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Abstract. The solution of vector-valued Cahn–Hilliard systems is of interest in many appli-
cations. We discuss strategies for the handling of smooth and nonsmooth potentials as well as for
different types of constant mobilities. Concerning the nonsmooth systems, the necessary bound
constraints are incorporated via the Moreau–Yosida regularization technique. We develop effective
preconditioners for the efficient solution of the linear systems in saddle point form. Numerical re-
sults illustrate the efficiency of our approach. In particular, we numerically show mesh and phase
independence of the developed preconditioner in the smooth case. The results in the nonsmooth case
are also satisfying, and the preconditioned version always outperforms the unpreconditioned one.
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1. Introduction. The Cahn–Hilliard equation is a partial differential equation
of fourth order which is used in materials science [50, 32], image processing [21],
or chemistry [63]. It was originally introduced to model phase separation in bi-
nary alloys [42, 18] that occurs when the temperature of a homogeneous mixture
is rapidly quenched below a critical temperature. In practice, often more than two
phases occur, see, e.g., [48, 27, 24, 23, 7, 45, 34], and the phase field model has been
extended to deal with multicomponent systems. A vector-valued order parameter
u = (u1, . . . , uN )T : Ω × (0, T ) → R

N is introduced, where Ω ⊂ R
d (d = 1, 2, 3) is

a bounded domain, T > 0 is an arbitrary but fixed time, and N is the number of
phases. Each ui describes the fraction of one phase, i.e., if ui(x, t) = 0, then phase i
is absent in x, and if ui(x, t) = 1, only phase i is present there. Hence,

(1.1)

N∑
i=1

ui = 1

and ui ≥ 0 is required, so that admissible states belong to the Gibbs simplex

(1.2) GN :=

{
v ∈ R

N

∣∣∣∣∣
N∑
i=1

vi = 1, vi ≥ 0 for i = 1, . . . , N

}
.

We study a diffuse phase transition, i.e., the region between the phases has a certain
width b, the so-called interface (phase field model). There is also the limit case b ↓ 0
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PRECONDITIONING OF CAHN–HILLIARD EQUATIONS S217

which gives the sharp interface model [33, 32, 52]. The motion of the interfaces
separating N components can be modeled with the Ginzburg–Landau energy

E(u) =
∫
Ω

{
ε2

2

N∑
i=1

|∇ui|2 + ψ(u)

}
dx,

where ε > 0 is the gradient energy coefficient. The potential function ψ : RN →
R

+
0 ∪ {∞} gives rise to phase separation. It can be modeled by a smooth free energy,

e.g., using multiwell potentials [22] such as

(1.3) ψ(u) :=
1

4

N∑
i=1

u2i (1− ui)
2,

or by a nonsmooth multiobstacle potential [4]

(1.4) ψ(u) :=

{
ψ0(u) = − 1

2u · Au, u ∈ GN ,
∞, otherwise,

where the symmetric matrix A ∈ R
N×N contains constant interaction parameters

Aij . From physical considerations, A must have at least one positive eigenvalue. A
typical choice is A = I−11T with 1 = (1, . . . , 1)T and the identity matrix I ∈ R

N×N ,
which means that the interaction between all different components is equal and no
self-interaction occurs. Other possible potentials are logarithmic ones; see, e.g., [3].
This work deals with the two types of potential (1.3) and (1.4). Smooth potentials
are used for shallow temperature quenches. For the deep quench limit, i.e., a very
rapid cooling of the mixture, multiobstacle potentials have to be used, which in turn
lead to systems of variational inequalities. Motivated by the work of Hintermüller,
Hinze, and Tber [43] as well as our previous studies [12, 11], all of them considering
scalar, nonsmooth Cahn–Hilliard systems, we incorporate the bound constraints via
the Moreau–Yosida regularization technique and solve the resulting subproblems by
a semismooth Newton (SSN) method.

As we show in the course of this paper, the solution of a linear system Kx = b with
a real nonsymmetric matrix K is at the heart of this method. The sparse linear sys-
tems are usually of very large dimension, and in combination with three-dimensional
experiments, the application of direct solvers such as UMFPACK [20] becomes in-
feasible. As a result, iterative methods have to be employed (see, e.g.,, [39, 55] for
introductions to this field). We propose the use of a Krylov subspace solver. The
convergence behavior of the iterative scheme typically depends on the conditioning
of the problem and the clustering of the eigenvalues. These properties can be en-
hanced using preconditioning techniques P−1Kx = P−1b, where P is an invertible
matrix that is easy to invert and that resembles K. In this paper, we provide efficient
preconditioners P for the solution of Cahn–Hilliard variational (in-)equalities using
an effective Schur complement approximation and (algebraic) multigrid developed for
elliptic systems [29, 55, 54].

The paper is organized as follows. In section 2, we derive the vector-valued Cahn–
Hilliard systems for the use of the smooth potential (1.3). These are discretized in time
in section 3, and stability and uniqueness conditions for the time step size are derived.
Section 4 presents the systems with the nonsmooth potential (1.4) and their handling
with the Moreau–Yosida regularization technique. Section 5 shortly introduces the
SSN method to solve the regularized subproblems. The linear systems arising from
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S218 JESSICA BOSCH AND MARTIN STOLL

the discretization using finite elements are derived in section 6. In section 7, we an-
alyze the linear systems and propose preconditioning strategies for the saddle point
problems. The algorithms for the solution and preconditioning procedures are pre-
sented in section 8. Section 9 illustrates the efficiency of our approach. In section 10,
we discuss alternative approaches, and finally, section 11 summarizes our findings.

