much sparser than the document vectors. This shows that the input

length affects the sparsity of the learned vectors, which is necessary for an efficient

retrieval. The sparsity ratio in Robust is higher than that in ClueWeb. This is due

to the document length and also the diversity of the documents.

9The small sample shown in Figure 4.8 doesn’t exactly exhibit the Zipfian distribution, but it
shows the skewed nature that makes the use of an efficient inverted index possible.

85

Figure 4.8: The document frequency for the top 1000 dimensions in the actual term
space (blue), the latent dense space (red), and the latent sparse space (green) for a
random sample of 10k documents from the Robust collection.

Although the shown properties of the learned representations guarantee an efficient

use of inverted index for retrieval, we also study the retrieval time for the proposed

model compared to a simple term matching model. To do so, we construct a Galago

index from the learned representations and implement our retrieval function (see

Equation (4.29)) as a retrieval model in Galago. The per query running time for

SNRM is computed as the query representation time plus the retrieval time. The

query representation time is equal to the running time for pre-processing the query

text plus a forward pass through the network from query text to the final sparse

representation of the query. The retrieval time is the running time for retrieving

documents for the obtained query representation from the constructed Galago index.

This experiment was run on a machine with a Core i7-4790 CPU @ 3.60GHz and

32GiB RAM. The average and the standard deviation of retrieval time per query for

both Robust and ClueWeb collections are reported in Table 4.4. According to the

table, SNRM performs as efficiently as QL, with sub-second response time on the

large ClueWeb collection and much faster on the small Robust collection.

86

Table 4.3: Number of non-zero elements in the query and document representations
with 10, 000 output dimensionality.

Unique Robust ClueWeb

latent terms... Mean Std. dev. Mean Std. dev.

per document 97.96 447.57 130.24 561.53
per query 3.37 3.04 3.87 4.51

Table 4.4: Efficiency of SNRM compared to query likelihood, in terms of average run
time (milliseconds) per query.

Method
Robust ClueWeb

Mean Std. dev. Mean Std. dev.

QL 35.14 18.43 662.86 746.68
SNRM 46.12 23.11 612.73 640.98

Experiment V: Analyzing the Effect of Sparsity on Retrieval Performance:

Figure 4.9 plots the retrieval performance as well as the sparsity ratio achieved by

varying the parameter λ (see Equation (4.27)). As shown in the plot, when λ is set

to 1e−5, the model only focuses on reducing the sparsity, meaning that the learned

vector for some queries and documents become all zero. This results in a poor re-

trieval performance. On the other hand, when representations have enough non-zero

elements, the retrieval performance of the model is stable. For instance, in this case,

the performance achieved by 99% and 91% sparseness ratios are close.

Experiment VI: Analyzing the Effect of Unseen Documents on the SNRM

Performance: As claimed in Section 4.2.4, our approach can be also used to index

the documents not seen during the training time. To do so, we randomly removed 1%

(over 5k documents) and 5% (over 26k documents) from the Robust collection in two

different settings. We then trained SNRM using the obtained collections. Once the

training was done, we indexed the whole Robust collection with the trained models.

87

Figure 4.9: Retrieval performance and sparsity ratio on the Robust collection with
respect to different values of parameter λ. The output dimensionality was set to
10,000.

Table 4.5: Performance of SNRM on the Robust collection with respect to different
amount of random document removal at training time. The superscript O denotes
significant performance loss in comparison with the setting where no document is
removed (i.e., no removal).

% removal MAP P@20 nDCG@20 Recall

no removal 0.2971 0.3948 0.4391 0.7716
1% removal 0.2953 0.3953 0.4401 0.7691
5% removal 0.2776O 0.3807O 0.4227O 0.7349O

The results are reported in Table 4.5. According to the results, we do not observe

a performance loss when 1% of the documents were omitted from the collection.

This indicates the robustness of SNRM in indexing unseen documents, which is a

practical point in real-world scenarios where the collections frequently change or new

documents are added to the collection (e.g., web). However, 5% document removal

leads to significant performance drop. Due to the size of the collection, removing 5% of

the documents may result in removing a set of vocabulary terms from the collection,

and thus the model cannot learn proper latent representations for the documents

88

containing unseen vocabulary terms. This suggests that in real-world scenarios with

dynamic collections, the model should be trained periodically, which is already a

common practice.

4.3 Summary

In summary, we studied weak supervision for training neural ranking models in the

context of ad-hoc retrieval. We provided a formal modeling of weak supervision using

noisy channels. Based on the risk minimization framework, we proved that weakly

supervised learning to rank models with symmetric ranking loss functions are robust

to noise. In addition to our theoretical results, we designed a standalone neural rank-

ing model that learns sparse representation for each query and document and builds

an inverted index for the learned representations. Our model can efficiently retrieve

documents from a large corpus and outperform state-of-the-art retrieval models, such

as RM3 [87], SDM [106], and FNRM [42]. Notably, our model improves the recall by

retrieving the relevant document with few query terms (if any). This also allows the

model to improve the retrieval performance, in terms of precision-oriented metrics.

89

CHAPTER 5

NEURAL QUERY PERFORMANCE PREDICTION

In this chapter, we propose a neural network architecture for the task of query

performance prediction. Due to the lack of large-scale training data for this task,

we present a weak supervision solution by considering multiple existing query per-

formance prediction methods as multiple weak supervision signals. We study how

to learn from multiple weak signals and provide state-of-the-art performance predic-

tion results for ad-hoc retrieval. Section 5.1 provides background information about

the query performance prediction task. Section 5.2 introduces NeuralQPP, a neu-

ral network model for query performance prediction. Section 5.3 explains how to

train NeuralQPP without labeled data by exploiting multiple existing performance

prediction methods to serve as weak supervision signals. Section 5.4 evaluate the

performance of the proposed method.

5.1 Background: Query Performance Prediction

Quality estimation is a fundamental task that can help to improve effectiveness

or efficiency in various applications, such as machine translation [156], and automatic

speech recognition [21, 115]. When it comes to search engines, the task is called query

performance or query difficulty prediction. This task has been widely studied in the

IR literature [22, 32, 33, 35, 63, 64, 82, 152, 154, 153, 159, 198, 199]. The task of query

performance prediction (QPP) is defined as predicting the retrieval effectiveness of a

search engine given an issued query with no implicit or explicit relevance information.

90

Query performance prediction approaches can be partitioned into two disjoint sets:

pre-retrieval and post-retrieval approaches. Pre-retrieval QPP approaches predict

the performance of each query based on the content and the context of the query

in addition to the corpus statistics. Pre-retrieval predictors are often derived from

linguistic or statistical information. Part-of-speech tags, as well as syntactic and

morphological features of query terms are among the linguistic features used for query

performance prediction [113]. Inverse document frequency and average query term

coherence are examples of statistical information used for this task [32, 65]. Hauff et

al. [64] provided a through overview of the pre-retrieval QPP approaches.

Alternately, post-retrieval QPP approaches, which are the focus of this chapter,

estimate the query performance by analyzing the result list returned by the retrieval

engine in response to the query. Carmel and Yom-Tov [22] categorized post-retrieval

predictors as clarity-based, robustness-based, and score-based approaches:

• Clarity-based approaches [32, 33] estimate the query performance by measuring the

coherence (clarity) of the result list with respect to the collection. These approaches

assume that the more focused the result list, the more effective the retrieval.

• Robustness-based approaches predict the query performance by estimating the ro-

bustness of the result list. Robustness can be measured in various ways. For exam-

ple, Zhou and Croft [199] measured it based on query perturbation in a Query Feed-

back (QF) model. In other work, the same authors measured the ranking robust-

ness through document perturbation by injecting noise into the top results [198].

Both query and document perturbations were also studied by Vinay et al. [166].

Aslam and Pavlu [12] studied the ranking robustness based on retrieval engine per-

turbation. Apart from perturbation approaches, Diaz [44] measured the ranking

robustness using the cluster hypothesis [164] by regularizing the retrieval score of

each document given its most similar documents. This approach is called spatial

autocorrelation.

91

• A variety of post-retrieval approaches predict the query performance by analyz-

ing the retrieval score distribution, and are commonly referred to as score-based

approaches. Among these, the Weighted Information Gain (WIG) of Zhou and

Croft [199] and the Normalized Query Commitment (NQC) of Shtok et al. [154]

are the most popular models, and are considered state-of-the-art. WIG measures

the divergence of the mean retrieval score from the collection score and NQC mea-

sures the standard deviation of the retrieval scores normalized by the collection

score. Retrieval score distribution has been further employed in other models for

the QPP task, e.g., [35, 124]. Most recently, Roitman et al. [138] proposed a boot-

strapping approach to provide a robust standard deviation estimator for retrieval

scores.

There also exist models that combine multiple predictors from multiple cate-

gories. The utility estimation framework (UEF) of Shtok et al. [152] is an example

of this QPP family, which is based on statistical decision theory. Making use of both

pseudo-effective and pseudo-ineffective reference lists was further studied by Kurland

et al. [82], Shtok et al. [153], and Roitman [136].

A number of supervised approaches have been also studied for query performance

prediction. For instance, Raiber and Kurland [129] proposed a learning to rank model

based on Markov random fields. Most recently, Roitman et al. [137] introduced a

supervised combining approach based on coordinate ascent.

5.2 A Neural Network Architecture for Query Performance

Prediction

In this section, we propose a general query performance prediction framework

based on neural networks. The framework is called NeuralQPP and is independent

of the retrieval engine. NeuralQPP consists of K components that cover different

and complementary aspects of query performance prediction. Each component ci is a

92

sub-network in NeuralQPP, that produces a di-dimensional real-valued dense repre-

sentation, denoted as ρi. The learned representations are expected to provide useful

information for the query performance prediction task. The obtained ρis are then

aggregated using an aggregation function Λ which outputs a d-dimensional dense

vector. This vector is finally fed into a prediction function Γ that returns a real num-

ber representing the predicted performance. All the sub-networks in the NeuralQPP

framework are trained simultaneously in an end-to-end fashion.

In summary, the performance of a query is predicted as follows:

Γ(Λ(ρ1, ρ2, · · · , ρK)) (5.1)

where ρi is the output of the component ci.

In order to minimize the number of hyper-parameters and perform minimal net-

work engineering, we implement the aggregation function Λ as a weighted average:

Λ(ρ1, ρ2, · · · , ρK) =
1

K

K∑
i=1

ωiρi (5.2)

where ωi controls the influence of each component in the final prediction. The network

parameters ωi are trained as part of the NeuralQPP model. Note that this definition

of Λ forces the dimensions of all ρis to be equal.

We model the function Γ as a fully connected feed-forward neural network that

takes the output of Λ and produces a real number representing the predicted per-

formance. We use rectified linear unit (ReLU) as our activation function for hidden

layers to learn non-linear functions, and sigmoid for the output layer. To prevent

overfitting, we use dropout in all hidden layers. The number of hidden layers and

their sizes are hyper-parameters of the model.

In the following, we introduce the three components implemented for NeuralQPP

(K = 3). The first component analyzes the retrieval score distribution, while the

93

second component considers the term distributions in pseudo-effective and pseudo-

ineffective document sets. The last component analyzes the semantic information

obtained from the top retrieved documents.

(a) Retrieval Scores Analyzer (b) Term Distribution Analyzer

(c) Semantic Analyzer

Figure 5.1: NeuralQPP consists of the three components depicted above. The repre-
sentations learned by each of these components are then aggregated using the arith-
metic mean and then fed into a fully-connected feed-forward network that produces
a single score for query performance prediction.

5.2.1 Component I: Retrieval Scores Analyzer

Inspired by the score-based approaches described in Chaoter 5.1, such as WIG [199]

and NQC [154], our first component, called the retrieval score analyzer, estimates the

query performance given the retrieval scores for the top n documents returned by

94

the search engine in response to a query q. As shown in Figure 5.1a, this component

takes a vector ~s with n+ 1 dimensions as input, such that:

si =

 score(q, C) if i = 1

score(q,Di−1) o.w.
(5.3)

where C and Di−1 denote the collection and the (i − 1)th document in the result

list returned by the search engine. ‘score’ denotes the scoring function used by the

retrieval engine and score(q, C) is computed as the retrieval score for a document con-

structed by concatenating all documents in the collection. The order of concatenation

does not matter for bag of words models. We feed the constructed vector ~s into a

fully-connected feed-forward neural network. In summary, this component computes

a non-linear abstract representation of the retrieval score distribution, suitable for

the query performance prediction task.

5.2.2 Component II: Term Distribution Analyzer

Inspired by the clarity-based approaches [32] described in Section 5.1, a term

distribution analyzer component predicts the query performance using term distribu-

tion information. The component’s architecture is presented in Figure 5.1b. In this

component, we first create a matrix A = [aij] with n + 1 columns where the first

column corresponds to the collection (as a pseudo-ineffective document set) and each

of the remaining n columns corresponds to each of the top n documents retrieved in

response to the query q (as pseudo-effective documents). The matrix A has m rows,

each corresponding to a vocabulary term from a set W containing the top m terms

with the highest cumulative count in the top n retrieved documents (|W | = m). Each

element of the matrix A is calculated as:

aij =

 Pr(wi|θC) if j = 1

Pr(wi|θDj−1
) o.w.

(5.4)

95

where wi, θC , and θDj−1
respectively denote the ith term in the vocabulary set W , the

collection’s unigram language model, and the unigram language model of the (i−1)th

retrieved document. The language models are estimated using maximum likelihood

estimation. Since this component is responsible for term distribution analysis, we

can assume that vocabulary terms are independent. Therefore a non-linear mapping

function φ : Rn+1 → Rf is applied on each row of the matrix A. The parameters of

this mapping function are shared for all m terms (rows of the matrix). Indeed, this

is similar to applying a convolutional layer with the window size and stride of 1. The

input channel size and the filter size are equal to m and f , respectively. Therefore,

this layer outputs a f ×m matrix. A sub-sampling phase is further applied. We take

the maximum value of the f features learned for each term (max-pooling), which

results in a m-dimensional vector. This vector is then fed to a fully-connected feed-

forward network for dimension reduction and learning an abstract representation of

term distributions, expected to be suitable for query performance prediction.

5.2.3 Component III: Semantic Analyzer

The semantic analyzer component, shown in Figure 5.1c, takes the documents

returned by the retrieval engine and measures the query performance based on their

distributed representations. For instance, this component can measure how seman-

tically coherent or diverse the returned documents are. The intuition behind this is

that coherence and diversity in the returned documents correlate with the ambiguity

of the query, since a query may carry multiple meanings or intents. Previous QPP

models that analyze the coherence of the result list, e.g., clarity [32], are based on

term occurrence (similar to our term distribution analyzer component). Thus, this

component provides a novel way of looking at the problem.

In this component, we first represent each document in a latent semantic space,

and then learn a set of latent features based on the learned representations. Our doc-

96

ument representation function ψ consists of two major functions: (1) an embedding

function E : V → Rl that maps each term from the vocabulary set V to a l-dimensional

embedding space, and (2) a global term weighting function W : V → R that maps

each vocabulary term to a real-valued number showing its global importance. The

document representation function ψ represents a document D = {w1, w2, · · · , w|D|}

as follows:

ψ(D; E ,W) =

|D|∑
i=1

Ŵ(wi) · E(wi) (5.5)

which is the weighted element-wise summation over the term embedding vectors. A

normalized weight Ŵ is learned for each term using a softmax function as follows:

Ŵ(wi) =
exp(W(wi))∑|D|
j=1 exp(W(wj))

(5.6)

This approach of document representation is based on the bag of words assump-

tion. Despite its simplicity, it was shown to perform well for ad-hoc retrieval tasks [42].

We flatten, concatenate, and feed the representations learned for the top n re-

trieved documents ({ψ(D1), ψ(D2), · · · , ψ(Dn)}) into a fully-connected feed-forward

network in order to obtain a non-linear abstract representation that demonstrates

useful information for query performance prediction extracted from semantic repre-

sentation of documents in the result list.

