8 research outputs found

    Preconditioning for vector-valued Cahn-Hilliard equations

    Get PDF

    Preconditioning for a Phase-Field Model with Application to Morphology Evolution in Organic Semiconductors

    Full text link
    The Cahn--Hilliard equations are a versatile model for describing the evolution of complex morphologies. In this paper we present a computational pipeline for the numerical solution of a ternary phase-field model for describing the nanomorphology of donor--acceptor semiconductor blends used in organic photovoltaic devices. The model consists of two coupled fourth-order partial differential equations that are discretized using a finite element approach. In order to solve the resulting large-scale linear systems efficiently, we propose a preconditioning strategy that is based on efficient approximations of the Schur-complement of a saddle point system. We show that this approach performs robustly with respect to variations in the discretization parameters. Finally, we outline that the computed morphologies can be used for the computation of charge generation, recombination, and transport in organic solar cells

    Modeling the morphology evolution of organic solar cells

    Get PDF
    Organic solar cells present a promising alternative for the generation of solar energy at lower material and production costs compared to widely used silicon-based solar cells. The major drawback of organic solar cells currently is a lower rate of energy conversion. Thus many research projects aim to improve the achievable efficiency. In this work a phase field model is used to mathematically describe the morphology evolution of the active layer composed of polymer as electron-donor and fullerene as electron-acceptor. The derivation of a chemical potential term and a surface energy term for the polymer-fullerene solution using the Flory-Huggins theory forms the basis to employ the Cahn-Hilliard equation. After including several specifics of the application in this non-linear partial differential equation of fourth order, an implementation of the model using the FEM solver software FEniCS provides some simulation results that qualitatively match results from the literature

    Simulation of thin film flows with a moving mesh mixed finite element method

    Full text link
    We present an efficient mixed finite element method to solve the fourth-order thin film flow equations using moving mesh refinement. The moving mesh strategy is based on harmonic mappings developed by Li et al. [J. Comput. Phys., 170 (2001), pp. 562-588, and 177 (2002), pp. 365-393]. To achieve a high quality mesh, we adopt an adaptive monitor function and smooth it based on a diffusive mechanism. A variety of numerical tests are performed to demonstrate the accuracy and efficiency of the method. The moving mesh refinement accurately resolves the overshoot and downshoot structures and reduces the computational cost in comparison to numerical simulations using a fixed mesh.Comment: 18 pages, 10 figure

    Fast iterative solvers for Cahn-Hilliard problems

    Get PDF
    Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Dissertation, 2016von M. Sc. Jessica BoschLiteraturverzeichnis: Seite [247]-25
    corecore