2. Derivation. The evolution of u is governed by the H−1-gradient of the Ginz-
burg–Landau energy under the constraint (1.1), which has to hold everywhere at any
time. Using the smooth potential (1.3), the vector-valued Cahn–Hilliard equations
read

∂tui = (LΔw)i,(2.1)

wi = f(ui) + β(u)− ε2Δui,(2.2)

∇ui · n = (L∇w)i · n = 0 on ∂Ω(2.3)

for i = 1, . . . , N . The matrix L = (Lij)i,j=1,...,N ∈ R
N×N is the mobility matrix and

f(u) = (f(u1), . . . , f(uN))
T :=

(
∂ψ

∂u1
, . . . ,

∂ψ

∂uN

)T
=
∂ψ

∂u
,

in which f(ui) = u3i − 3
2u

2
i +

1
2ui, and β(u) := − 1

N

∑N
i=1 f(ui). In the process, the

chemical potentials w = (w1, . . . , wN )T result from the variational derivative of the
energy E . In doing so, admissible variations d = (d1, . . . , dN )T of u have to fulfill∑N

i=1 di = 0 in order to ensure (1.1). This explains the presence of the term β(u);
see also [47] for a more detailed calculation. Equation (2.3) contains the natural zero
Neumann boundary condition ∇ui · n = 0 on ∂Ω as well as the mass conserving
boundary condition (L∇w)i = 0 on ∂Ω, i = 1, . . . , N . We obtain d

dt

∫
Ω
ui dx = 0,

by applying Gauss’s theorem in (2.1) together with the latter boundary condition. In
other words, the total mass of each phase is conserved. We refer to [24] for a detailed
development of the vector-valued Cahn–Hilliard equations.

The coefficients Lij may depend on u (see, e.g., [23]), but this work deals with
constant Lij. In order to ensure the constraint (1.1), a common way in the literature
is to assume that L is symmetric and L1 = 0 (see, e.g., [24, 9]), since summing (2.1)
over i = 1, . . . , N leads then to

∂

∂t

N∑
i=1

ui =

N∑
i=1

∂ui
∂t

=

N∑
i=1

∇ · (L∇w)i = ∇ ·
N∑

i,j=1

Lij∇wj = ∇ ·
N∑
j=1

∇wj
N∑
i=1

Lij = 0.

Therefore, (1.1) is fulfilled during the evolution if
∑N

i=1 ui = 1 at time 0. It is further
assumed that L is positive semidefinite, as differentiating the energy E gives

d

dt
E(u) = −

∫
Ω

N∑
i=1

∇wi · (L∇w)i dx ≤ 0,

where we have used Green’s first identity. Therefore, the total energy is nonincreasing
in time.

Remark 2.1. We have explained above the common assumption L1 = 0. Never-
theless, it is possible to work with L = I for convenience; see, e.g., [46]. Therefore,
we also consider this case in our work and our numerical solver simplifies.
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As already mentioned, this work focuses on constant mobility matrices. Addi-
tionally, we restrict the class of considerations to diagonal and circulant ones. More
general forms are a topic of further research and are not discussed in the present
paper. As reference examples, we take L = I (used, e.g., in [46]) and L = I − 1

N 11T

(used, e.g., in [23, 38]).
We now want to discretize the problem (2.1)–(2.3) (in weak formulation) in time

and give stability and uniqueness conditions.

3. Time step conditions for the smooth potential. Concerning the time,
fully implicit discretizations are the most accurate; see, e.g., [8, 17, 12]. Let τ > 0
denote the time step size and n ∈ N the time step. We use the backward Euler
discretization for the time derivatives ∂tui, i = 1, . . . , N , and treat all the other terms
implicitly. Then, by considering the weak formulation of (2.1)–(2.3), for every time
step we have to solve the time-discrete systems(

ui − u
(n−1)
i , v

)
+ τ ((L∇w)i ,∇v) = 0 ∀v ∈ H1(Ω),(3.1)

− (wi, v) + ε2 (∇ui,∇v) + (f(ui), v)− 1

N

⎛
⎝ N∑
j=1

f(uj), v

⎞
⎠ = 0 ∀v ∈ H1(Ω),(3.2)

i = 1, . . . , N , where we write u(n) = u and w(n) = w. Here, (·, ·) stands for the L2(Ω)-
inner product. Now, we want to give stability and uniqueness conditions for the time
step. However, the quartic growth of ψ(u) at infinity introduces various technical
difficulties in the analysis. Therefore, we consider a truncated multiwell potential. To
be more precise, we restrict the growth of ψ(u) to be quadratic for ui ≤ 1 −M and
ui ≥ M for a given constant M . This is in fact a common practice (see, e.g., [57]
and references therein), and the authors of [57] have proved stability conditions for
scalar Allen–Cahn and Cahn–Hilliard equations with a truncated double-well poten-
tial. Using this technique, we get the following condition: There exists a constant T
such that

(3.3) max
s∈RN

∣∣∣∣ ∂2ψ∂ui2
(s)

∣∣∣∣ ≤ T ∀i = 1, . . . , N.