5.3 Learning from Multiple Weak Supervision Signals

Here, we describe how to train the proposed neural query performance prediction

model with no labeled training data. Indeed, we first propose to train our model using

multiple weak supervision signals in Section 5.3.1, and later propose a component

dropout technique to regularize our model in Section 5.3.2. Finally, Section 5.3.3

introduces the weak supervision signals employed to train the NeuralQPP model.

97

5.3.1 Training

Let M be a retrieval model that retrieves documents from the collection C in

response to a given query. In this work, we propose to train a model with multiple

weak supervision signals, which is categorized as an unsupervised learning approach.

To do so, we first obtain a set of queries Q and N weak labelers: N unsupervised

query performance prediction models that can provide us complementary information.

Predicting the performance of each query qi ∈ Q over the collection C using the weak

supervision signals results in a training set T = {(qi, πnM(qi; C),Yi) : qi ∈ Q} where

πnM(qi; C) denotes the list of the top n documents retrieved by M in response to the

query qi, and Yi denotes a list of predicted performances for qi by each of the weak

supervision signals (thus, |Yi| = N).

A straightforward solution for learning from multiple weak labels would be casting

the problem to learning from a single weak label by aggregating the N weak labels

to end up with a single label for each query. This aggregation can be done, for

example, by averaging the labels for pointwise settings, or by majority voting for

pairwise settings. Another simple solution would be training N distinct models each

using one of the weak labels and then aggregating their outputs at inference time by

summation.

We argue that neither of these solutions are optimal, since they both incur infor-

mation loss (which is also justified in our experiments). Therefore, we aim to train

our model by optimizing across all weak labels at the same time. Our proposed solu-

tion simultaneously optimizes N loss functions, each corresponding to a weak label.

Hence, we define our loss function as a linear interpolation of N loss functions:

L =
N∑
k=1

αkLk (5.7)

98

where α = [α1, α2, · · · , αN] is a vector of hyper-parameters controlling the influence

of each weak label in the final loss function. We investigate two learning settings in

our experiments: pointwise and pairwise.

Pointwise learning. In a pointwise setting, we use mean absolute error (MAE) as

the loss function. The absolute error for a query qi in the training set is defined as

follows:

Lk(qi) = |Yik − P̂k(qi;M, C, θ)| (5.8)

where P̂ denotes the query performance score predicted by our model with the pa-

rameter set θ for the given query.

Pairwise learning. Since the task of query performance prediction is often defined

and evaluated as a ranking task [32, 154, 199] (ranking queries with respect to their

performances), we can train our model using a pairwise setting. Therefore, each

training instance consists of a random pair of queries from the training set T . To

this end, we employ hinge loss (max-margin loss function) that has been widely used

in the learning to rank literature for pairwise models [91]. Hinge loss is a linear loss

function that penalizes examples violating the margin constraint. The hinge loss for

a query pair qi and qj is defined as follows:

Lk(qi, qj) = max{0, 1−sign(Yik − Yjk)(P̂k(qi;M, C, θ)− P̂k(qj;M, C, θ))} (5.9)

In the following, we describe how each P̂k is computed.

5.3.2 Component Dropout

In training our model with multiple weak labels, we are faced with two major

issues: (1) The predictions P̂1, P̂2, · · · , P̂N should not be equal; otherwise, this would

be equivalent to aggregating the weak labels and training the model using the aggre-

gated labels. On the other hand, P̂1, P̂2, · · · , P̂N should be produced by a single model

99

that would be used at inference time. (2) As can be seen in Section 5.3.3, some of

the employed weak supervision signals can be exactly computed using a sub-network

of NeuralQPP. For instance, the retrieval scores analyzer component can compute

NQC. Therefore, when we use NQC as a weak supervision signal, the network tries

to predict the output only based on the retrieval scores analyzer component. This

prevents the model from generalizing well. To overcome these two issues, we propose

a component dropout approach that also regularizes our model.

Assume that we aim at training a NeuralQPP model with K components using

N weak supervision signals. Let pikdrop denote the probability of dropping the effect of

the ith component for the kth weak supervision signal (1 ≤ i ≤ K and 1 ≤ k ≤ N).

For each training instance, we construct a binary matrix B with the dimensionality

of K ×N , whose elements are sampled from Bernoulli distributions as follows:

Bik ∼ Bern(1− pikdrop) (5.10)

Each element Bik indicates whether the ith component should be kept for the

kth weak supervision signal or not. We make sure that at least one component

is kept, such that
∑K

i=1Bik > 0. Therefore, we compute each prediction P̂k as

Γ(Λk(ρ1, ρ2, · · · , ρK)), where Λk at training time is computed as:

Λk(ρ1, ρ2, · · · , ρK) =
1∑K

i=1Bik

K∑
i=1

Bikωiρi (5.11)

This results in different predictions for P̂1, P̂2, · · · , P̂N at training time. At the

inference time, no component must be dropped, so the matrix B is filled with 1s. In

this case, Section 5.11 is equivalent to Section 5.2.

The proposed component dropout technique is similar to the field-level dropout ap-

proach, recently proposed by Zamani et al. [188] to prevent over-dependence on high-

precision fields (e.g., clicked queries) in neural ranking models for semi-structured

100

documents. The presented technique not also avoids overfitting on a weak supervi-

sion signal, but also allows us to use multiple weak signals.

5.3.3 Weak Supervision Signals

To train a generalized model, a natural decision would be to select weak labelers

based on different intuitions, assumptions, and consumed information. This enables

the neural model to observe complementary information in order to improve its gen-

eralization. Hence, we select a clarity-based approach, a score-based approach, and

a combining approach (see Section 5.1 for more information about these categories)

as the weak supervisors for our NeuralQPP model. The chosen weak labelers are

described below:

Clarity: Clarity [32] is one of the early methods for query performance prediction

that is based on the language modeling framework [126]. In more detail, this method

estimates the query performance as follows:

clarity(q; C,M) =
∑
w∈V

p(w|Rq) log
p(w|Rq)

p(w|θC)
(5.12)

where V denotes the vocabulary set, Rq represents the query language model esti-

mated using relevance models [87], and θC represents the reference language model

estimated using a maximum likelihood estimation over the whole collection. Intu-

itively, this model measures the coherence of term distributions in the top retrieved

documents with respect to the collection. The term distribution analyzer component

(see Figure 5.1b) is expected to learn such a measurement. To generate this weak

label, we set the number of retrieved documents to 200.

Normalized Query Commitment (NQC): NQC [154] measures the query per-

formance by computing the normalized standard deviation of the retrieval scores

assigned to the top retrieved documents, as follows:

101

NQC(q; C,M) =

√
1
n

∑
D∈πnM(q;C) (score(q,D)− µ̂)2

score(q, C)
(5.13)

where πnM(q; C) is the result list containing the top n retrieved documents in response

to the query q. µ̂ denotes the mean retrieval scores in πnM(q; C). The intuition behind

this model is that query drift can potentially be estimated by measuring the diversity

of the retrieval scores. The retrieval score analyzer component (see Figure 5.1a) also

gives us such a measurement. To generate this weak label, the number of retrieved

documents is again set to 200.

Utility Estimation Framework (UEF): UEF [152] is a theoretical framework

by Shtok et al. based on statistical decision theory. UEF estimates the utility that

each retrieved document provides w.r.t. the initiated query, as follows:

UEF (q; C,M) ≈ sim(πnM(q; C), πnM(Rq; π
n
M(q; C))) Pr(Rq|Iq) (5.14)

where πnM(Rq; π
n
M(q; C)) is the original result list re-ranked by the relevance model’s

estimation of the query language model (Rq). The function ’sim’ computes the simi-

larity between two rank lists. We used Pearson’s ρ coefficient as a ranking similarity

measurement, as is the standard for QPP comparisons. To estimate the representa-

tiveness probability Pr(Rq|Iq), we used Zhou and Croft’s WIG approach [199] for the

unigram language model1. It is computed as follows:

Pr
WIG

(Rq|Iq) ∝
1√
|q|

1

n

∑
D∈πnM(q;C)

(score(q,D)− score(q, C)) (5.15)

1The original WIG approach is based on the term dependence model [106]. This bag-of-words
variant is used as our third weak signal, and has been shown to be highly effective [22].

102

Table 5.1: Statistical properties of the four collections used.

collection queries (title only) #docs avgdl #qrels

Associated Press 88-89
TREC 1-3 Ad-Hoc Track,

topics 51-200
165k 287 15,838

TREC Disks 4&5 minus
Congressional Record

TREC 2004 Robust Track,
topics 301-450 & 601-700

528k 254 17,412

2004 crawl of
.gov domains

TREC 2004-06 Terabyte
Track, topics 701-850

25m 648 26,917

ClueWeb 09 - Category B
TREC 2009-2012 Web

Track, topics 1-200
50m 1506 18,771

Note that the original UEF approach uses multiple samples to produce a relevance

model, although, we used a single sampling to produce this weak label. To obtain

this weak label, n is set to 100.

5.4 Experiments

To empirically study the effectiveness of the proposed model, we first introduce

our datasets and then explain how our model is evaluated. We then describe our ex-

perimental setup in detail for further reproducibility. We finally discuss our empirical

results.

5.4.1 Data

Collections: We evaluate our models using four TREC collections: The first two

collections (AP and Robust) consist of thousands of news articles and are consid-

ered homogeneous collections. AP and Robust were previously used in the TREC

1-3 Ad-Hoc Tracks and the TREC 2004 Robust Track, respectively. The second two

collections (GOV2 and ClueWeb) are large-scale web collections containing heteroge-

neous documents. GOV2 consists of the “.gov” domain web pages, crawled in 2004.

ClueWeb (i.e., ClueWeb09-Category B) is a common web crawl collection that only

103

contains English web pages. GOV2 and ClueWeb were previously used in TREC

2004-2006 Terabyte Track and TREC 2009-2012 Web Track, respectively. The statis-

tics of these collections as well as the corresponding TREC topics are reported in

Table 5.1. We use only the topic titles as queries.

We cleaned the ClueWeb collection by filtering out the spam documents. The

spam filtering phase was done using the Waterloo spam scorer2 [29] with the threshold

of 60%. Stopwords were removed from all collections and no stemming was performed.

Training Queries: Similar to Section 4.1.7.2, we use the AOL query logs [121]. For

more information about the training query set, and the pre-processing steps, refer to

Section 4.1.7.2.

5.4.2 Evaluation

Following prior work on query performance prediction [32, 35, 138, 152, 154, 199],

we evaluate our models by computing the correlation between the predicted perfor-

mance and the actual average precision for the top 1000 documents retrieved per

query (AP@1000). In our main experiment, we also report the correlation with the

true nDCG values [75] for the top 20 documents. Note that nDCG@20 is a preferred

evaluation metric for the ClueWeb collection due to the shallow pooling performed

during relevance assessments [24, 96]. We predict the performance of the query like-

lihood model [126] with Dirichlet prior smoothing (µ = 1500) [192] implemented in

the Galago search engine [30].

We use the standard measures from previous research to compute the correlation

between predictions and actual performance. Pearson’s ρ coefficient as a linear cor-

relation metric and Kendall’s τ coefficient as a ranking-based correlation metric are

2http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/

104

used. Statistically significant results are reported for two confidence intervals: 95%

(p value < 0.05) and 99% (p value < 0.01).

Following prior work [154, 153, 138], to evaluate our models as well as the base-

lines, we first generate 30 equal-size random splits for each collection. In each split,

the first fold is used for hyper-parameter optimization using grid search; the hyper-

parameter setting that led to the highest Pearson’s ρ correlation on predicting the

actual AP@1000 values was selected for evaluation on the second fold. This process

was repeated for all 30 splits, and the average performance over the second folds are

reported. This enables us to perform the paired t-test with Bonferroni correction

to identify statistically significant differences between the performance of two QPP

models (p value < 0.05).

5.4.3 Experimental Setup

We implemented and trained our models using TensorFlow [1]. The network pa-

rameters were optimized with the Adam optimizer [80] based on the back-propagation

algorithm [140]. In our experiments, the learning rate was selected from [1e−5, 5e−5, 1e−4,

5e−4, 1e−3, 5e−3] and the batch size was set to 128. Either two or three hidden layers

were used for each sub-networks of the NeuralQPP framework. The layer sizes were

selected from {100, 300, 500}. We select the parameter vector α (see Equation (5.7))

from {0.2, 0.4, 0.6, 0.8} and the dropout and the component dropout probabilities (see

Equation (5.10)) from {0, 0.2, 0.4, 0.6, 0.8}. We initialized the embedding matrix E

(see Equation (5.5)) by pre-trained GloVe [123] vectors trained on Wikipedia dump

2014 plus Gigawords 5. The embedding dimension was set to 100.

5.4.4 Results and Discussions

In our experiments, we first evaluate our model against state-of-the-art unsuper-

vised QPP approaches. We then analyze each component of the designed neural

network. We further study the influence of incorporating multiple weak supervision

105

Table 5.2: Performance of query performance prediction models on four collections,
in terms of the Pearson’s ρ and the Kendall’s τ correlations. The results are reported
for estimating the performance of each query in terms of AP@1000 as the target
metric. The highest value in each column is marked in bold, and the superscripts †

/ ‡ denote statistically significant improvements compared to all baselines at 95% /
99% confidence intervals.

Method
Target Metric: AP@1000

AP Robust GOV2 ClueWeb

P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ

Clarity 0.556 0.428 0.410 0.292 0.319 0.205 0.046 0.068
QF 0.585 0.438 0.418 0.274 0.494 0.324 0.273 0.130
WIG 0.547 0.391 0.444 0.294 0.462 0.321 0.238 0.202
σk 0.514 0.349 0.438 0.271 0.341 0.292 0.323 0.183
n(σx%) 0.524 0.289 0.380 0.218 0.342 0.255 0.188 0.139
NQC 0.540 0.369 0.445 0.283 0.424 0.321 0.308 0.139
SMV 0.505 0.349 0.401 0.274 0.357 0.279 0.326 0.156
RSD 0.594 0.406 0.455 0.352 0.444 0.276 0.193 0.096
CombSum 0.584 0.444 0.483 0.338 0.486 0.317 0.313 0.151
UEF 0.647 0.468 0.565 0.364 0.502 0.315 0.341 0.195

NeuralQPP
(Pointwise)

0.613 0.432 0.582† 0.370 0.517 0.322 0.362‡ 0.219

NeuralQPP
(Pairwise)

0.697‡ 0.483‡ 0.611‡ 0.408‡ 0.540‡ 0.357‡ 0.367‡ 0.229†

signals in the NeuralQPP model. In our final experiments, we explore how Neu-

ralQPP performs in terms of predicting the performance of various retrieval models.

Experiment I: Comparison against the Baselines: In the first set of experi-

ments, we evaluate our models against popular and state-of-the-art query performance

prediction baselines, including:

• Clarity [32]: See Section 5.3.3 for the details of this model.

• Query Feedback (QF): a high-performing QPP approach by Zhou and Croft [199]

that measures the intersection of the result lists obtained by the original query and

an estimated query from the top retrieved documents. Intuitively, this approach

106

Table 5.3: Performance of query performance prediction models on four collections,
in terms of the Pearson’s ρ and the Kendall’s τ correlations. The results are reported
for estimating the performance of each query in terms of nDCG@20 as the target
metric. The highest value in each column is marked in bold, and the superscripts †

/ ‡ denote statistically significant improvements compared to all baselines at 95% /
99% confidence intervals.

Method
Target Metric: nDCG@20

AP Robust GOV2 ClueWeb

P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ

Clarity 0.437 0.293 0.321 0.221 0.097 0.073 0.040 0.050
QF 0.442 0.296 0.379 0.263 0.322 0.208 0.205 0.084
WIG 0.427 0.287 0.335 0.207 0.308 0.225 0.255 0.175
σk 0.428 0.260 0.365 0.240 0.252 0.223 0.300 0.127
n(σx%) 0.428 0.210 0.273 0.158 0.232 0.196 0.185 0.082
NQC 0.464 0.290 0.390 0.255 0.257 0.203 0.270 0.102
SMV 0.438 0.266 0.371 0.256 0.335 0.241 0.282 0.121
RSD 0.459 0.315 0.394 0.286 0.339 0.203 0.199 0.095
CombSum 0.470 0.318 0.434 0.334 0.349 0.213 0.286 0.162
UEF 0.435 0.302 0.501 0.332 0.311 0.188 0.300 0.159

NeuralQPP
(Pointwise)

0.442 0.321 0.528† 0.350† 0.346 0.232 0.341‡ 0.201‡

NeuralQPP
(Pairwise)

0.492‡ 0.336† 0.539‡ 0.343† 0.371† 0.239 0.352‡ 0.218‡

looks at the retrieval engine as a noisy channel and estimates the quality of the

channel by measuring the amount of corruption in the result lists.

• Weighted Information Gain (WIG): a popular approach introduced by Zhou and

Croft [199] that computes the information gain of the top retrieved documents

compared to the collection. WIG predicts the query performance by analyzing the

mean retrieval score and the collection’s score.

• σk: a simple yet effective QPP model that computes the standard deviation of the

retrieval scores for the top k retrieved documents. This model has been explored

by Pérez-Iglesias and Araujo [124].

107

• n(σx%): another approach based on the standard deviation, proposed by Cummins

et al. [35], that uses a dynamic number of documents per query. This approach

computes the standard deviation of the top retrieved documents whose retrieval

scores are at least x% of the one obtained by the highest ranked document.

• Normalized Query Commitment (NQC) [154]: See Section 5.3.3 for the details of

this model.

• Score Magnitude and Variance (SMV): a more recent QPP approach by Tao and

Wu [158] that considers not only the “variance”3 over the retrieval scores, but also

the score magnitude.

• Robust Standard Deviation (RSD): a recent QPP method proposed by Roitman

et al. [138] that computes multiple weighted standard deviations based on a boot-

strapping approach. As suggested by the authors, we used WIG [199], as the sample

weighting function.

• CombSum: a simple aggregation approach applied on top of the predictions gen-

erated by all the above baselines. For this model, we first normalize the scores

generated by each model. This is a linear combining approach.

• Utility Estimation Framework (UEF) [152]: See Section 5.3.3 for the details of

this model. The choice of representativeness probability in UEF is considered as a

hyper-parameter and selected from {NQC, QF, WIG}.

As described in Section 5.4.2, all of the hyper-parameters of the baselines were

optimized in the same way as the proposed models. In particular, the number of top

retrieved documents is a common hyper-parameter in all of them. We selected this

hyper-parameter from {5, 10, 15, 20, 25, 50, 100, 300, 500, 1000}.

3SMV does not exactly compute the variance. Instead, its formulation is more similar to the
WIG’s [199].

108

The results for the above baselines and the proposed NeuralQPP model with two

training settings (pointwise and pairwise) are reported in Tables 5.2 and 5.3. Note

that neither the baselines nor the proposed approaches require labeled training data.

The first observation from these two tables is that there is no clear winner among the

baselines. From the baseline results, predicting the query performance on the web

collections is generally a much harder task when compared to the newswire collections.

This is mostly due to the collection size, the variety of topics it covers, and the amount

of noise in the collection. Although previous work mostly focused on predicting the

performance of queries in terms of average precision for a deep ranking cut-off, we also

provide the results for an additional evaluation metric (nDCG@20) that computes the

query performance for a shallow ranking cut-off. An interesting observation here is

that estimating the query performance in terms of nDCG@20 is a harder task, since

the predicted performance of various methods achieve a lower correlation with the

actual nDCG@20 values in comparison with the AP@1000 values.

Our second observation from Tables 5.2 and 5.3 is that the pairwise setting in the

NeuralQPP model works much better than the pointwise setting. The reason might

be related to the nature of the labels we use for training our models. In fact, weak

supervision provides a set of noisy labels, and maximizing the likelihood of generating

the labels by a neural model is not necessarily a proper choice; instead, optimizing

a pairwise loss function gives more freedom to the model to obtain useful features

to discriminate two queries. This enables the model to perform much better than

the weak labels in almost all cases. A similar observation was made by Dehghani

et al. [42] when training neural ranking models with weak supervision signals in the

ad-hoc retrieval task.

Our third observation from the results is that NeuralQPP outperforms all the

baselines, including the combining approaches, for most collections. The improve-

ments achieved by the NeuralQPP model trained with a pairwise loss function are

109

Table 5.4: Performance of the NeuralQPP’s individual components as well as the
Component Dropout technique in case of existing multiple components. The Pear-
son’s ρ and the Kendall’s τ correlations are reported for the AP of the top 1000
documents per query. The highest value in each column is marked in bold, and the
superscripts ‡ denotes statistically significant improvements compared to all individ-
ual components at a 99% confidence interval.

Component(s)
AP Robust

P-ρ K-τ P-ρ K-τ

Retrieval score analyzer 0.536 0.388 0.442 0.289
Term distribution analyzer 0.541 0.447 0.419 0.319
Semantic Analyzer 0.471 0.353 0.485 0.307

All without Component Dropout 0.636‡ 0.462 0.571‡ 0.367‡

All with Component Dropout 0.697‡ 0.483‡ 0.611‡ 0.408‡

Component(s)
GOV2 ClueWeb

P-ρ K-τ P-ρ K-τ

Retrieval score analyzer 0.351 0.280 0.346 0.188
Term distribution analyzer 0.308 0.212 0.056 0.073
Semantic Analyzer 0.378 0.210 0.090 0.084

All without Component Dropout 0.485‡ 0.308‡ 0.349 0.193
All with Component Dropout 0.540‡ 0.357‡ 0.367‡ 0.229‡

statistically significant in nearly all cases. This indicates the effectiveness of the

proposed neural model and training for query performance prediction.

We hereafter focus on predicting AP@1000 for each query. We also focus on the

pairwise setting to train our model, which has superior performance.

Experiment II: Analysis of the NeuralQPP Components: As pointed out

earlier, we propose three components to develop the NeuralQPP model (see Sec-

tion 5.2). In this set of experiments, we evaluate the performance of each of these

components, individually. We also evaluate the effectiveness of the proposed compo-

nent dropout technique to regularize the model with multiple components. In this

experiment, we train our model with the pairwise setting and with all weak labels.

110

Table 5.5: Performance of NeuralQPP trained with different weak labels, in terms
of correlation with the actual AP@1000 values. The highest value in each column is
marked in bold, and the superscript † / ‡ denote statistically significant improvements
compared to all individual weak signals as well as both All-MV and All-Ind methods
at 95% / 99% intervals.

Weak AP Robust GOV2 ClueWeb

Label P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ

Clarity 0.581 0.443 0.437 0.361 0.330 0.268 0.095 0.103
NQC 0.572 0.369 0.461 0.312 0.439 0.336 0.353 0.184
UEF 0.682 0.480 0.597 0.381 0.527 0.334 0.348 0.191

All-MV 0.694 0.477 0.520 0.351 0.454 0.316 0.357 0.187
All-Ind 0.591 0.454 0.447 0.362 0.384 0.316 0.116 0.128

All-CD 0.697 0.483 0.611† 0.408† 0.540† 0.357‡ 0.367† 0.229‡

Table 5.4 reports the results for this experiment. According to the results, the

performance achieved by each of the individual components exhibits high variance.

For instance, the term distribution analyzer component achieved the highest perfor-

mance on the AP collection, however, the performance achieved by the retrieval score

analyzer component on the ClueWeb collection are far higher than those achieved

by the other two components. This shows that various components can capture dif-

ferent aspects required for achieving improved performance on different collections.

Our results also validate that our model successfully makes use of the information

captured by multiple components – employing all components together outperforms

all individual components. Furthermore, the results indicate that the component

dropout technique is effective in all cases and leads to improved performance. All

of the improvements obtained by NeuralQPP with all three components and with

the component dropout technique are statistically significant when compared to each

individual component.

Experiment III: Analysis of the Weak Supervision Signals: In the next set

of experiments, we empirically study how employing multiple weak supervision signals

111

(see Section 5.3.3) affects the NeuralQPP performance. To achieve this aim, we use

our model with all three components trained by each of the weak supervision signals,

individually. The results obtained by these models are reported in the first section of

Table 5.5. In the second section, we present the results for two simple models that

consider all weak signals (see Section 5.3.1 for more detail). The first model, All-MV,

aggregates the outputs for all of the weak labelers. In fact, for each training pair,

All-MV selects the label by majority voting over the output of all weak labelers. The

second model, All-Ind, learns three separate NeuralQPP models, each by a single

weak label, and then produces the final prediction by summing the output of these

individually learned models. In the last section of the table, we report the results

achieved by our model, All-CD (CD stands for component dropout).

We report the results of this experiment in Table 5.5. By looking at the results

presented in both Tables 5.2 and 5.5, we can observe a clear correlation between the

performance obtained by each method: Clarity, NQC, and UEF (see Table 5.2), and

those achieved by NeuralQPP trained with each of these models as a weak signal (see

Table 5.5), respectively. For example, NeuralQPP trained with the Clarity model

as the weak signal performs well on the newswire collections, compared to the web

collections. The Clarity method itself also behaves similarly. Table 5.5 also demon-

strates that training with multiple weak signals leads to a higher generalization, and

thus a more accurate performance predictor. These improvements are statistically

significant on the Robust, GOV2, and ClueWeb collections.

Our results also demonstrate that the proposed approach for learning from mul-

tiple weak labelers is more effective than both All-MV and All-Ind. In particular,

All-Ind has poor overall performance, because the models are learned individually

and the scale of their outputs are not necessarily in the same scale.4 Therefore, one

4Normalizing the scores for each split improves the performance for All-Ind, however, it performs
worse than All-MV. The reason is that All-Ind components are trained separately.

112

Table 5.6: Performance of the NeuralQPP model for predicting the average precision
of the top 1000 documents for popular retrieval models.

Retrieval AP Robust GOV2 ClueWeb

Model P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ

QL 0.697 0.483 0.611 0.408 0.540 0.357 0.367 0.229
TF-IDF 0.671 0.480 0.619 0.412 0.562 0.386 0.355 0.210
BM25 0.718 0.503 0.624 0.412 0.483 0.322 0.310 0.197

of the models may bias the final prediction. As mentioned in Section 5.3.1 both

All-MV and All-Ind suffer from information loss provided by multiple weak labels.

Experiment IV: Predicting the Performance of Various Retrieval Models:

In the last set of experiments, we study the ability of NeuralQPP to predict the

performance of various retrieval models. The results for evaluating the performance

of three popular retrieval models: query likelihood (QL) [126], BM25, and TF-IDF.

The results reported in Table 5.6 demonstrate that the NeuralQPP performs well in

predicting the performance of all of these retrieval models.

5.5 Summary

In this chapter, we introduced learning from multiple weak supervision signals.

In more detail, we focused on the query performance prediction task, and used three

existing QPP methods to generate weak supervision data. In addition, we proposed

a neural network architecture for query performance prediction. Our model analyzes

retrieval scores as well as syntactic and semantic coherency of retrieved documents.

Our experiments on four TREC collections (AP, Robust, GOV2, and ClueWeb)

demonstrate that the proposed solution trained with a pairwise loss function outper-

forms state-of-the-art QPP methods for ad-hoc retrieval.

113

CHAPTER 6

JOINT MODELING OF SEARCH AND
RECOMMENDATION

In this chapter, we introduce the task of joint modeling and optimization of search

and recommendation. The goal is to learn a retrieval model without any query-

document relevance information. We design a model based on relevance-based word

embedding, which is a weakly supervised model for learning IR-specific word repre-

sentations (see Chapter 3). In addition, our framework (called JSR) takes advantage

of user-item interaction data (e.g., recommendation data) for learning more accu-

rate item representations.In fact, JSR is a multi-task learning framework with two

tasks: retrieval and recommendation, where only recommendation data is available.

The retrieval objective is based on input text reconstruction, which is unsupervised.

In the following, we first motivate the task (Section 6.1), and then propose a joint

search-recommendation framework (Section 6.2). Section 6.3 reports the experimental

results for both retrieval and recommendation. We finally list a number of potential

applications for the proposed framework in Section 6.4.

6.1 Motivation

Learning to rank models have been successfully employed for various retrieval

tasks, such as web search, personal search, and question answering [91]. They are

mostly trained with either explicit query-document relevance signals, or implicit feed-

back collected from the user interactions with the retrieval system. Due to the high

cost of collecting human annotations, the latter is the natural choice in industrial

114

systems. Existing learning to rank models heavily rely on query-document (or user-

query-document) interactions, such as clickthrough data. However, there exist other

types of user interactions with the system that can be potentially useful in developing

retrieval models. For instance, in many scenarios, users have countless interactions

with the items without using the search engine, e.g., browsing and clicking on items,

or interacting with the output of recommendation engines.

Although user-item interactions have been previously utilized for user modeling

in recommender systems [69, 133, 144] and search personalization [103, 118, 162],

learning a retrieval model from user-item interaction data has not yet been explored.

Belkin and Croft [15] pointed out the similarities and unique challenges of information

retrieval (IR) and information filtering (IF) systems, since 1990s. They concluded

that their underlying goals are essentially equivalent, and thus they are two sides of

the same coin. This has motivated us to study how to learn a retrieval model from

user-item interaction, which has been historically used for developing recommender

systems.

Learning an accurate retrieval model from user-item interactions (i.e., collabora-

tive filtering data) has several real-world applications. For example, in media stream-

ing services, such as Netflix1 and Spotify2, where rich user-item interaction data exists,

building an accurate search engine learned from such large-scale user-item interaction

data is desired.

In this chapter, we propose a model that learns to predict user-item interactions

(collaborative filtering) and reconstruct the items’ description text based on their

learned representations. In other words, our model learns item representations that

not only simulate user behaviors to predict future user-item interactions, but can also

be mapped to a natural language space to be further used for retrieval.

1https://www.netflix.com/

2https://www.spotify.com/

115

6.2 Learning a Retrieval Model from User-Item Interactions

In this section, we formalize the problem definition, and introduce the proposed

joint search and recommendation framework (JSR). We further discuss the employed

method for speeding up the training procedure. We additionally provide a matrix

factorization interpretation of the model in order to find the connection between JSR

and the recommender systems literature. We finally summarize our proposed solution.

6.2.1 Problem Statement

Let U = {u1, u2, · · · , um} and I = {i1, i2, · · · , in} denote a set of m users and n

items, respectively. Let D = {yui : u ∈ U, i ∈ I} be a set of user-item interaction data,

where yui represents the label corresponding to the interaction that the user u had with

the item i. Labels can be either numeric (e.g., star rating) or binary (e.g., like/dislike).

Instead of explicit feedback, yui can be also captured from user interactions with the

recommender system as implicit feedback. Although implicit feedback can be also

numeric (e.g., interaction count or time), binary labels are more common, such as

clicking on a link, watching a movie, or listening to a music. Therefore, we assume

that labels are binary and were collected from implicit feedback, which is the most

realistic setting in many applications [48, 68, 132]. Our framework can be easily

developed for numeric labels as well.

In addition to user-item interactions, we assume that there is an additional set

IT = {t1, t2, · · · , tn} containing a textual description for each item in I. These de-

scriptions are often easy to collect, for example, from item descriptions, meta-data, or

user-generated tags and reviews. Textual item description has been previously used

for content-based and hybrid recommendation [20].

Given D and IT , the goal is to develop a joint search and recommendation model.

In more detail, the learned model should be able to (1) predict the future user-item

116

user
embedding
lookup

item
embedding
lookup

multiply dense
network

recommendation
objective

softmax

maximum
likelihood
estimation

item reconstruction
objective

.

estimated unigram distribution

relevance-based
word embedding

Figure 6.1: A high-level overview of the JSR framework that consists of three major
components φU, φI, and ψ. JSR is trained using two objective functions: a recom-
mendation objective and an item text reconstruction objective.

interactions (i.e., recommendation) and (2) retrieve relevant items given a natural

language search query.

6.2.2 The JSR Framework

A natural implementation for joint modeling of search and recommendation is to

optimize retrieval and recommendation objectives, simultaneously. However, this can-

not be possible without query-item relevance information. Therefore, JSR consists of

the following two objectives: a recommendation objective and an item reconstruction

objective. The high-level overview of JSR is depicted in Figure 6.1.