With the use of (3.3), we can prove the following.

Theorem 3.1. The solution of (3.1)–(3.2) is unique provided that τ < 4ε2λmin

T 2‖L‖2 ,

where ‖ · ‖ denotes the spectral radius and λmin the smallest positive eigenvalue of L.

Theorem 3.2. Under the condition τ < 8ε2λmin

T 2‖L‖2 , the time discretization scheme

(3.1)–(3.2) is energy stable, i.e., its solution satisfies E(u) ≤ E(u(n−1)) for all n ≥ 1.
The proofs can be found in Appendices A and B. The resulting time step restric-

tions are similar to the stability condition obtained in [57]. Although these conditions
appear to be quite restrictive for ε 
 1, the authors of [57] pointed out that they
are in fact needed for the sake of convergence. Moreover, note that explicit schemes
usually lead to very severe time step restrictions of order O(h4).

The final steps to get to the discrete linear systems of equations are straightfor-
ward. The nonlinear systems (3.1)–(3.2) are solved by standard Newton methods and
discretized by finite element methods; see section 6. In the following, we concentrate
on the multiobstacle potential (1.4) and shortly present the used technique that deals
with the nonsmoothness.
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S220 JESSICA BOSCH AND MARTIN STOLL

4. Moreau–Yosida regularization. As motivated in [43, 12, 11], we incorpo-
rate the bound constraints u ≥ 0 a.e. with the Moreau–Yosida regularization tech-
nique. Instead of the energy functional, E we consider

Eν(uν) =
∫
Ω

{
ε2

2

N∑
i=1

|∇uν,i|2 + ψ0(uν) +
1

2ν

N∑
i=1

|min(0, uν,i)|2
}

dx,

where 0 < ν 
 1 denotes the penalty parameter. As done for the smooth potential
in the two sections before, we can now derive the time-discrete systems (using an
implicit discretization scheme) for the nonsmooth potential:(

uν,i − u
(n−1)
i , v

)
+ τ ((L∇wν)i,∇v) = 0 ∀v ∈ H1(Ω),(4.1)

(wν,i, v)− ε2(∇uν,i,∇v) + ((Auν )i, v)− 1

ν
(min(0, uν,i), v)

+
1

N

N∑
j=1

[
1

ν
(min(0, uν,j), v)− ((Auν )j , v)

]
= 0 ∀v ∈ H1(Ω),

(4.2)

i = 1, . . . , N . Next, we solve (4.1)–(4.2) by an SSN method which is motivated in
[43, 12, 11] and shortly summarized in the following section.

5. Semismooth Newton method. For a specified sequence ν → 0, we solve
the system (4.1)–(4.2), which can be compactly written as Fν(uν ,wν) = 0 for every
ν by an SSN algorithm; see also [44]. Due to the presence of the minimum operator,
Fν is not Fréchet-differentiable. However, the minimum operator satisfies the weaker
notion of Newton differentiability; see [44, 43].

Definition 5.1 (Definition 5.1 in [43]). Let X and Z be Banach spaces, D ⊂ X
an open subset. A mapping F : D ⊂ X → Z is called Newton-differentiable in U ⊂ D
if there exists a family of mappings G : U → Z such that

lim
d→0

‖F (x+ d)− F (x)−G(x+ d)d‖Z
‖d‖X = 0 ∀x ∈ U.

The operator G is called a Newton derivative of F on U .
In general, for a Newton-differentiable mapping F with a Newton derivative G,

the SSN iteration is given as

(5.1) x(k+1) = x(k) −G
(
x(k)

)−1

F (x(k)), k = 0, 1, . . . .

Given a sufficiently close initial guess x(0), [44, Theorem 1.1 ] shows superlinear con-
vergence of the sequence {x(k)}k∈N, generated by (5.1), to the solution of F (x) = 0.

Regarding the scalar two-component Cahn–Hilliard equation, the Newton differ-
entiability of the arising mapping Fν as well as the superlinear convergence of the
corresponding SSN iteration are proved in [43] for the semi-implicit time-discrete sys-
tem and extended to the implicit time-discrete system in [12]. Both works are based on
the Newton derivative of the minimum mapping min(0, ·) : H1(Ω) → H1(Ω)∗, which
is given as

Gmin(y)(x) =

{
1 if y(x) ≤ 0,
0 if y(x) > 0;
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see [44, Proposition 4.1] and [43, Lemma 5.3]. We use this result for the Newton
derivative of every minimum operator in our mapping Fν given in (4.1)–(4.2). Re-
garding the ith component, this leads us to the Newton derivative〈

G(i)
ν (u,w)(δu, δw), (φ, ψ)

〉
=

(
τ((L∇δw)i,∇φ)

(δwi, ψ)− ε2(∇δui,∇ψ) + ((Aδu)i, ψ)− 1
ν (χA(ui)δui, ψ)

)

+

(
(δui, φ)

1
N

∑N
j=1

[
1
ν (χA(uj)δuj, ψ)− ((Aδu)j , ψ)

]) ,
where χA(ui) is the characteristic function of the set

A(ui) := {x ∈ Ω : ui(x) < 0}.
We now want to discretize the time-discrete problem (4.1)–(4.2) in space and then

discuss its efficient solution.