6.2.2.1 Recommendation

Our recommendation component is based on collaborative filtering which relies

on user-item interactions. Collaborative filtering has shown to be effective in many

117

recommendation scenarios. JSR estimates a recommendation score for each user-item

pair as follows:

ŷui = ψ(φU(u), φI(i)) (6.1)

where ŷui is the model’s prediction. The component φU (φI) learns a k-dimensional

latent representation for each user (item). As demonstrated in Figure 6.1, we im-

plement the recommendation component ψ by feeding the Hadamard product of the

user and item representations to a fully-connected feed-forward neural network (called

the dense network) with few hidden layers. Note that the Hadamard product is the

element-wise multiplication of two matrices. We use ReLU as the activation function

in the hidden layers and employ dropout in all hidden layers to avoid overfitting. The

output activation in the dense network is a sigmoid function. The number of hidden

layers, their sizes, and the dropout probability are hyper-parameters of the model.

We formulate the recommendation objective using a pointwise loss function. Fol-

lowing He et al. [68], we use a binary cross-entropy loss function that has shown

effective performance in neural collaborative filtering for implicit data. The reason

is that some popular loss functions in collaborative filtering, such as mean squared

error, assume that the data is drawn from a Gaussian distribution, which does not

hold in many settings [141]. In addition to the effectiveness of binary cross-entropy, it

is a probabilistic loss derived from the log-likelihood maximization and can be easily

combined with our second probabilistic objective. This loss function has been also

used for training neural retrieval models in previous work [42, 74, 186].

To formally define the loss function, let us first define b as a mini-batch of training

data sampled from the training set D (see Section 6.2.1) expanded with η random

negative samples per user-item interaction. η is a hyper-parameter. The loss function

for the mini-batch b is defined as:

Lbce = − 1

|b|
∑

(u,i)∈b

yui log ŷui + (1− yui) log(1− ŷui) (6.2)

118

We have also tried pairwise cross-entropy loss, however, no significant improve-

ment has been observed in our experiments. Therefore, we have decided to keep the

pointwise model given its simplicity.

6.2.2.2 Item Text Reconstruction

The goal of item reconstruction is to make sure that the learned user and item

representations can be mapped into a natural language space, and thus can be used

for item retrieval. To this end, we use the textual descriptions of items (i.e., the

set IT ; see Section 6.2.1 for more information). In more detail, we maximize the

probability of generating the textual description of each item from the learned item

representations. We focus on unigram language model representation which has been

shown to be effective in information retrieval [126, 190].3 In more detail, let E ∈ R|V |×k

denote a word embedding matrix with the same dimensionality as the user and item

embeddings (k), where V is the vocabulary set. E is a pre-trained relevance-based

word embedding matrix [180]. Relevance-based word embedding models are based

on the bag-of-words assumption and represent each word in a k-dimensional space to

capture relevance information. The model is trained based on weak supervision and

does not require any label data. In fact, relevance-based word embedding models use

the relevance models [87] as a weak supervision signal. We use relevance-based word

embedding, since the goal of the model is to learn representations that are suitable

for further retrieval purposes. For more information on relevance-based embedding,

we refer the reader to [180] (see Chapter 3). Multiplication of each item embedding

vector ~i ∈ I to the transpose of the embedding matrix E results in a |V |-dimensional

representation for the corresponding item. Therefore, our model estimates a unigram

language model for each item i as follows:

3Some models, such as [120], treat users and items as queries and documents and use language
modeling approaches for recommendation, which are out of the scope of this work.

119

θi = softmax(I[i].ET) (6.3)

The aim is to maximize the likelihood of generating the item description text.

This is equivalent to minimizing the following cross-entropy for the mini-batch b:

Lmlr = − 1

|b|
∑

(u,i)∈b

∑
w∈ti

count(w, ti)

|ti|
log p(w|θi) (6.4)

where ti ∈ IT is a textual description for item i.

6.2.2.3 Optimization

We train the model using a gradient descent-based optimizer. The parameters

that should be learned include the user embedding matrix U , the item embedding

matrix I, and the parameters of the dense network for recommendation. Note that

the embedding matrix E is pre-trained and fixed. We use Adam optimizer [80] in our

experiments to minimize the following loss function:

L = Lbce + αLmlr (6.5)

where α is a hyper-parameter controlling the weight of the item reconstruction loss.

6.2.3 Training Efficiency in JSR

Due to the large number of terms in a vocabulary (e.g., 500k), the unigram lan-

guage model estimated by JSR is computationally expensive, because of the summa-

tion in the denominator of the softmax operator. Since this summation should be

computed for every single item in the mini-batch at each training step, it substan-

tially slows down the training process. To address this issue, we approximate the

softmax operator using hierarchical softmax, which has been introduced by Morin

and Bengio [112] for neural language modeling and successfully employed by Mikolov

120

et al. [107] for word representation learning. This approximation uses a binary tree

structure to represent vocabulary terms. Each leaf corresponds to a unique vocabu-

lary term and there exists a unique path from the root of the tree to each leaf. This

path is used for estimating the probability of the vocabulary term representing by the

leaf. Since the height of the tree is O(log(|V |)), the complexity of softmax calculation

goes down from O(|V |) to O(log(|V |)). This results in a huge improvement in com-

putational complexity. We refer the reader to [110, 112] for the details of hierarchical

softmax approximation.

6.2.4 Matrix Factorization Interpretation

Matrix factorization is the dominant approach in collaborative filtering. In this

section, we briefly discuss how JSR can be interpreted as a matrix factorization model.

For simplicity, assume that the dense network in our model (see Figure 6.1) is simply

a linear regression model whose weights are set to 1. Therefore, feeding the Hadamard

product of two vectors to this network is equivalent to their inner product. In this

case, JSR can be modeled as:

U∗, I∗ = arg min
U ,I

L1(A,UIT) + λL2(T , IET) (6.6)

where A ∈ Rm×n denotes the user-item interaction matrix, containing the training

data. Each row j of the matrix T ∈ Rn×|V | is a unigram language model for the

item j, estimated using maximum likelihood estimation. L1 is a recommendation

loss that minimizes the user-item interaction reconstruction error, while L2 is an

item description reconstruction loss that minimizes the distance between the learned

item representations and textual descriptions of the items. L2 can be also seen as

a regularizer that prevents the collaborative filtering model from overfitting. Item

embedding has been previously used by Liang et al. [94] and by Train et al. [161]

121

to regularize collaborative filtering, however, their models are based on item-item

co-occurrences, which is different from ours.

Due to the non-linear operations in the dense network, JSR is the generalized

version of this matrix factorization interpretation. It is notable that due to the

large size of matrix T , implementing this matrix factorization method is infeasible or

difficult, which also motivates our choice of neural network implementation.

6.2.5 Item Retrieval using JSR

Once the model is trained, we compute the language model θi (see Equation (6.3))

for all items. To improve the retrieval efficiency, we take the top N vocabulary terms

with the highest probability for each item (called Wtop(i)) and normalize the language

model as follows:

p(w|θ̂i) =

p(w|θi)∑

w′∈Wtop(i) p(w
′|θi) if w ∈ Wtop(i)

0 otherwise

(6.7)

We constructed an inverted index from each word w in the vocabulary to a list of

items as follows:

w →
{

(i, p(w|θ̂i)) : ∀i ∈ I such that w ∈ Wtop(i)
}

(6.8)

To compute the retrieval score for a natural language query q at the test time, we

use a KL-divergence retrieval model [85] with Jelinek-Mercer smoothing:

retrieval score(q, i) =
∑
w∈q

p(w|θq) log
[
λp(w|θ̂i) + (1− λ)p(w|C)

]
(6.9)

where λ ∈ [0, 1] is the smoothing parameter and p(w|C) denotes the probability of

the term in the collection, and can be computed as:

122

p(w|C) =
1

Z

∑
i∈I

p(w|θ̂i) (6.10)

where Z is a normalization factor. We develop two retrieval models based on different

implementation of the query language model (θq). Similar to [126], the JSR-QL is

our first retrieval model in which p(w|θq) is computed using maximum likelihood

estimation (i.e., p(w|θq) = count(w,q)
|q|). The second retrieval model, called JSR-RM,

is a pseudo-relevance feedback algorithm based on Lavrenko and Croft’s relevance

models [87]. In other words, we first retrieve documents using JSR-QL and then

compute the relevance language model (i.e., RM3) and finally retrieve documents

based on the re-estimated query language model. Refer to [2, 87] for the detailed

implementation of RM3.

6.2.6 Summary

The model optimizes two objectives simultaneously, one user-item interaction (rec-

ommendation) objective and one item text reconstruction objective. This allows the

model to transfer knowledge from user-item interactions to the item representations.

We use unigram language model for representing items and estimate it using a hierar-

chical softmax function which has shown to be highly efficient. The language model is

obtained from the learned item representation multiplied by a relevance-based word

embedding matrix, which results in item language models that are suitable for re-

trieval purposes. Our matrix factorization interpretation of the framework shows

that item text reconstruction can be seen as a regularization for the recommendation

model. Since we use relevance-based word embedding, this regularization is biased

towards representations that are useful for retrieval.

123

Table 6.1: Statistics of the data used in our experiments.

Data #users #items #interaction sparsity #queries
MovieLens 20M 138,493 27,278 20,000,263 99.471% 1236
Amazon

- Electronics 192,403 63,001 1,689,188 99.986% 989
- Kindle Store 68,223 61,934 989,618 99.977% 4603
- Cell Phones 27,879 10,429 194,439 99.933% 165

6.3 Experiments

In this section, we evaluate the proposed framework using a wide range of datasets.

We first introduce our training data and parameter setting details. We further eval-

uate our model in terms of both retrieval and recommendation performance. We

finally present a set of empirical analysis to have better understanding of the results.

6.3.1 Training

This section describes the details for training the JSR framework, including the

training data and the experimental setup.

6.3.1.1 Training Data

We study the performance of our model on multiple public datasets. We use

MovieLens 20M [61] which is the largest version of the MovieLens datasets to date

and contains over 20 million total interactions with the minimum interaction of 20

per user. MovieLens 20M is a standard dataset for evaluating collaborative filtering

models in the context of movie recommendation.4 We also use three diverse product

categories in the context of e-commerce services. We adopt the five-core Amazon re-

view dataset [66, 104], that covers user-item interactions (review, rating, helpfulness

votes, etc) on 24 product categories from May 1996 to July 2014.5 We have selected

4MovieLens 20M can be found at https://grouplens.org/datasets/movielens/20m/.

5The Amazon review dataset can be found at http://jmcauley.ucsd.edu/data/amazon/.

124

three product categories with different size and sparsity to observe the performance

of the model on different conditions. They include Electronics, Kindle Store, and

Cell Phones & Accessories. The largest category contains over 1.5 million interac-

tions, while the number of interactions in the smallest category does not reach 200

thousands. The minimum number of interactions per user in these categories is 5.

Similar to previous work [48, 68], we binarized the labels in all datasets by represent-

ing each user-item interaction with label 1 as an implicit feedback. Table 6.1 reports

the statistics of the datasets.

To construct the set IT (see Section 6.2.1), we concatenated the tags that users

have provided for each movie in the MovieLens 20M dataset. For the Amazon

datasets, we selected the most helpful review of each item (according to their helpful-

ness scores provided by users) as its textual description. If there was no review with

positive helpfulness score, we randomly selected one of the reviews. We cleaned up the

data by removing non-alphabetic characters and stopwords from item descriptions.

Following previous work [68, 92, 132], we adopt a leave-one-out evaluation method-

ology for evaluation. For each user, we held-out the latest interaction as the test

recommendation data and utilized the remaining data for training.

6.3.1.2 Parameter Setting

We implemented our model using TensorFlow [1]. In all experiments, the network

parameters were optimized using the Adam optimizer [80]. For hyper-parameter

optimization, we selected the latest interaction of each user in the training set as a

validation set. We performed grid search and chose the hyper-parameters based on the

loss value obtained on the validation set. After the hyper-parameter selection process,

we train the model with the chosen hyper-parameter values on the original training

set. The learning rate was selected from {1× 10−5, 5× 10−4, 1× 10−4, 5× 10−4,

1× 10−3}. The batch size was selected from {32, 64, 128, 256, 512}. The dropout

125

keep probability was selected from {0.7, 0.8, 0.9, 1.0}. The dimensionality of word,

user, and item embedding vectors were set to 50 and the word embedding matrix was

initialized by a relevance-based word embedding model, called relevance likelihood

maximization (RLM) [180]. The embedding vectors were trained using the ClueWeb

collection as described in [180]. We set the number of negative samples per interaction

(i.e., parameter η) to 4. The number of hidden layers in the dense network and their

output sizes were selected from {1, 2, 3} and {10, 20, 50, 100}, respectively.

6.3.2 Evaluating the Retrieval Performance

In this section, we describe our experimental methodology and results for evalu-

ating the retrieval performance of JSR.

6.3.2.1 Evaluation Data

This experiment is challenging, since, to the best of our knowledge, there is no

public dataset containing both user-item interactions and query-item relevance infor-

mation on the same item set. Therefore, we created a dataset for evaluating the model

trained on the MovieLens 20M dataset, and used an automatic evaluation method-

ology employed by [4, 163, 181] for evaluating the models trained on the Amazon

datasets.

Movie retrieval dataset: We adapt the known-item search data created by Hagen

et al. [60]. The data contains difficult real-world information needs collected from

Yahoo! Answers. From this data, we only selected the information needs with the

category “Movies”. The relevance judgments contain a single relevant document per

information need. The relevant documents were selected from the ClueWeb collection.

By manual annotation, we linked each of the relevant documents in the dataset to

the corresponding movie ID in the MovieLens 20M dataset. We finally filtered out

the queries whose answers were not found in MovieLens 20M. This results in 1236

queries, written by real users in the Yahoo! Answers website, each has exactly one

126

Table 6.2: Two sample queries and their associated relevant movies from the retrieval
dataset.

Query Relevant movie

I can’t remember the name of the movie where this teenager
is really good at this space shooter arcade game, then one day
aliens contact him and he figures out it was training him and
he becomes a space fighter pilot.

The Last Starfigher
(1984)

It’s bugging me because I forgot the name of it. Its about
a boy who has elephantitis. And there is a blind girl who
feels his face. And then at the end I think he kills himself or
something. What is it called I forgot.

Mask (1985)

relevant movie from the MovieLens 20M dataset. Two query examples are listed in

Table 6.2.

Product retrieval dataset: The Amazon product data does not contain search

queries, thus cannot be directly used for evaluating retrieval models. As Rowley [139]

investigated, directed product search queries contain either a producer’s name, a

brand, or a set of terms describing the product category. Following this observation,

Van Gysel et al. [163] proposed to automatically generate queries based on the product

categories. To be exact, for each item in a category c, a query q is generated based on

the terms in the category hierarchy of c. Then, all the items within that category are

marked as relevant for the query q. The detailed description of the query generation

process can be found in [4]. Although the queries in this data were automatically

constructed, since the query generation process has been done based on observations

from real user queries, it has become a standard approach for evaluating product

search, and has been used by the research community [4, 57, 163, 181, 195].

6.3.2.2 Evaluation Metrics

In the movie retrieval dataset, there is only one relevant item per query. This

characteristic makes many of the common IR evaluation metrics unsuitable. There-

127

fore, for this dataset, we use mean reciprocal rank (MRR) and normalized discounted

cumulative gain (nDCG) [75] of the top 10 retrieved items (nDCG@10) as the main

evaluation metrics. However, in the Amazon datasets, there exist multiple relevant

items per query. In such cases, mean average precision (MAP) and nDCG@10 are

used as main evaluation metrics.

Statistically significant differences of performances were computed using the two-

tailed paired t-test with Bonferroni correction at a 99% confidence level.

6.3.2.3 Experimental Setup

The hyper-parameters of all the retrieval baselines as well as the proposed model

were selected using two-fold cross-validation over queries. To improve reproducibility,

the data split was done based on the query IDs (even and odd). In hyper-parameter

optimization, the regularization parameter α and the smoothing parameter λ were

selected from (0, 1).