6. Finite element approximation. For the discretization in space we use finite
elements [59]. In the following, we assume for simplicity that Ω is a polyhedral domain.
Generalizations to curved domains are possible using boundary finite elements with
curved faces. Let {Rh}h>0 be a triangulation of Ω into disjoint open rectangular
elements with maximal element size h, Jh be the set of nodes of Rh, and pj ∈ Jh
be the coordinates of these nodes. The use of rectangles is motivated by performing
the implementation with deal.II [2]. We approximate the infinite-dimensional space
H1(Ω) by the finite-dimensional space

Sh :=
{
φ ∈ C0(Ω): φ|R ∈ Q1(R) ∀R ∈ Rh

} ⊂ H1(Ω)

of continuous, piecewise multilinear functions. We denote the standard nodal basis
functions of Sh by ϕj for all j ∈ Jh. The discretized version of the penalized problem
(4.1)–(4.2) consists in finding (uν,h,wν,h) ∈ SNh × SNh such that

(6.1) 〈Fν,h(uν,h,wν,h),vh〉 = 0 ∀vh ∈ SNh ,

where the components are〈
F

(1,i)
ν,h (uν,h,wν,h), vh

〉
=
(
uν,h,i − u

(n−1)
h,i , vh

)
h
+ τ ((L∇wν,h)i,∇vh),〈

F
(2,i)
ν,h (uν,h,wν,h), vh

〉
= (wν,h,i, vh)h − ε2(∇uν,h,i,∇vh) + ((Auν,h)i, vh)h

− 1

ν
(min(0, uν,h,i), vh)h

+
1

N

N∑
j=1

[
1

ν
(min(0, uν,h,j), vh)h − ((Auν,h)j , vh)h

]

for i = 1, . . . , N . The semi-inner product (·, ·)h on C0(Ω) is defined by

(f, g)h :=

∫
Ω

πh(f(x)g(x)) dx =

m∑
i=1

(1, ϕi)f(pi)g(pi) ∀f, g ∈ C0(Ω),

where πh : C0(Ω) → Sh is the Lagrange interpolation operator. Within our finite
element framework, for a given (uh,wh) ∈ SNh × SNh , every step of the SSN method

D
ow

nl
oa

de
d 

10
/3

0/
15

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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for solving (6.1) requires computing (δuh, δwh) ∈ SNh × SNh satisfying

(δuh,i, vh)h + τ ((L∇δwh)i,∇vh) = −F (1,i)
ν,h (uh,wh),

(δwh,i, vh)h − ε2(∇δuh,i,∇vh) + ((Aδuh)i, vh)h − 1

ν
(χhA(uh,i)

δuh,i, vh)h

+
1

N

N∑
j=1

[
1

ν
(χhA(uh,j)

δuh,j, vh)h − ((Aδu)h,j , vh)h

]

= −F (2,i)
ν,h (uh,wh)

for all vh ∈ Sh and i = 1, . . . , N , where χhA(uh,i)
:=

∑m
j=1 χ

h
A(uh,i)

(pj)ϕj with

χhA(uh,i)
(pj) = 0 if uh,i(pj) ≥ 0 and χhA(uh,i)

(pj) = 1 otherwise. If we now write

a function vh ∈ Sh by vh =
∑

j∈Jh
vh,jϕj and denote the vector of coefficients by v,

the fully discrete linear systems (smooth and nonsmooth) read in matrix form as

(6.2)

[
I ⊗M −B
τL ⊗K I ⊗M

] [
w(k+1)

u(k+1)

]
=

[
b

(I ⊗M)u(n−1)

]
,

where k denotes the Newton step. The first right-hand side is

b = (I ⊗M)

(
−2

(
u(k)

)3
+

3

2

(
u(k)

)2)
+

1

N
(I ⊗M)

⎛
⎝ N∑
j=1

2
(
u
(k)
j

)3
− 3

2

(
u
(k)
j

)2⎞⎠1

for the use of the smooth potential and

b = 0

for the use of the nonsmooth potential. Further, K := ((∇ϕi,∇ϕj))i,j=1,...,m ∈ R
m×m

is the stiffness matrix,M := ((ϕi, ϕj)h)i,j=1,...,m ∈ R
m×m is the lumped mass matrix,

and I ∈ R
N×N is the identity matrix. M is a symmetric positive definite diagonal

matrix and K is symmetric and positive semidefinite. For N = 3, the block B is given
as

B =

⎡
⎣ B11 B2 B3

B1 B22 B3

B1 B2 B33

⎤
⎦ ,

where for i = 1, . . . , N

Bii = ε2K +

(
1− 1

N

)
FiMFi,

Bi = − 1

N
FiMFi,(6.3)

Fi = diag

(
3(u

(k)
i (pj))

2 − 3u
(k)
i (pj) +

1

2

)
in the smooth system and

Bii = ε2K +

(
1− 1

N

)(
1

ν
GiMGi −M

)
,

Bi = − 1

N

(
1

ν
GiMGi −M

)
,(6.4)

Gi = diag

(
1 u

(k)
i (pj) < 0,

0 otherwise
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in the nonsmooth system. Remember, this work considers the choice A = I − 11T

as well as diagonal and circulant mobility matrices L. The two reference examples
L = I and L = I− 1

N 11T are used in the following to demonstrate the preconditioning
technique. The system matrix in (6.2) is denoted by K for the remainder of the paper.

7. Preconditioning. In both cases, smooth and nonsmooth, a linear nonsym-
metric system in saddle point form is at the heart of the computation. We propose
the block-triangular preconditioner

P =

[
I ⊗M 0

τL⊗K −Ŝ
]
,

motivated by [25, 49], where Ŝ is an approximation of the Schur complement S =
I ⊗M + τ(L⊗K)(I ⊗M)−1B. The preconditioned matrix becomes

P−1K =

[
I −(I ⊗M)−1B
0 −Ŝ−1S

]
.

It has Nm eigenvalues at one, and the remaining ones are characterized as the eigen-
values of the matrix Ŝ−1S, which has for Ŝ being a good approximation only a small
number of different eigenvalue clusters. This in turn is known to result in only a
few iterations of suitable Krylov subspace solvers until convergence [25, 49]. There-
fore, the theoretical ideal choice is Ŝ = S, since the generalized eigenvalue problem
Kx = λPx has in this case only two distinct eigenvalues λ1 = 1 and λ2 = −1. But the
application of the preconditioner P requires the action of the inverses of I⊗M and of
Ŝ. From this point of view, the ideal choice Ŝ = S is not practical since this is a full
matrix. Inverting the block I ⊗M is cheap, as M is a nonsingular diagonal matrix.1

The remaining task is now to create a Schur complement approximation Ŝ that is
easy to invert and resembles S. The two difficult points thereby are the nondiagonal
block matrices B and L⊗K which couple N equations, respectively. Concerning the
latter, note that circulant matrices L can be diagonalized using the Fourier matrix;
see [19]. We will see in the next section how we can take advantage of this property
for the construction of preconditioners. The block matrix B contains the gradient
energy parts (that only arise in the diagonal blocks) as well as the interacting terms
coming from the potential. These include, in the case of the nonsmooth potential, the
coupling of all penalization terms. In fact, the latter poses the most challenging part;
see section 7.2 for details. Regarding the use of the smooth potential, we present in
the following an efficient Schur complement approximation. In particular, this ap-
proximation is proved to be optimal for a high-quality simplification of the system
matrix K when L = I is used.

7.1. Schur complement preconditioner in the smooth case. The first step
for the construction of a practical Schur complement preconditioner consists of the
approximation of the nondiagonal block matrix B. The specification of B given in (6.3)
shows that the matrices Fi, i = 1, . . . , N , only depend on the known solution u(k) from
the previous Newton step. From the constraints of the Gibbs simplex (1.2), we know
0 � u(k) � 1. Therefore, every diagonal entry of Fi, i = 1, . . . , N , approximately
ranges from −2.5 up to 3.5. Together with the estimated order of entries O(M) = h2

for the mass matrix, we approximate B by B̂ = ε2I ⊗ K. In other words, we set

1For consistent mass matrices, the Chebyshev semi-iteration [36, 37] provides a powerful precon-
ditioner [61, 53].

D
ow

nl
oa

de
d 

10
/3

0/
15

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S224 JESSICA BOSCH AND MARTIN STOLL

all blocks FiMFi, i = 1, . . . , N , to zero matrices, as their estimated order of entries
ranges from −3.5 h2 up to 2.5 h2, i.e., a small interval around zero. The resulting
approximation K0 of K reads as

(7.1) K0 =

[
I ⊗M −ε2I ⊗K
τL ⊗K I ⊗M

]
.

Note that this is the approximation proposed in [14], which is proven to be of high-
quality for small enough time steps. To be more precise, K−1

0 K hasmN eigenvalues at
one and the remaining ones are characterized as λi = μi+1, i = 1, . . . ,mN , where the

μi’s are eigenvalues of a matrix Q which can be bounded by ‖Q‖ ≤
√
τ

2ε . Therefore,

μi can be made arbitrarily close to zero by choosing the time step
√
τ small enough

compared to 2ε.
Next, we go over to the construction of the preconditioner Ŝ for the Schur comple-

ment S0 = I⊗M + τε2(L⊗K)(I⊗M)−1(I ⊗K) of K0. The main idea, as motivated
in [51], is the following: Construct a preconditioner of the form Ŝ = ABC with
A, B, and C symmetric positive definite, such that the exact Schur complement is
captured as close as possible. Therefore, we propose the following Schur complement
preconditioner:

Ŝ = Ŝ1(I ⊗M)−1Ŝ2 =
(
I ⊗M +

√
τε(L⊗K)

)
(I ⊗M)−1

(
I ⊗M +

√
τε(I ⊗K)

)
= I ⊗M + τε2(L ⊗K)(I ⊗M)−1(I ⊗K) +

√
τε(L⊗K) +

√
τε(I ⊗K).

(7.2)

The first two terms in (7.2) match the Schur complement S0. Due to the balanced
distribution of τε2 in the form of

√
τε in both factors, Ŝ1 and Ŝ2, the influence of

both remainder terms in (7.2) is reduced. In the case L = I, this approximation turns
out to be an optimal Schur complement preconditioner for S0 (see also [51]).

Lemma 7.1. If L = I, then the eigenvalues of Ŝ−1S0 are contained within the
following interval:

λ(Ŝ−1S0) ∈ [0.5, 1] .