6.3.2.4 Results and Discussion

We compare the retrieval performance of the proposed method to the following

baselines:

• Query Likelihood (QL) [126]: This is a language model-based retrieval model that

uses the Dirichlet prior method [192] for document language model smoothing.

• BM25 [134]: This is a simple yet effective probabilistic retrieval model derived from

a 2-Poisson distribution approximation for document modeling.

• Relevance Model (RM3) [87]: This is an effective pseudo-relevance feedback model

based on the language modeling framework that uses the top retrieved documents

for query expansion.

• Embedding-based Relevance Model (ERM) [178]: This is a state-of-the-art pseudo-

relevance feedback method that takes advantage of pre-trained word embedding

128

Table 6.3: Retrieval performance of JSR and the baselines. The highest value per
column is marked in bold, and the superscript * denotes statistically significant im-
provements compared to all the baselines.

Method
MovieLens 20M Amazon - Electronics

MRR nDCG@10 MAP nDCG@10

QL 0.052 0.114 0.372 0.421
BM25 0.056 0.118 0.351 0.408
RM3 0.064 0.125 0.386 0.443
ERM 0.068 0.123 0.400 0.458
PRP+ 0.094 0.193 0.431 0.511
PRP+ & ERM 0.102 0.209 0.457 0.560
JSR-QL 0.121* 0.317* 0.511* 0.608*
JSR-RM 0.133* 0.325* 0.518* 0.614*

Method
Amazon - Kindle Store Amazon - Cell Phones
MAP nDCG@10 MAP nDCG@10

QL 0.181 0.210 0.236 0.267
BM25 0.185 0.219 0.244 0.275
RM3 0.193 0.219 0.256 0.286
ERM 0.213 0.235 0.284 0.312
PRP+ 0.251 0.297 0.328 0.370
PRP+ & ERM 0.306 0.366 0.347 0.381
JSR-QL 0.348* 0.396* 0.366* 0.408*
JSR-RM 0.362* 0.407* 0.381* 0.425*

vectors. Similar to JSR, ERM also uses the relevance-based word embedding [180]

which has shown superior performance to models like word2vec [107] and GloVe [123].

For more information, see Chapter 3.3.1.2.

Since the authors are not aware of any retrieval baseline that use user-item in-

teractions, we adapt the probabilistic relevance propagation (PRP) of Shakery and

Zhai [147]. PRP uses hyperlinks in the Web for retrieval score estimation and language

model smoothing [148]. Based on the user-item interaction matrix, we constructed

a graph of users and items and applied the PRP algorithm. This model utilizes

user-item interaction information in retrieval. We call the model PRP+. We also

129

enhance this model by using embedding-based relevance model (ERM) [178] as for

pseudo-relevance feedback (called PRF+ & ERM).

Each of the baselines has a number of hyper-parameters, such as smoothing param-

eter (µ), the number of feedback terms, the feedback coefficient, etc. As mentioned

earlier, we tune all of these hyper-parameters using a two-fold cross-validation over

the retrieval queries. In all the baselines, we used the same textual descriptions used

in training our model as the content of items (see Section 6.3.1 for more informa-

tion). To have a fair evaluation, we do not consider supervised retrieval models in

our baselines, because our model does not use any query-document relevance signal.

The retrieval performance of the methods are presented in Table 6.3. The results

indicate the difficulty of the movie retrieval dataset compared to the others. This is

due to the nature of the queries (see Table 6.2). Comparing the results obtained by

the JSR and PRP+ models against the other baselines demonstrates the importance

of user-item interaction for retrieval tasks. According to the table, both JSR models

outperform competitive well-tuned retrieval baselines. The improvements are statis-

tically significant in all cases. Moreover, JSR-RM achieves the best retrieval results.

The highest performance is achieved on the Amazon - Electronics dataset, which is

the largest product dataset, in terms of the number of user-item interactions.

6.3.3 Evaluating the Recommendation Performance

In this section, we evaluate the recommendation performance of JSR and compare

it against state-of-the-art collaborative and hybrid filtering models.

6.3.3.1 Evaluation Data

As pointed out earlier in Section 6.3.1, we evaluate the recommendation per-

formance based on a leave-one-out strategy. In more detail, the last interaction of

each user was chosen as a test data. We further followed the common strategy of

130

taking 100 random negative sample items per user, as been widely used in the liter-

ature [48, 49, 68, 81].

6.3.3.2 Evaluation Metrics

To evaluate the recommendation performance, we use normalized discounted cu-

mulative gain (nDCG) [75] and hit ratio (HR). The cut-off for these metrics is set to

10. HR measures whether the test item is present on the top 10 list. Note that since

there is only one relevant item per user in the leave-one-out strategy, HR is equivalent

to recall. On the other hand, nDCG is a ranking metric accounting for the position

of the hit by assigning higher scores to hits at top ranks. Although nDCG is often

used for evaluating items with graded relevance labels, we use this metric to have our

results comparable with previous work [48, 68]. We calculated both metrics for each

test user and reported the average score. Similar to the retrieval experiments, sta-

tistically significant differences of performances were computed using the two-tailed

paired t-test with Bonferroni correction at a 99% confidence level.

6.3.3.3 Results and Discussion

We compare the effectiveness of JSR to the following collaborative filtering base-

lines:

• ItemPopularity: This simple baseline computes the popularity of each item based

on the number of interactions on the item in the training set. The items are then

ranked based on their popularity at test time. This is a non-personalized method

to benchmark the recommendation performance.

• Bayesian Personalized Ranking (BPR) [132]: This is a competitive matrix factor-

ization method, adapted for learning from implicit feedback. BPR takes advantage

of a pairwise ranking loss.

131

• Element-wise Alternating Least Squares (eALS) [66]: This is an effective matrix

factorization method for item recommendation with implicit feedback. This base-

line takes all unobserved items as negative instances and weights them based on

their popularity. It has shown superior performance to the weighted matrix factor-

ization (WMF) method [73] that uses a uniform weighting over negative instances.

• Neural Collaborative Filtering (NCF) [68]: This neural network baseline is a com-

bination of a generalized matrix factorization and a fully-connected feed-forward

network that uses a cross-entropy loss function for collaborative filtering with im-

plicit feedback.

We also compare our model to the following hybrid recommendation baselines:

• Collaborative Deep Learning (CDL) [169]: This neural network hybrid recommen-

dation model jointly performs deep representation learning for the content infor-

mation and collaborative filtering for the user-item interactions.

• Collaborative Filtering with Additional Stacked Denoising Autoencoders (CF-aSDAE)

[46]: This hybrid recommendation model uses stacked denoising autoencoders to

jointly model deep users and items’ latent factors from side information and col-

laborative filtering from the interaction matrix.

Each of the baselines has a number of hyper-parameters, such as learning rate

and the number of latent factors. We tune all of these hyper-parameters using the

same procedure as the proposed method using the same validation data (see Sec-

tion 6.3.1.2).

Table 6.4 reports the recommendation performance achieved by JSR and the base-

lines. According to the table, BPR, eALS, and NCF are all competitive collabora-

tive filtering baselines, and there is no clear winner among them. NCF outperforms

the other baselines in three datasets (MovieLens 20M, Amazon-Kindle Store, and

132

Table 6.4: Recommendation performance of JSR and the baselines. The highest value
per column is marked in bold, and the superscript * denotes statistically significant
improvements compared to all the collaborative filtering baselines (i.e., ItemPopular-
ity, BPR, eALS, and NCF).

Method
MovieLens 20M Amazon - Electronics

nDCG HR nDCG HR

ItemPopularity 0.5226 0.8196 0.3227 0.5044
BPR 0.6086 0.8633 0.4820 0.7639
eALS 0.6171 0.8820 0.4906 0.7834
NCF 0.6247 0.9050 0.4841 0.7624
CDL 0.6321 0.9183 0.5081 0.8021
CF-aSDAE 0.6319 0.9177 0.5109 0.8073
JSR 0.6345* 0.9210* 0.5125* 0.8100*

Method
Amazon - Kindle Store Amazon - Cell Phones
nDCG HR nDCG HR

ItemPopularity 0.1875 0.3340 0.2214 0.3766
BPR 0.3881 0.5845 0.3692 0.5038
eALS 0.3863 0.5809 0.3746 0.5152
NCF 0.3910 0.5999 0.3775 0.5203
CDL 0.4310 0.6570 0.4112 0.5898
CF-aSDAE 0.4285 0.6503 0.4183 0.6022
JSR 0.4335* 0.6627* 0.4176* 0.6085*

Amazon-Cell Phones), while eALS shows superior performance among the baselines

in the Amazon-Electronics data. This might be due to the sparsity of the collec-

tions, i.e., Amazon-Electronics is the sparsest dataset (see Table 6.1). The eALS

baseline takes negative samples based on the popularity of items, while the other

uses a uniform sampling method. The results also show that JSR significantly out-

performs all the collaborative filtering baselines in all the datasets. Our model also

shows a comparable (and in most cases slightly better) performance to the hybrid

recommendation baselines. This indicates that although JSR only uses the item de-

scriptions for regularization, it effectively takes advantage of side information. Note

that the main goal of JSR is not utilizing textual descriptions of items for improving

the recommendation.

133

Table 6.5: The top 10 words selected by JSR for four sample movies. The words are
sorted in descending order in terms of their weights. The table should be viewed in
color.

The Lord of the Batman Returns Gandhi The Mask
Rings (1978) (1992) (1982) (1994)

fantasy batman documentary cartoon
magic character film parody

movies superhero directed movie
wizard horror prize black6

animation thriller award comic
potter starring supporting comedy
cartoon fantasy films film
fiction movie movie monster
classic joker fiction thriller
novel comedy drama shows

6.3.4 Additional Empirical Analysis

In this section, we provide additional empirical analysis to have a better under-

standing the model’s performance. We first do a case study by looking at the top

terms chosen by the model for a few items. We further investigate the impact of

different word embedding vectors on the model’s performance.

6.3.4.1 Analyzing the Learned Representations

To provide a deeper analysis on the quality of the learned representation, we

report the top 10 terms with the highest weight in the learned representations for

four sample movies (for the model trained on the MovieLens 20M data) in Table 6.5.

In the table, we classify each word into one of the following categories:

• Green: related to the movie genre

• Gray: related to the movie content (e.g., characters, scenes, and specific features)

6The Mask is often referred to as “black comedy”.

134

Table 6.6: The corpora used for training the embedding vectors.

ID corpus # tokens

GloVe - Wiki Wikipedia 2014 & Gigawords 5 6b
GloVe - 840b Web crawl 840b
GloVe - ClueWeb Web crawl 70b

• Blue: related to other movies similar to the movie

• Yellow: miscellaneous features (e.g., awards, etc.)

• Red: not directly related (i.e., the word is not directly related to the movie)

• White: general terms (e.g., movie and film)

There are some common words that appear in most movie representations, such

as “movie”, “film”, “films”. In fact, due to the nature of the MovieLens 20M dataset,

these terms are considered as general terms. There exist more than one green cell

in each column of the table, which indicates that JSR pays attention to the genre

of the movies. The movie Gandhi has won eight Academy Awards and interestingly,

JSR gives high weights to the words such as “prize” and “award” (yellow cells). This

might be due to the fact that many users who watched Gandhi were interested in

award-winning movies. Surprisingly, we observe the term “potter” among the top

10 terms for the movie The Lord of the Rings. This is most likely selected because

the users who watched The Lord of the Rings also watched the Harry Potter movies.

In addition, there are some terms that we do not have direct explanations for. For

example, it is not clear why the term “comedy” is selected for the movie Batman

Returns. They might be due to the user interactions with other movies. They might

also be due to the model’s errors. The dark comedy aspect of this movie could be

also the reason.

135

Table 6.7: Retrieval performance of JSR with different word embedding initializa-
tion. The highest value per column is marked in bold, and the superscript * denotes
statistically significant improvements compared to all the baselines.

Embedding
MovieLens 20M Amazon - All

MRR nDCG MAP nDCG

GloVe - Wiki 0.088 0.177 0.342 0.386
GloVe - 820b 0.104 0.229 0.358 0.415
GloVe - ClueWeb 0.096 0.193 0.351 0.408
RLM 0.133* 0.325* 0.389* 0.443*

6.3.4.2 Investigating the Impact of Word Embedding Vectors

As mentioned multiple times in this chapter, our model uses relevance-based word

embedding. In this section, we investigate the performance of the model when using

general-purpose word embedding vectors, such as GloVe [123]. Table 6.7 shows the

results for the model with various word embedding matrix. For the sake of space,

in this experiments, we report the result for all the Amazon datasets together. The

description of the training corpora is presented in Table 6.6. According to the results,

relevance-based word embedding (RLM) leads to significantly better retrieval results.

The reason is that the objective in such models were specifically designed for infor-

mation retrieval purposes. Note that none of these word embedding models require

label data for training.

6.4 Potential Applications for JSR

In this section, we review a number of potential applications in which the proposed

JSR framework can be potentially useful.

Interpretability: Interpretation in machine learning models would lead to better

understanding the models’ behavior. It helps researchers and engineers identify what

has been learned by the model, what biases have affected the model, and how to

improve the performance. It is especially desired in collaborative filtering models,

136

since they heavily rely on learning latent features for users and items. Since our

model learns a representation that can be mapped to a unigram language model, it

can be potentially used for improving the interpretability of filtering models.

Transparency and Explainability: Providing accurate explanations for every

recommendation made by a collaborative filtering model has been recently proven to

be effective in recommendation performance [67]. In addition to making the users

aware of the reasons behind all the suggestions, explainability improves the trans-

parency of the recommender system. Previous work has shown that users prefer to

receive an explanation for any recommendation [194]. Learning user and item repre-

sentations that can be mapped to a natural language space could potentially ease the

process of explaining recommendations.

User Profiling: Table 6.5 shows that JSR learns interpretable representations for

items. Therefore, it can be also used for user profiling; representing the user’s interests

with natural language. The system can also allow the user to manually modify the

learned natural language representation for improving the recommendation.

Universal Representation Across Domain and Modality: Natural language is

a universal representation; meaning that each movie, music, image, book, etc. can be

represented using natural language. On the other hand, cross-domain and cross-modal

recommendations are still challenging. Mapping multi-domain item representations

to a natural language space would potentially close the gap between these domains

and modalities.

Conversational Recommendation: Natural language is the most effortless and

flexible communication method for human. In conversational recommender systems,

e.g., [195], users describe their information needs in order to receive accurate recom-

137

mendations. Therefore, learning natural language representations for items could be

of potential use in conversational recommendation.

6.5 Summary

In this chapter, we introduced joint modeling and optimization of search engines

and recommender systems. With a focus on learning without query-document rele-

vance data, we employed weakly supervised relevance-based word embedding in our

joint framework, which is based on multi-task learning. In fact, our framework min-

imizes two objectives, simultaneously: user-item interaction reconstruction and item

text reconstruction. Our experiments in the domains of e-commerce and movies

demonstrate that substantial retrieval improvements can be achieved using user-item

interaction data. In addition to performance improvement, our model has several

potential applications, such as transparency and explainability in recommendation,

user profiling, and conversational recommendation.

138

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This chapter provides a broad summary of our work. We begin by summarizing

how to use weak supervision in information retrieval and reiterate our primary con-

tributions. We further conclude by proposing several potential research directions for

future work.

7.1 Overview of Weak Supervision for Information Retrieval

Complex machine learning models, including deep neural networks, often require

large-scale training data for effective training. However, such large-scale data is not

available in many information retrieval tasks [187]. Weak supervision is a solution for

training machine learning models in case of scarcity in training data. The proposed

weak supervision solution consists of the following steps:

(a) Collecting or generating unlabeled data: In most applications, unlabeled

data is easy to collect or generate. The first step in weak supervision is simply

obtaining an unlabeled training set X, which is relatively large-scale and covers

a wide range of input instances.

(b) Generating labels: In weak supervision, we automatically label the collected

unlabeled data. An example of such models in ad-hoc retrieval is term match-

ing models, such as BM25 [134]. Using this model, called weak labeler, we

automatically generate labels for the obtained unlabeled data to produce the

weak supervision training set (X, Ŷ). One can take advantage of multiple weak

labelers.