Proof. As both S0 and Ŝ are symmetric in the case L = I, we may prove the
result using a Rayleigh quotient argument. We write

v�S0v

v�Ŝv =
v� (I ⊗M + τε2(I ⊗K)(I ⊗M)−1(I ⊗K)

)
v

v� (I ⊗M + τε2(I ⊗K)(I ⊗M)−1(I ⊗K) + 2
√
τε(I ⊗K))v

=
a�a+ b�b

a�a+ b�b+ 2a�b
,

where a = (I ⊗M)
1
2v and b =

√
τε(I ⊗M)−

1
2 (I ⊗K)v. From the properties of M

and K, it follows a�a > 0 and b�b, a�b ≥ 0, and therefore v�S0v

v�Ŝv
≤ 1. On the other

hand, (a− b)�(a− b) ≥ 0, which gives v�S0v

v�Ŝv
≥ 0.5.

Let us now discuss the action of the inverse of Ŝ which consists of the action of the
inverses of the block matrix Ŝ1 and of the diagonal block matrix Ŝ2 as well as cheap
multiplications with the mass matrix M . The block Ŝ2 is of block-diagonal form and
contains the same elliptic operator on each diagonal block. Therefore, we approximate
the inverse of each diagonal block with one and the same algebraic multigrid (AMG)
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preconditioner.2 Regarding Ŝ1, this block is in fact equal to Ŝ2 if the mobility matrix
L = I is used. In total, for preconditioning the system matrix K, which is of size 2mN ,
we need to apply only two AMG preconditioners of size m each plus multiplications
with the diagonal mass matrix. As long as the mesh does not change, we do not
have to recompute them. In this sense, the application of the preconditioner P is
independent of the number of phases.

Now, let us study the case if L = I − 1
N 11T and therefore Ŝ1 is not of block-

diagonal form anymore. But as L is a circulant matrix, it can be diagonalized using
the Fourier matrix F , i.e.,

L = F diag(λ1, . . . , λN )FH ;

see [19]. This property forms the basis of an efficient fast Fourier transform (FFT)
based preconditioner which is used, e.g., in [58] and briefly reviewed in the following.
The idea is to diagonalize not only L but also the whole block matrix Ŝ1 (which
contains L) since the latter is the matrix whose inverse we have to apply. More
precisely, if we apply the FFT to the system Ŝ1y = g, we get an equivalent system
with the block-diagonal system matrix

(7.3) (FH ⊗ I)Ŝ1(F ⊗ I) = I ⊗M +
√
τε diag(λ1, . . . , λN )⊗K.

Inserting the eigenvalues of L, which are λ1 = 0 and λ2 = · · · = λN = 1, we see
that the resulting approximation in (7.3) is of block-diagonal form and almost all
diagonal blocks are equal. In fact, only two different diagonal blocks occur, M for
λ1 = 0 and M +

√
τεK for all remaining eigenvalues λj = 1. Typically, the extra

effort is negligible. As the application of the Fourier transform will in general result
in complex valued systems, we formulate the blocks in (7.3) to 2× 2 real-valued block
systems. In detail, we have to solve two types of systems[

M 0
0 M

] [
ỹr
ỹc

]
=

[
g̃r
g̃c

]

and [
M +

√
τεK 0

0 M +
√
τεK

] [
ỹr
ỹc

]
=

[
g̃r
g̃c

]
.

Again, the first of the above systems arises for the diagonal block with λ1 = 0 and the
second one for all the remaining eigenvalues λj . As in [58], we solve these real-valued
systems with a fixed number of steps of an inexact Uzawa-type method

ỹ(l+1) = ỹ(l) + ω P−1
1 r̃(l),

where r(l) denotes the residual and ω is the relaxation parameter. P1 is a block-
diagonal preconditioner whose inverse is applied by inverting the diagonal, nonsingular
blockM or by using an AMG approximation of the blockM+

√
τεK. Again, indepen-

dent of the number of phases, this is the one and the same AMG preconditioner every

2AMG methods typically exhibit geometric-like properties for positive definite elliptic type op-
erators but use only algebraic information. This has the advantage that AMG can work well even
for complicated geometries and meshes. We refer to [54, 29] for more information on AMG. We also
want to emphasize that geometric multigrid (see, e.g., [62, 40]) approximations are also well suited

to approximate Ŝ1 and Ŝ2 provided they can be readily applied.
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S226 JESSICA BOSCH AND MARTIN STOLL

time, and in this sense, the circulant approach also leads to a phase-independent
preconditioner P . Section 9.2 shows the efficiency of the proposed preconditioning
strategy for both cases of L. In particular, we numerically illustrate the independence
of P with respect to the parameters h and N .

Let us now turn to the more challenging case with a nonsmooth potential.

7.2. Schur complement preconditioner in the nonsmooth case. As al-
ready mentioned in section 7, the nondiagonal block B within the Schur complement
S = I ⊗M + τ(L ⊗K)(I ⊗M)−1B complicates the construction of a Schur comple-
ment approximation whose inverse can be applied in an efficient and easy way. Taking
only the smooth potential into consideration, we have seen that we can approximate
B with a block-diagonal matrix by using only the bound constraints from the Gibbs
simplex (1.2). However, the inclusion of nonsmoothness involves additional severe
penalizations into the system matrix. As can be seen from (6.4), penalized entries are
scattered throughout the diagonals of every block of B. The intensity of the penaliza-
tion can be controlled by the penalty parameter ν. The smaller ν is, the stronger the
penalization and the more accurate the numerical approximation of the nonsmooth-
ness. In particular, regarding the nondiagonal blocks of B, the estimated order of

those penalized entries is −h2

N ( 1ν − 1), whereas it is h2

N for nonpenalized entries. The

estimated difference of both types of entries is then of order h2

Nν , which indicates a
severe dependency between h, N , and ν. This implies, e.g., that this difference de-
creases with decreasing mesh size. However, we have in mind that we want to go over
to adaptive mesh strategies in the future. Therefore, the estimated order of penalized
entries is usually of large size and highly differs to the order of the remaining nonpe-
nalized entries. So they should not be neglected. That is why an approximation of
the matrix B in block-diagonal form (as it was done in the smooth case) seems not to
be of good quality, and our experiences also confirm this observation.

On the other hand, the position of penalized entries is changing with every Newton
step. In detail, the places with the penalty parameter in the blocks Bi or Bii depend
on the phase ui. Since all phases are separated in the domain (at least after a few
time steps), one cannot expect the penalty parameter to act in the same regions
for all phases. Therefore, a common distribution of penalized entries to all phases
is not satisfying. That is why an approximation of the matrix B in form of equal
blocks for all phases (as was also done in the smooth case) seems not to be of good
quality, and our experiences also confirm this observation. All in all, we end up with
keeping the whole block B within the Schur complement preconditioner. Regarding its
construction, we proceed as in the previous section, i.e., we construct a preconditioner
in matrix product form such that the exact Schur complement is captured as close as
possible. The proposed Schur complement preconditioner is then

Ŝ = Ŝ1(I ⊗M)−1Ŝ2

=

(
N

N − 1
(I ⊗M) +

√
τ(L ⊗K)

)
(I ⊗M)−1

(
N − 1

N
(I ⊗M) +

√
τB
)

= I ⊗M + τ(L ⊗K)(I ⊗M)−1B +

√
τ N

N − 1
B +

√
τ
N − 1

N
(L⊗K),(7.4)

which is similar to the corresponding approximation in the smooth case. The first two
terms in (7.4) match the exact Schur complement. Due to the balanced distribution
of τ in form of

√
τ in both factors, Ŝ1 and Ŝ2, the influence of both remainder terms
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in (7.4) is reduced. Let us discuss the action of the inverses of Ŝ1 and Ŝ2. The
former was already studied in the previous section. Therefore, let us concentrate
on the latter now. The factor Ŝ2 still contains the complicated, nondiagonal block
B, but its diagonal blocks are now shifted by mass matrices. These shifts were not
just products of randomness. Without them, the diagonal blocks of Ŝ2 would be
indefinite. However, we want to apply the action of the inverse of the diagonal blocks
of Ŝ2 (see below). Solving indefinite systems typically causes problems; see, e.g., [26],
which describes the difficulty of solving Helmholtz problems with classical iterative
methods. However, shifting the diagonal blocks as proposed in Ŝ2 makes them positive
definite whenever τ < 1, which is the case for our time discretization scheme. The
proposed strategy concerning the solution of the system Ŝ2y = g is the use of a block
Jacobi method with a fixed number of steps:

y(l+1) = y(l) + ωP−1
2 r(l).

P2 is a block-diagonal preconditioner whose inverse is applied by using AMG approx-
imations of the positive definite diagonal blocks of Ŝ2. Unfortunately, this implies
the need of N different AMG preconditioners, which have to be recomputed in every
Newton step.

All in all, due to the structure of B, preconditioning the nonsmooth system is
more complicated than for the smooth one. Nevertheless, section 9.3 presents the
performance of the presented preconditioner and shows promising results.

8. Solution algorithm. We now outline the method for the solution of the
multicomponent problems with a nonsmooth potential. The basic steps needed to
perform in each time step are summarized in Algorithm 1. Additionally, Algorithm 2
illustrates the application of the preconditioner P .

Algorithm 1. Solution of vector-valued nonsmooth Cahn–Hilliard

equations.

Input: u(0) := u(·, 0), w(0) := w(·, 0)
Output: approximations u(t), w(t) of u(·, t), w(·, t)

1 for n = 1, . . . , t do
2 if n ≤ nc then
3 s1 = 1
4 else
5 s1 = smax

6 end
7 Update second right-hand side of the linear system
8 for s = s1, . . . , smax do
9 ν = νs

10 for k = 0, 1, 2, . . . until convergence do
11 Update first right-hand side of the linear system
12 Update Gi and the corresponding AMG solver Ai for i = 1, . . . , N

13 Calculate Newton residual ‖r(k)ν ‖2
14 Solve the linear system

15 end

16 end

17 end

D
ow

nl
oa

de
d 

10
/3

0/
15

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S228 JESSICA BOSCH AND MARTIN STOLL

Algorithm 2. Application of the preconditioner P in the non-

smooth case.