139

(c) Designing task-specific model: The student models should be task-specific

and designed in a way that generalize the automatically generated training set,

in order to outperform the weak labeler.

(d) Weak supervision training: The last step involves training of the designed

machine learning model using the generated weak supervision data. The opti-

mization objective should be carefully designed to be robust to label noise in

addition to avoid overfitting.

7.2 Key Findings and Results

The proposed weak supervision solution is a general solution we applied to a

number of core information retrieval tasks, including representation learning, ranking,

performance prediction, and transfer learning from recommendation data. In this

section, we review our key findings.

Learning distributed representations for information retrieval We proposed

relevance-based word embedding models for learning IR-specific distributed repre-

sentation for terms and queries. The model has shown superior performance com-

pared to state-of-the-art bag-of-words embedding methods, such as word2vec [107]

and GloVe [123], in a number of IR tasks, including query expansion and query clas-

sification. In more detail, we obtained 5-10% improvements in our query expansion

experiments using the AP, Robust, and GOV2 collections, and 6-7% improvements

in our query classification experiments using the KDD Cup 2005 dataset [93]. Al-

though the focus of this dissertation is on unsupervised training, the effectiveness of

the proposed solution trained on large-scale click data has been recently investigated

by Zhang et al. [193].

Neural ranking models We proposed a neural ranking model for ad-hoc docu-

ment retrieval that learns sparse representations for queries and documents for in-

140

verted indexing. Our model can retrieve documents from a large collection, instead

of re-ranking a small set of documents retrieved by a first stage retrieval model. We

additionally provide theoretical guidelines for designing and optimizing weakly super-

vised neural ranking models. In more detail, we proved that symmetric ranking loss

functions are more effective for weakly supervised ranking models. Experiments on

Robust and ClueWeb collections showed that our proposed neural ranking model sig-

nificantly outperforms state-of-the-art retrieval models, such as RM3 [87], SDM [106],

and FNRM [42]. We obtained 18-42% improvements compared to a well-tuned query

likelihood model [126].

Neural query performance prediction We designed a neural network archi-

tecture for post-retrieval query performance prediction. We trained our model us-

ing multiple weak supervision signals, resulted in state-of-the-art query performance

prediction over a number of TREC collections, including AP, Robust, GOV2, and

ClueWeb.

Joint modeling of search and recommendation We designed a joint model for

optimizing search engines and recommender systems at the same time. Our model

takes advantage of weakly supervised relevance-based word embedding and user-item

interaction data (i.e., recommendation data) for learning a retrieval model. Our ex-

periments on an Amazon product dataset and a movie dataset show that transferring

knowledge from recommendation data for developing retrieval models gives us 29-95%

relative improvement.

7.3 Future Work

We believe that neural information retrieval models and weak supervision training

are important advances in information retrieval research. Although, in this disserta-

141

tion, we tackled many critical issues in these areas, several challenges still remain. In

the following, we briefly describe some of these challenges:

Sample selection for weak supervision We provided several successful imple-

mentation of weak supervision training in information retrieval applications. The pre-

sented solutions require large-scale training data, thus they take a significant amount

of time for training. An open research direction is to either select or weight training in-

stances that are useful for training to reduce the training time. Dehghani et al. [40, 41]

presented supervised solutions for weighting training instances, however, addressing

this issue in an unsupervised setting is still relatively unstudied. For instance, using

query performance prediction techniques for weighting training instances in learning

to rank models could be a possible solution.

Weak supervision as an easy-to-use framework Learning an accurate and

robust weakly supervised model is tightly coupled with the accuracy of the weak la-

beler(s). Both label generation and model training components require task-specific

machine learning expertise. Future work can focus on developing general solutions

for weak supervision training. Motivated by the proposed joint search and recom-

mendation framework, this framework is expected to contain various transfer learn-

ing techniques for transferring knowledge from training data in another domain or

application to the target weakly supervised task. This framework will make weak

supervision easily accessible to a broader audience.

Efficient and effective neural ranking Although the proposed standalone neural

ranking model (SNRM) introduces a solution to retrieve documents instead of just

re-ranking a small set of documents, there still remains a number of open research

questions. For example, the learned sparse representations are in a continuous space.

However, the inverted index compression techniques widely used in search engines

rely on the discrete representation of text. Learning discrete sparse representation

142

for queries and documents would be a desired future direction. In addition, the

model does not use contextual embedding representations, which has recently shown

promising results in a number of NLP and IR tasks [43, 117, 119, 125]. Extending

the proposed framework to contextual embedding representation is also an interesting

research direction that can potentially lead to significant improvements.

143

BIBLIOGRAPHY

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[2] N. Abdul-jaleel, J. Allan, W. B. Croft, F. Diaz, L. Larkey, X. Li, D. Metzler,
M. D. Smucker, T. Strohman, H. Turtle, and C. Wade. UMass at TREC 2004:
Novelty and HARD. In Proceedings of the 2004 Text Retrieval Conference,
TREC ’04, Gaithersburg, Maryland, USA, 2004.

[3] Q. Ai, H. Zamani, S. Harding, S. Naseri, J. Allan, and W. B. Croft. UMass
at TREC 2017 Common Core Track. In Proceedings of the 2017 Text Retrieval
Conference, TREC ’17, Gaithersburg, Maryland, USA, 2017.

[4] Q. Ai, Y. Zhang, K. Bi, X. Chen, and W. B. Croft. Learning a hierarchical
embedding model for personalized product search. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’17, pages 645–654, Shinjuku, Tokyo, Japan, 2017.
ACM.

[5] M. Aliannejadi, H. Zamani, F. Crestani, and W. B. Croft. In situ and context-
aware target apps selection for unified mobile search. In Proceedings of the 27th
ACM International Conference on Information and Knowledge Management,
CIKM ’18, pages 1383–1392, Torino, Italy, 2018. ACM.

[6] M. Aliannejadi, H. Zamani, F. Crestani, and W. B. Croft. Target apps se-
lection: Towards a unified search framework for mobile devices. In The 41st
International ACM SIGIR Conference on Research & Development in Informa-
tion Retrieval, SIGIR ’18, pages 215–224, Ann Arbor, MI, USA, 2018. ACM.

[7] M. Aliannejadi, H. Zamani, F. Crestani, and W. B. Croft. Asking clarifying
questions in open-domain information-seeking conversations. In Proceedings of
the 42Nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’19, pages 475–484, Paris, France, 2019. ACM.

144

[8] M. ALMasri, C. Berrut, and J.-P. Chevallet. A comparison of deep learning
based query expansion with pseudo-relevance feedback and mutual information.
In Proceedings of the 38th European Conference on IR Research, ECIR ’16,
pages 709–715, Padua, Italy, 2016. Springer International Publishing.

[9] G. Amati and C. J. Van Rijsbergen. Probabilistic models of information re-
trieval based on measuring the divergence from randomness. ACM Trans. Inf.
Syst., 20(4):357–389, Oct. 2002.

[10] M. Ariannezhad, A. Montazeralghaem, H. Zamani, and A. Shakery. Iterative
estimation of document relevance score for pseudo-relevance feedback. In Pro-
ceedings of the 39th European Conference on IR Research, ECIR ’17, pages
676–683, Aberdeen, UK, 2017. Springer International Publishing.

[11] N. Asadi, D. Metzler, T. Elsayed, and J. Lin. Pseudo test collections for learning
web search ranking functions. In Proceedings of the 34th International ACM SI-
GIR Conference on Research and Development in Information Retrieval, SIGIR
’11, pages 1073–1082, Beijing, China, 2011. ACM.

[12] J. A. Aslam and V. Pavlu. Query hardness estimation using jensen-shannon
divergence among multiple scoring functions. In Proceedings of the 29th Euro-
pean Conference on IR Research, ECIR ’07, pages 198–209, Rome, Italy, 2007.
Springer-Verlag.

[13] R. Attar and A. S. Fraenkel. Local feedback in full-text retrieval systems. J.
ACM, 24(3):397–417, July 1977.

[14] L. Azzopardi, M. de Rijke, and K. Balog. Building simulated queries for known-
item topics: An analysis using six european languages. In Proceedings of the
30th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’07, pages 455–462, Amsterdam, The
Netherlands, 2007. ACM.

[15] N. J. Belkin and W. B. Croft. Information filtering and information retrieval:
Two sides of the same coin? Commun. ACM, 35(12):29–38, Dec. 1992.

[16] A. Borisov, I. Markov, M. de Rijke, and P. Serdyukov. A neural click model
for web search. In Proceedings of the 25th International Conference on World
Wide Web, WWW ’16, pages 531–541, Montreal, Quebec, Canada, 2016. Inter-
national World Wide Web Conferences Steering Committee.

[17] A. Broder. A taxonomy of web search. SIGIR Forum, 36(2):3–10, Sept. 2002.

[18] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and
G. Hullender. Learning to rank using gradient descent. In Proceedings of the
22nd International Conference on Machine Learning, ICML ’05, pages 89–96,
Bonn, Germany, 2005. ACM.

145

[19] C. J. Burges. From ranknet to lambdarank to lambdamart: An overview.
Technical report, Microsoft, June 2010.

[20] R. Burke. Hybrid recommender systems: Survey and experiments. User Mod-
eling and User-Adapted Interaction, 12(4):331–370, Nov. 2002.

[21] J. G. C. de Souza, H. Zamani, M. Negri, M. Turchi, and F. Daniele. Multi-
task learning for adaptive quality estimation of automatically transcribed utter-
ances. In Proceedings of the 2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
NAACL ’15, pages 714–724, Denver, Colorado, May–June 2015. Association for
Computational Linguistics.

[22] D. Carmel and E. Yom-Tov. Estimating the Query Difficulty for Information
Retrieval. Morgan and Claypool Publishers, 1st edition, 2010.

[23] S. Chaidaroon, T. Ebesu, and Y. Fang. Deep semantic text hashing with weak
supervision. In The 41st International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’18, pages 1109–1112, Ann
Arbor, MI, USA, 2018. ACM.

[24] C. L. A. Clarke, N. Craswell, and E. M. Voorhees. Overview of the TREC 2012
web track. In Proceedings of the 2012 Text Retrieval Conference, TREC ’12,
Gaithersburg, Maryland, USA, 2012.

[25] S. Clinchant and F. Perronnin. Aggregating continuous word embeddings for
information retrieval. In Proceedings of the Workshop on Continuous Vector
Space Models and their Compositionality, pages 100–109, Sofia, Bulgaria, 2013.
Association for Computational Linguistics.

[26] D. Cohen and W. B. Croft. End to end long short term memory networks for
non-factoid question answering. In Proceedings of the 2016 ACM International
Conference on the Theory of Information Retrieval, ICTIR ’16, pages 143–146,
Newark, Delaware, USA, 2016. ACM.

[27] D. Cohen, J. Foley, H. Zamani, J. Allan, and W. B. Croft. Universal approxima-
tion functions for fast learning to rank: Replacing expensive regression forests
with simple feed-forward networks. In The 41st International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’18,
pages 1017–1020, Ann Arbor, MI, USA, 2018. ACM.

[28] K. Collins-Thompson. Reducing the risk of query expansion via robust con-
strained optimization. In Proceedings of the 18th ACM Conference on Infor-
mation and Knowledge Management, CIKM ’09, pages 837–846, Hong Kong,
China, 2009. ACM.

[29] G. V. Cormack, M. D. Smucker, and C. L. Clarke. Efficient and effective spam
filtering and re-ranking for large web datasets. Inf. Retr., 14(5):441–465, Oct.
2011.

146

[30] B. Croft, D. Metzler, and T. Strohman. Search Engines: Information Retrieval
in Practice. Addison-Wesley Publishing Company, 1st edition, 2009.

[31] W. B. Croft and D. J. Harper. Document retrieval systems. chapter Using
Probabilistic Models of Document Retrieval Without Relevance Information,
pages 161–171. Taylor Graham Publishing, London, UK, UK, 1988.

[32] S. Cronen-Townsend, Y. Zhou, and W. B. Croft. Predicting query performance.
In Proceedings of the 25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’02, pages 299–306,
Tampere, Finland, 2002. ACM.

[33] S. Cronen-Townsend, Y. Zhou, and W. B. Croft. Precision prediction based on
ranked list coherence. Inf. Retr., 9(6):723–755, Dec. 2006.

[34] J. S. Culpepper, C. L. A. Clarke, and J. Lin. Dynamic cutoff prediction in
multi-stage retrieval systems. In Proceedings of the 21st Australasian Docu-
ment Computing Symposium, ADCS ’16, pages 17–24, Caulfield, VIC, Aus-
tralia, 2016. ACM.

[35] R. Cummins, J. Jose, and C. O’Riordan. Improved query performance predic-
tion using standard deviation. In Proceedings of the 34th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SI-
GIR ’11, pages 1089–1090, Beijing, China, 2011. ACM.

[36] Z. Dai, C. Xiong, J. Callan, and Z. Liu. Convolutional neural networks for
soft-matching n-grams in ad-hoc search. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, WSDM ’18, pages
126–134, Marina Del Rey, CA, USA, 2018. ACM.

[37] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok. Introduction to
compressed sensing. In Compressed Sensing: Theory and Applications, pages
1–64. Cambridge University Press, 2012.

[38] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, 2008.

[39] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harsh-
man. Indexing by latent semantic analysis. Journal of the American Society
for Information Science, 41(6):391–407, 1990.

[40] M. Dehghani, A. Mehrjou, S. Gouws, J. Kamps, and B. Schölkopf. Fidelity-
weighted learning. In Proceedings of the 6th International Conference on Learn-
ing Representations, ICLR ’18, 2018.

[41] M. Dehghani, A. Severyn, S. Rothe, and J. Kamps. Learning to learn from weak
supervision by full supervision. In Proceedings of the NeurIPS 2017 workshop
on Meta-Learning, MetaLearn ’17, Long Beach, California, USA, 2017.

147

[42] M. Dehghani, H. Zamani, A. Severyn, J. Kamps, and W. B. Croft. Neural
ranking models with weak supervision. In Proceedings of the 40th Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’17, pages 65–74, Shinjuku, Tokyo, Japan, 2017. ACM.

[43] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL ’19, pages
4171–4186, Minneapolis, Minnesota, 2019. Association for Computational Lin-
guistics.

[44] F. Diaz. Performance prediction using spatial autocorrelation. In Proceedings
of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’07, pages 583–590, Amsterdam,
The Netherlands, 2007. ACM.

[45] F. Diaz, B. Mitra, and N. Craswell. Query expansion with locally-trained word
embeddings. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL ’16, pages 367–377, Berlin, Germany, 2016.
Association for Computational Linguistics.

[46] X. Dong, L. Yu, Z. Wu, Y. Sun, L. Yuan, and F. Zhang. A hybrid collaborative
filtering model with deep structure for recommender systems. In Proceedings
of the 2017 AAAI Conference on Artificial Intelligence, AAAI ’17, pages 1309–
1315, San Francisco, California, USA, 2017. AAAI Press.

[47] D. L. Donoho and B. F. Logan. Signal recovery and the large sieve. SIAM J.
Appl. Math., 52(2):577–591, 1992.

[48] T. Ebesu, B. Shen, and Y. Fang. Collaborative memory network for recommen-
dation systems. In The 41st International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’18, pages 515–524, Ann Ar-
bor, MI, USA, 2018. ACM.

[49] A. M. Elkahky, Y. Song, and X. He. A multi-view deep learning approach for
cross domain user modeling in recommendation systems. In Proceedings of the
24th International Conference on World Wide Web, WWW ’15, pages 278–
288, Florence, Italy, 2015. International World Wide Web Conferences Steering
Committee.

[50] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7(2):179–188, 1936.

[51] D. Ganguly, D. Roy, M. Mitra, and G. J. Jones. Word embedding based gen-
eralized language model for information retrieval. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’15, pages 795–798, Santiago, Chile, 2015. ACM.

148

[52] A. Ghosh, N. Manwani, and P. Sastry. Making risk minimization tolerant to
label noise. Neurocomput., 160(C):93–107, July 2015.

[53] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press,
2016.

[54] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Proceedings of
the 27th International Conference on Neural Information Processing Systems,
NeurIPS ’14, pages 2672–2680, Montreal, Canada, 2014. MIT Press.

[55] J. Guo, Y. Fan, Q. Ai, and W. B. Croft. A deep relevance matching model
for ad-hoc retrieval. In Proceedings of the 25th ACM International on Con-
ference on Information and Knowledge Management, CIKM ’16, pages 55–64,
Indianapolis, Indiana, USA, 2016. ACM.

[56] J. Guo, Y. Fan, L. Pang, L. Yang, Q. Ai, H. Zamani, C. Wu, W. B. Croft, and
X. Cheng. A deep look into neural ranking models for information retrieval.
Information Processing & Management, 2019.

[57] Y. Guo, Z. Cheng, L. Nie, Y. Wang, J. Ma, and M. Kankanhalli. Attentive long
short-term preference modeling for personalized product search. ACM Trans.
Inf. Syst., 37(2):19:1–19:27, Jan. 2019.

[58] M. U. Gutmann and A. Hyvärinen. Noise-contrastive estimation of unnormal-
ized statistical models, with applications to natural image statistics. J. Mach.
Learn. Res., 13(1):307–361, Feb. 2012.

[59] D. Haddad and J. Ghosh. Learning more from less: Towards strengthening weak
supervision for ad-hoc retrieval. In Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, SI-
GIR ’19, pages 857–860, Paris, France, 2019. ACM.

[60] M. Hagen, D. Wägner, and B. Stein. A corpus of realistic known-item topics
with associated web pages in the clueweb09. In Proceedings of the 37th European
Conference on IR Research, ECIR ’15, pages 513–525, Vienna, Austria, 2015.
Springer International Publishing.

[61] F. M. Harper and J. A. Konstan. The movielens datasets: History and context.
ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19, Dec. 2015.

[62] H. Hashemi, M. Aliannejadi, H. Zamani, and W. B. Croft. ANTIQUE: A non-
factoid question answering benchmark. CoRR, abs/1905.08957, 2019.

[63] H. Hashemi, H. Zamani, and W. B. Croft. Performance prediction for non-
factoid question answering. In Proceedings of the 2019 ACM International
Conference on the Theory of Information Retrieval, ICTIR ’19, Santa Clara,
California, USA, 2019. ACM.

149

[64] C. Hauff, D. Hiemstra, and F. de Jong. A survey of pre-retrieval query perfor-
mance predictors. In Proceedings of the 17th ACM Conference on Information
and Knowledge Management, CIKM ’08, pages 1419–1420, Napa Valley, Cali-
fornia, USA, 2008. ACM.

[65] J. He, M. Larson, and M. de Rijke. Using coherence-based measures to predict
query difficulty. In Proceedings of the 30th European Conference on IR Research,
ECIR ’08, pages 689–694, Glasgow, UK, 2008. Springer Berlin Heidelberg.

[66] R. He and J. McAuley. Ups and downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In Proceedings of the 25th Interna-
tional Conference on World Wide Web, WWW ’16, pages 507–517, Montreal,
Quebec, Canada, 2016. International World Wide Web Conferences Steering
Committee.

[67] X. He, T. Chen, M.-Y. Kan, and X. Chen. Trirank: Review-aware explainable
recommendation by modeling aspects. In Proceedings of the 24th ACM Interna-
tional on Conference on Information and Knowledge Management, CIKM ’15,
pages 1661–1670, Melbourne, Australia, 2015. ACM.

[68] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative
filtering. In Proceedings of the 26th International Conference on World Wide
Web, WWW ’17, pages 173–182, Perth, Australia, 2017. International World
Wide Web Conferences Steering Committee.

[69] W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Recommending and evaluating
choices in a virtual community of use. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’95, pages 194–201, Denver,
Colorado, USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[70] G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1. chapter
Distributed Representations, pages 77–109. MIT Press, Cambridge, MA, USA,
1986.

[71] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507, 2006.

[72] H. Hotelling. Analysis of a complex of statistical variables with principal com-
ponents. Journal of Educational Psychology, 24:417–441, 1933.

[73] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback
datasets. In Proceedings of the 2008 Eighth IEEE International Conference
on Data Mining, ICDM ’08, pages 263–272, Pisa, Italy, 2008. IEEE Computer
Society.

150

[74] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. Learning deep
structured semantic models for web search using clickthrough data. In Proceed-
ings of the 22nd ACM International Conference on Information & Knowledge
Management, CIKM ’13, pages 2333–2338, San Francisco, California, USA,
2013. ACM.

[75] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir tech-
niques. ACM Trans. Inf. Syst., 20(4):422–446, Oct. 2002.

[76] Y. Jing and W. B. Croft. An association thesaurus for information retrieval. In
Intelligent Multimedia Information Retrieval Systems and Management, RIAO
’94, pages 146–160, New York, NY, USA, 1994.

[77] T. Joachims. Optimizing search engines using clickthrough data. In Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’02, pages 133–142, Edmonton, Alberta, Canada, 2002.
ACM.

[78] M. Karimzadehgan and C. Zhai. Estimation of statistical translation models
based on mutual information for ad hoc information retrieval. In Proceedings of
the 33rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’10, pages 323–330, Geneva, Switzerland, 2010.
ACM.

[79] Y. Kim and J. Allan. Unsupervised explainable controversy detection from
online news. In Proceedings of the 41st European Conference on IR Research,
ECIR ’19, pages 836–843. Springer International Publishing, 2019.

[80] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
Proceedings of the 3rd International Conference on Learning Representations,
ICLR ’15, San Diego, CA, USA, 2015.

[81] Y. Koren. Factorization meets the neighborhood: A multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’08, pages 426–434,
Las Vegas, Nevada, USA, 2008. ACM.

[82] O. Kurland, A. Shtok, D. Carmel, and S. Hummel. A unified framework for
post-retrieval query-performance prediction. In Proceedings of the Third Inter-
national Conference on Advances in Information Retrieval Theory, ICTIR ’11,
pages 15–26, Bertinoro, Italy, 2011. Springer-Verlag.

[83] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger. From word embed-
dings to document distances. In Proceedings of the 32nd International Confer-
ence on International Conference on Machine Learning - Volume 37, ICML’15,
pages 957–966, Lille, France, 2015.

151

[84] S. Kuzi, A. Shtok, and O. Kurland. Query expansion using word embeddings. In
Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, CIKM ’16, pages 1929–1932, Indianapolis, Indiana,
USA, 2016. ACM.

[85] J. Lafferty and C. Zhai. Document language models, query models, and risk
minimization for information retrieval. In Proceedings of the 24th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’01, pages 111–119, New Orleans, Louisiana, USA, 2001. ACM.

[86] V. Lavrenko, M. Choquette, and W. B. Croft. Cross-lingual relevance models.
In Proceedings of the 25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’02, pages 175–182,
Tampere, Finland, 2002. ACM.

[87] V. Lavrenko and W. B. Croft. Relevance based language models. In Proceedings
of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’01, pages 120–127, New Orleans,
Louisiana, USA, 2001. ACM.

[88] U. Lee, Z. Liu, and J. Cho. Automatic identification of user goals in web
search. In Proceedings of the 14th International Conference on World Wide
Web, WWW ’05, pages 391–400, Chiba, Japan, 2005. ACM.

[89] O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factor-
ization. In Proceedings of the 27th International Conference on Neural Infor-
mation Processing Systems, NeurIPS ’14, pages 2177–2185, Montreal, Canada,
2014. MIT Press.

[90] C. Li, M. Zhang, M. Bendersky, H. Deng, D. Metzler, and M. Najork. Multi-
view embedding-based synonyms for email search. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’19, pages 575–584, Paris, France, 2019. ACM.

[91] H. Li. Learning to Rank for Information Retrieval and Natural Language Pro-
cessing. Morgan & Claypool Publishers, 2011.

[92] S. Li, J. Kawale, and Y. Fu. Deep collaborative filtering via marginalized denois-
ing auto-encoder. In Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, CIKM ’15, pages 811–820, Mel-
bourne, Australia, 2015. ACM.

[93] Y. Li, Z. Zheng, and H. K. Dai. Kdd cup-2005 report: Facing a great challenge.
SIGKDD Explor. Newsl., 7(2):91–99, Dec. 2005.

[94] D. Liang, J. Altosaar, L. Charlin, and D. M. Blei. Factorization meets the
item embedding: Regularizing matrix factorization with item co-occurrence. In
Proceedings of the 10th ACM Conference on Recommender Systems, RecSys
’16, pages 59–66, Boston, Massachusetts, USA, 2016. ACM.

152

[95] Z. Liu, C. Xiong, M. Sun, and Z. Liu. Entity-duet neural ranking: Understand-
ing the role of knowledge graph semantics in neural information retrieval. In
Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics, ACL ’18, pages 2395–2405, Melbourne, Australia, 2018. Association
for Computational Linguistics.

[96] X. Lu, A. Moffat, and J. S. Culpepper. The effect of pooling and evaluation
depth on ir metrics. Inf. Retr., 19(4):416–445, Aug. 2016.

[97] Z. Lu and H. Li. A deep architecture for matching short texts. In Proceedings of
the 26th International Conference on Neural Information Processing Systems,
NeurIPS ’13, pages 1367–1375, Lake Tahoe, Nevada, 2013. Curran Associates
Inc.

[98] C. Luo, Y. Zheng, J. Mao, Y. Liu, M. Zhang, and S. Ma. Training deep ranking
model with weak relevance labels. In Databases Theory and Applications, pages
205–216. Springer International Publishing, 2017.

[99] Y. Lv and C. Zhai. A comparative study of methods for estimating query lan-
guage models with pseudo feedback. In Proceedings of the 18th ACM Confer-
ence on Information and Knowledge Management, CIKM ’09, pages 1895–1898,
Hong Kong, China, 2009. ACM.

[100] S. MacAvaney, A. Yates, K. Hui, and O. Frieder. Content-based weak supervi-
sion for ad-hoc re-ranking. In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’19,
pages 993–996, Paris, France, 2019. ACM.

[101] J. Mackenzie, J. S. Culpepper, R. Blanco, M. Crane, C. L. A. Clarke, and J. Lin.
Query driven algorithm selection in early stage retrieval. In Proceedings of
the Eleventh ACM International Conference on Web Search and Data Mining,
WSDM ’18, pages 396–404, Marina Del Rey, CA, USA, 2018. ACM.

[102] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. Cambridge University Press, New York, NY, USA, 2008.

[103] N. Matthijs and F. Radlinski. Personalizing web search using long term brows-
ing history. In Proceedings of the Fourth ACM International Conference on
Web Search and Data Mining, WSDM ’11, pages 25–34, Hong Kong, China,
2011. ACM.

[104] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel. Image-based recommen-
dations on styles and substitutes. In Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SI-
GIR ’15, pages 43–52, Santiago, Chile, 2015. ACM.

[105] D. Metzler and W. Bruce Croft. Linear feature-based models for information
retrieval. Information Retrieval, 10(3):257–274, Jun 2007.

153

[106] D. Metzler and W. B. Croft. A markov random field model for term dependen-
cies. In Proceedings of the 28th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’05, pages 472–
479, Salvador, Brazil, 2005.

[107] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In Proceedings
of the 26th International Conference on Neural Information Processing Systems,
NeurIPS ’13, pages 3111–3119, Lake Tahoe, Nevada, 2013. Curran Associates
Inc.

[108] B. Mitra and N. Craswell. An introduction to neural information retrieval.
Foundations and Trends in Information Retrieval, pages 1–117, April 2018.

[109] B. Mitra, F. Diaz, and N. Craswell. Learning to match using local and dis-
tributed representations of text for web search. In Proceedings of the 26th
International Conference on World Wide Web, WWW ’17, pages 1291–1299,
Perth, Australia, 2017. International World Wide Web Conferences Steering
Committee.

[110] A. Mnih and G. E. Hinton. A scalable hierarchical distributed language model.
In Proceedings of the 22nd International Conference on Neural Information
Processing Systems, NeurIPS ’09, pages 1081–1088. Curran Associates, Inc.,
2009.

[111] A. Montazeralghaem, H. Zamani, and A. Shakery. Axiomatic analysis for im-
proving the log-logistic feedback model. In Proceedings of the 39th Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’16, pages 765–768, Pisa, Italy, 2016. ACM.

[112] F. Morin and Y. Bengio. Hierarchical probabilistic neural network language
model. In Proceedings of the Tenth International Workshop on Artificial In-
telligence and Statistics, pages 246–252. Society for Artificial Intelligence and
Statistics, 2005.

[113] J. Mothe and L. Tanguy. Linguistic features to predict query difficulty. In ACM
SIGIR Workshop on Predicting Query Difficulty - Methods and Applications,
pages 7–10, Salvador de Bahia, Brazil, 2005.

[114] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations
and Trends in Theoretical Computer Science, 1(2):117–236, 2005.

[115] M. Negri, M. Turchi, J. G. C. de Souza, and F. Daniele. Quality estimation
for automatic speech recognition. In Proceedings of the 25th International Con-
ference on Computational Linguistics, COLING ’14, pages 1813–1823, Dublin,
Ireland, 2014. Dublin City University and Association for Computational Lin-
guistics.

154

[116] Y. Nie, A. Sordoni, and J.-Y. Nie. Multi-level abstraction convolutional model
with weak supervision for information retrieval. In The 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval,
SIGIR ’18, pages 985–988, Ann Arbor, MI, USA, 2018. ACM.

[117] R. Nogueira and K. Cho. Passage re-ranking with BERT. CoRR,
abs/1901.04085, 2019.

[118] M. G. Noll and C. Meinel. Web search personalization via social bookmarking
and tagging. In Proceedings of the 6th International Semantic Web Conference,
ISWC ’07, pages 367–380, Busan, Korea, 2007. Springer Berlin Heidelberg.

[119] H. Padigela, H. Zamani, and W. B. Croft. Investigating the successes and
failures of BERT for passage re-ranking. CoRR, abs/1905.01758, 2019.

[120] J. Parapar, A. Belloǵın, P. Castells, and A. Barreiro. Relevance-based language
modelling for recommender systems. Inf. Process. Manage., 49(4):966–980, July
2013.

[121] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search. In Proceedings
of the 1st International Conference on Scalable Information Systems, InfoScale
’06, Hong Kong, China, 2006. ACM.

[122] K. Pearson. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11):559–572, 1901.

[123] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP ’14, pages 1532–1543, Doha, Qatar,
2014. Association for Computational Linguistics.

[124] J. Pérez-Iglesias and L. Araujo. Standard deviation as a query hardness estima-
tor. In String Processing and Information Retrieval, SPIRE ’10, pages 207–212,
Los Cabos, Mexico, 2010. Springer Berlin Heidelberg.

[125] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-
moyer. Deep contextualized word representations. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, NAACL ’18, pages 2227–
2237, New Orleans, Louisiana, 2018. Association for Computational Linguistics.

[126] J. M. Ponte and W. B. Croft. A language modeling approach to information
retrieval. In Proceedings of the 21st Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR ’98, pages
275–281, Melbourne, Australia, 1998. ACM.

155

[127] L. Y. Pratt. Discriminability-based transfer between neural networks. In Pro-
ceedings of the 6th International Conference on Neural Information Processing
Systems, NeurIPS ’93, pages 204–211. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993.

[128] T. Qin and T. Liu. Introducing LETOR 4.0 datasets. CoRR, abs/1306.2597,
2013.

[129] F. Raiber and O. Kurland. Query-performance prediction: Setting the expecta-
tions straight. In Proceedings of the 37th International ACM SIGIR Conference
on Research & Development in Information Retrieval, SIGIR ’14, pages 13–22,
Gold Coast, Queensland, Australia, 2014. ACM.

[130] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré. Snorkel: Rapid
training data creation with weak supervision. Proc. VLDB Endow., 11(3):269–
282, Nov. 2017.

[131] N. Rekabsaz, M. Lupu, A. Hanbury, and H. Zamani. Word embedding causes
topic shifting; exploit global context! In Proceedings of the 40th Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’17, pages 1105–1108, Shinjuku, Tokyo, Japan, 2017. ACM.

[132] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09,
pages 452–461, Montreal, Quebec, Canada, 2009. AUAI Press.

[133] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: An
open architecture for collaborative filtering of netnews. In Proceedings of the
1994 ACM Conference on Computer Supported Cooperative Work, CSCW ’94,
pages 175–186, Chapel Hill, North Carolina, USA, 1994. ACM.

[134] S. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford. Okapi
at trec-3. In TREC ’96, pages 109–126, Gaithersburg, Maryland, USA, 1996.

[135] J. J. Rocchio. Relevance Feedback in Information Retrieval. In The SMART
Retrieval System: Experiments in Automatic Document Processing, pages 313–
323. 1971.

[136] H. Roitman. An enhanced approach to query performance prediction using
reference lists. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’17, pages 869–
872, Shinjuku, Tokyo, Japan, 2017. ACM.

[137] H. Roitman, S. Erera, O. Sar-Shalom, and B. Weiner. Enhanced mean retrieval
score estimation for query performance prediction. In Proceedings of the ACM
SIGIR International Conference on Theory of Information Retrieval, ICTIR
’17, pages 35–42, Amsterdam, The Netherlands, 2017. ACM.

156

[138] H. Roitman, S. Erera, and B. Weiner. Robust standard deviation estimation for
query performance prediction. In Proceedings of the ACM SIGIR International
Conference on Theory of Information Retrieval, ICTIR ’17, pages 245–248,
Amsterdam, The Netherlands, 2017. ACM.

[139] J. Rowley. Product search in e-shopping: A review and research propositions.
Journal of Consumer Marketing, 17(1):20–35, 2000.

[140] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations
by back-propagating errors. Nature, 323:533–536, 1986.

[141] R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Pro-
ceedings of the 20th International Conference on Neural Information Processing
Systems, NeurIPS ’07, pages 1257–1264, Vancouver, British Columbia, Canada,
2007. Curran Associates Inc.

[142] G. Salton. Automatic Information Organization and Retrieval. McGraw Hill
Text, 1968.

[143] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic
indexing. Commun. ACM, 18(11):613–620, Nov. 1975.

[144] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th International
Conference on World Wide Web, WWW ’01, pages 285–295, Hong Kong, Hong
Kong, 2001. ACM.

[145] M. Schedl, H. Zamani, C.-W. Chen, Y. Deldjoo, and M. Elahi. Current chal-
lenges and visions in music recommender systems research. International Jour-
nal of Multimedia Information Retrieval, 7(2):95–116, Jun 2018.

[146] A. Severyn and A. Moschitti. Learning to rank short text pairs with convo-
lutional deep neural networks. In Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SI-
GIR ’15, pages 373–382, Santiago, Chile, 2015. ACM.

[147] A. Shakery and C. Zhai. A probabilistic relevance propagation model for hy-
pertext retrieval. In Proceedings of the 15th ACM International Conference on
Information and Knowledge Management, CIKM ’06, pages 550–558, Arlington,
Virginia, USA, 2006. ACM.

[148] A. Shakery and C. Zhai. Smoothing document language models with proba-
bilistic term count propagation. Inf. Retr., 11(2):139–164, Apr. 2008.

[149] J. Shen, M. Karimzadehgan, M. Bendersky, Z. Qin, and D. Metzler. Multi-task
learning for email search ranking with auxiliary query clustering. In Proceed-
ings of the 27th ACM International Conference on Information and Knowledge
Management, CIKM ’18, pages 2127–2135, Torino, Italy, 2018. ACM.

157

[150] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. Learning semantic representa-
tions using convolutional neural networks for web search. In Proceedings of the
23rd International Conference on World Wide Web, WWW ’14 Companion,
pages 373–374, Seoul, Korea, 2014. ACM.

[151] E. Shnarch, C. Alzate, L. Dankin, M. Gleize, Y. Hou, L. Choshen, R. Aharonov,
and N. Slonim. Will it blend? blending weak and strong labeled data in a neural
network for argumentation mining. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics, ACL ’18, pages 599–605, Mel-
bourne, Australia, July 2018. Association for Computational Linguistics.

[152] A. Shtok, O. Kurland, and D. Carmel. Using statistical decision theory and
relevance models for query-performance prediction. In Proceedings of the 33rd
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’10, pages 259–266, Geneva, Switzerland, 2010. ACM.

[153] A. Shtok, O. Kurland, and D. Carmel. Query performance prediction using
reference lists. ACM Trans. Inf. Syst., 34(4):19:1–19:34, June 2016.

[154] A. Shtok, O. Kurland, D. Carmel, F. Raiber, and G. Markovits. Predict-
ing query performance by query-drift estimation. ACM Trans. Inf. Syst.,
30(2):11:1–11:35, May 2012.

[155] A. Sordoni, Y. Bengio, and J.-Y. Nie. Learning concept embeddings for query
expansion by quantum entropy minimization. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, AAAI’14, pages 1586–1592,
Quebec City, Quebec, Canada, 2014. AAAI Press.

[156] L. Specia, M. Turchi, N. Cancedda, M. Dymetman, and N. Cristianini. Estimat-
ing the sentence-level quality of machine translation systems. In Proceedings
of the Annual Conference of European Association for Machine Translation,
EAMT ’09, pages 28–37, 2009.

[157] T. Tao and C. Zhai. Regularized estimation of mixture models for robust
pseudo-relevance feedback. In Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR ’06, pages 162–169, Seattle, Washington, USA, 2006. ACM.

[158] Y. Tao and S. Wu. Query performance prediction by considering score mag-
nitude and variance together. In Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management, CIKM
’14, pages 1891–1894, Shanghai, China, 2014. ACM.

[159] P. Thomas, F. Scholer, P. Bailey, and A. Moffat. Tasks, queries, and rankers in
pre-retrieval performance prediction. In Proceedings of the 22nd Australasian
Document Computing Symposium, ADCS ’17, pages 11:1–11:4, Brisbane, QLD,
Australia, 2017. ACM.

158

[160] R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc.
Series B, 58:267–288, 1994.

[161] T. Tran, K. Lee, Y. Liao, and D. Lee. Regularizing matrix factorization with
user and item embeddings for recommendation. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management, CIKM
’18, pages 687–696, Torino, Italy, 2018. ACM.

[162] Y. Ustinovskiy and P. Serdyukov. Personalization of web-search using short-
term browsing context. In Proceedings of the 22nd ACM International Confer-
ence on Information & Knowledge Management, CIKM ’13, pages 1979–1988,
San Francisco, California, USA, 2013. ACM.

[163] C. Van Gysel, M. de Rijke, and E. Kanoulas. Learning latent vector spaces
for product search. In Proceedings of the 25th ACM International on Confer-
ence on Information and Knowledge Management, CIKM ’16, pages 165–174,
Indianapolis, Indiana, USA, 2016. ACM.

[164] C. J. van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton,
MA, USA, 2nd edition, 1979.

[165] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and I. Polosukhin. Attention is all you need. In Proceedings of the 30th
International Conference on Neural Information Processing Systems, NeurIPS
’17, pages 5998–6008. Curran Associates, Inc., 2017.

[166] V. Vinay, I. J. Cox, N. Milic-Frayling, and K. Wood. On ranking the effective-
ness of searches. In Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’06,
pages 398–404, Seattle, Washington, USA, 2006. ACM.

[167] N. Voskarides, E. Meij, R. Reinanda, A. Khaitan, M. Osborne, G. Stefanoni,
P. Kambadur, and M. de Rijke. Weakly-supervised contextualization of knowl-
edge graph facts. In The 41st International ACM SIGIR Conference on Re-
search & Development in Information Retrieval, SIGIR ’18, pages 765–774,
Ann Arbor, MI, USA, 2018. ACM.

[168] I. Vulić and M.-F. Moens. Monolingual and cross-lingual information retrieval
models based on (bilingual) word embeddings. In Proceedings of the 38th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’15, pages 363–372, Santiago, Chile, 2015. ACM.

[169] H. Wang, N. Wang, and D.-Y. Yeung. Collaborative deep learning for rec-
ommender systems. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’15, pages 1235–
1244, Sydney, NSW, Australia, 2015. ACM.

159

[170] L. Wang, J. Lin, and D. Metzler. A cascade ranking model for efficient ranked
retrieval. In Proceedings of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’11, pages 105–114,
Beijing, China, 2011. ACM.

[171] R. Xiao, J. Ji, B. Cui, H. Tang, W. Ou, Y. Xiao, J. Tan, and X. Ju. Weakly
supervised co-training of query rewriting andsemantic matching for e-commerce.
In Proceedings of the Twelfth ACM International Conference on Web Search and
Data Mining, WSDM ’19, pages 402–410, Melbourne, VIC, Australia, 2019.
ACM.

[172] C. Xiong, Z. Dai, J. Callan, Z. Liu, and R. Power. End-to-end neural ad-hoc
ranking with kernel pooling. In Proceedings of the 40th International ACM SI-
GIR Conference on Research and Development in Information Retrieval, SIGIR
’17, pages 55–64, Shinjuku, Tokyo, Japan, 2017. ACM.

[173] J. Xu and W. B. Croft. Query expansion using local and global document anal-
ysis. In Proceedings of the 19th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’96, pages 4–11,
Zurich, Switzerland, 1996. ACM.

[174] P. Xu, X. Ma, R. Nallapati, and B. Xiang. Passage ranking with weak superv-
sion. CoRR, abs/1905.05910, 2019.

[175] L. Yang, H. Zamani, Y. Zhang, J. Guo, and W. B. Croft. Neural matching mod-
els for question retrieval and next question prediction in conversation. CoRR,
abs/1707.05409, 2017.

[176] D. Yin, Y. Hu, J. Tang, T. Daly, M. Zhou, H. Ouyang, J. Chen, C. Kang,
H. Deng, C. Nobata, J.-M. Langlois, and Y. Chang. Ranking relevance in yahoo
search. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, pages 323–332, San Francisco,
California, USA, 2016. ACM.

[177] H. Zamani, M. Bendersky, X. Wang, and M. Zhang. Situational context for
ranking in personal search. In Proceedings of the 26th International Conference
on World Wide Web, WWW ’17, pages 1531–1540, Perth, Australia, 2017.
International World Wide Web Conferences Steering Committee.

[178] H. Zamani and W. B. Croft. Embedding-based query language models. In
Proceedings of the 2016 ACM International Conference on the Theory of In-
formation Retrieval, ICTIR ’16, pages 147–156, Newark, Delaware, USA, 2016.
ACM.

[179] H. Zamani and W. B. Croft. Estimating embedding vectors for queries. In
Proceedings of the 2016 ACM International Conference on the Theory of In-
formation Retrieval, ICTIR ’16, pages 123–132, Newark, Delaware, USA, 2016.
ACM.

160

[180] H. Zamani and W. B. Croft. Relevance-based word embedding. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’17, pages 505–514, Shinjuku, Tokyo, Japan,
2017. ACM.

[181] H. Zamani and W. B. Croft. Joint modeling and optimization of search and
recommendation. In Proceedings of the First International Conference on De-
sign of Experimental Search and Information Retrieval Systems, DESIRES ’18,
pages 36–41, Bertinoro, Italy, 2018. CEUR.

[182] H. Zamani and W. B. Croft. On the theory of weak supervision for information
retrieval. In Proceedings of the 2018 ACM SIGIR International Conference on
Theory of Information Retrieval, ICTIR ’18, pages 147–154, Tianjin, China,
2018. ACM.

[183] H. Zamani and W. B. Croft. Towards theoretical understanding of weak super-
vision for information retrieval. CoRR, abs/1806.04815, 2018.

[184] H. Zamani, W. B. Croft, and J. S. Culpepper. Neural query performance pre-
diction using weak supervision from multiple signals. In The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval,
SIGIR ’18, pages 105–114, Ann Arbor, MI, USA, 2018. ACM.

[185] H. Zamani, J. Dadashkarimi, A. Shakery, and W. B. Croft. Pseudo-relevance
feedback based on matrix factorization. In Proceedings of the 25th ACM In-
ternational on Conference on Information and Knowledge Management, CIKM
’16, pages 1483–1492, Indianapolis, Indiana, USA, 2016. ACM.

[186] H. Zamani, M. Dehghani, W. B. Croft, E. Learned-Miller, and J. Kamps. From
neural re-ranking to neural ranking: Learning a sparse representation for in-
verted indexing. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management, CIKM ’18, pages 497–506, Torino,
Italy, 2018. ACM.

[187] H. Zamani, M. Dehghani, F. Diaz, H. Li, and N. Craswell. Sigir 2018 work-
shop on learning from limited or noisy data for information retrieval. In The
41st International ACM SIGIR Conference on Research & Development in In-
formation Retrieval, SIGIR ’18, pages 1439–1440, Ann Arbor, MI, USA, 2018.
ACM.

[188] H. Zamani, B. Mitra, X. Song, N. Craswell, and S. Tiwary. Neural ranking
models with multiple document fields. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, WSDM ’18, pages
700–708, Marina Del Rey, CA, USA, 2018. ACM.

[189] H. Zamani, M. Schedl, P. Lamere, and C.-W. Chen. An analysis of approaches
taken in the acm recsys challenge 2018 for automatic music playlist continua-
tion. ACM Trans. Intell. Syst. Technol., 2019. (to appear).

161

[190] C. Zhai. Statistical Language Models for Information Retrieval. Now Publishers
Inc., Hanover, MA, USA, 2008.

[191] C. Zhai and J. Lafferty. Model-based feedback in the language modeling ap-
proach to information retrieval. In Proceedings of the Tenth International Con-
ference on Information and Knowledge Management, CIKM ’01, pages 403–410,
Atlanta, Georgia, USA, 2001. ACM.

[192] C. Zhai and J. Lafferty. A study of smoothing methods for language models
applied to information retrieval. ACM Trans. Inf. Syst., 22(2):179–214, Apr.
2004.

[193] H. Zhang, X. Song, C. Xiong, C. Rosset, P. N. Bennett, N. Craswell, and
S. Tiwary. Generic intent representation in web search. In Proceedings of the
42nd International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’19, pages 65–74, Paris, France, 2019. ACM.

[194] Y. Zhang and X. Chen. Explainable recommendation: A survey and new per-
spectives. CoRR, abs/1804.11192, 2018.

[195] Y. Zhang, X. Chen, Q. Ai, L. Yang, and W. B. Croft. Towards conversational
search and recommendation: System ask, user respond. In Proceedings of the
27th ACM International Conference on Information and Knowledge Manage-
ment, CIKM ’18, pages 177–186, Torino, Italy, 2018. ACM.

[196] G. Zheng and J. Callan. Learning to reweight terms with distributed represen-
tations. In Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’15, pages 575–584,
Santiago, Chile, 2015. ACM.

[197] G. Zhou, T. He, J. Zhao, and P. Hu. Learning continuous word embedding
with metadata for question retrieval in community question answering. In Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Pro-
cessing, ACL-IJCNLP ’15, pages 250–259, Beijing, China, 2015. Association for
Computational Linguistics.

[198] Y. Zhou and W. B. Croft. Ranking robustness: A novel framework to predict
query performance. In Proceedings of the 15th ACM International Conference
on Information and Knowledge Management, CIKM ’06, pages 567–574, Ar-
lington, Virginia, USA, 2006. ACM.

[199] Y. Zhou and W. B. Croft. Query performance prediction in web search environ-
ments. In Proceedings of the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’07, pages 543–
550, Amsterdam, The Netherlands, 2007. ACM.

162

[200] G. Zuccon, B. Koopman, P. Bruza, and L. Azzopardi. Integrating and evaluat-
ing neural word embeddings in information retrieval. In Proceedings of the 20th
Australasian Document Computing Symposium, ADCS ’15, pages 12:1–12:8,
Parramatta, NSW, Australia, 2015. ACM.

163

	Neural Models for Information Retrieval without Labeled Data
	Recommended Citation

	tmp.1569798854.pdf.WFgyl