Input: b1, b2

Output: x1, x2

1 Solve (I ⊗M)x1 = b1

2 if L = I then

3 Solve
(

N
N−1 (I ⊗M) +

√
τ (I ⊗K)

)
y2 = τ(I ⊗K)x1 − b2

4 if L = I − 1
N 11� then

5 Apply FFT to the system Ŝ1y2 = τ(L ⊗K)x1 − b2

6 Solve the resulting block diagonal system in real-valued form with an
inexact Uzawa-type method and the use of AMG preconditioners

7 Solve Ŝ2x2 =
(
N−1
N (I ⊗M) +

√
τB)x2 = (I ⊗M)y2 with a block Jacobi

method using AMG preconditioners Ai, i = 1, . . . , N for the diagonal blocks of
Ŝ2

9. Numerical results. In this section, we show results for the vector-valued
Cahn–Hilliard problems. Concerning the regularized subproblems in the case of the
nonsmooth potential, we choose the sequence ν1 = 10−1 ≥ ν2 = 10−2 ≥ · · · ≥ νmax =
10−7 of penalty parameters and solve each corresponding subproblem Fνi(uνi,h,wνi,h)
by the SSN method. In doing so, each Newton method is initialized by the approxi-
mate solution of the previous one. If not mentioned otherwise, we fix ν = νmax after
the first time step, i.e., from then on it suffices to solve only one SSN method per time
step. This is because the initial solution at the beginning might not be a good starting
point for the SSN methods. For the (smooth and nonsmooth) Newton method, we
use the stopping criterion in [43], given by

‖Fν(u(k)
h ,w

(k)
h )‖2 ≤ εrel ‖Fν(u(0)

h ,w
(0)
h )‖2 + εabs, k = 1, . . . , kmax,

where we set kmax = 20, εrel = 10−12, and εabs = 10−6 in all examples. In each
Newton step, we solve the linear system (6.2) by a Krylov subspace solver. The left
preconditioners we have presented can be embedded into various of such iterative
solvers. For our nonsymmetric system matrix K, we propose the use of a nonsymmet-
ric short-term recurrence method, namely, BiCG [30], but note that also other solvers
such as QMR [31], BiCGStab [60], or GMRES [56] can be used with this precondi-
tioner. We set the BiCG tolerance to be 10−7 for the preconditioned relative residual
in all examples. The FFT-based preconditioner uses three steps of the inexact Uzawa
method, and the block Jacobi preconditioner uses five steps. For the multilevel ap-
proximations, we choose Trilinos AMG approximations [41]. For one application of
the preconditioner, we take in general 10 steps of a Chebyshev smoother and two
V-cycles. The discretization is performed with deal.II [2], which allows the use of
the Trilinos library. All numerical experiments listed here are generated with finite
elements on rectangles.

Regarding the mesh size, experiments show that it is essential to highly resolve
the interface. In particular, as the authors of [10, 6] pointed out, it is essential to
ensure that at least eight grid points lie on the interface to avoid mesh effects. Using
nonsmooth potentials, this leads to the condition hmin ≤ επ

9 ; see, e.g., [6]. Using
smooth potentials, the interfacial profile can be described by means of a tanh term.
Following [47], the authors define the interface thickness to be the distance from 0.05

to 0.95, so that the equilibrium interface thickness is given by 4
√
2ε

tanh (0.9) . If we want
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to have again at least eight grid points across the interface, we get the condition

hmin ≤ 4
√
2ε

8 tanh (0.9) .

Regarding the time step size, the existence and uniqueness of corresponding dis-
crete solutions of the nonsmooth system has been shown in [9, Theorem 2.4] under

the condition τ < 4ε2

λ2
A‖L‖ , where λA is the largest positive eigenvalue of A and ‖L‖

denotes the spectral norm of L. For our choice of matrices A and L, this leads to the
bound τ < 4ε2. Having the mesh size in mind, this implies a time step restriction of
order h2min. At first view, this seems not to be efficient in terms of long time intervals.
But experiments show that the time step restriction is an essential characteristic of
the nature of the problem [17, 12]. Using smooth potentials, we have shown stability
and uniqueness conditions in section 3 if we pass over to truncated smooth potentials.
These time step restrictions are again of order h2min. In practice, we follow [46], where
the authors have numerically determined the largest possible time step which allows
stable numerical computations. These are given as 3.2 · 10−2, 7.8 · 10−3, 1.7 · 10−3,
and 4.4 · 10−4 for uniform meshes with size h = 2−i, i = 5, . . . , 8, and ε = 0.64 h.
Some calculations show that they can approximately described by 73ε2, and this is
the time step size we use in all experiments, if not mentioned otherwise.

The domain used is [0, 1]2. The initial state for almost all experiments below is
given by 100 randomly distributed circles with different radii.

9.1. Evolution using smooth and nonsmooth potentials. This section
demonstrates the distinctive properties of both types of potential. Figure 1 shows
the evolution of five phases over 4000 time steps on an uniform mesh of size h = 2−7.
The parameters are taken as ε = 0.0047 and τ = 73ε2 in the smooth case and as
ε = 9h

π and τ = 0.001 in the nonsmooth case. Here, we fixed ν = νmax from time
step three on. Regarding the smooth setting, the CPU time for the whole simulation
is 226062s. In total, 4049 Newton steps were performed, which means that on aver-
age, only one Newton iteration is run per time step. The average number of BiCG
iterations per time step is 22 with an average CPU time of 54.6s. Regarding the non-
smooth setting, the CPU time for the whole simulation is 6222330s. In total, 8178

n = 0 n = 10 n = 4000

Fig. 1. Evolution of five phases using the smooth (above) and nonsmooth (below) potential.
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Table 1

Minimum and maximum phase values in the smooth and nonsmooth model.

Time step
10 100 1000 2000 4000

min smooth −0.0245436 −0.019918 −0.0159193 −0.0185168 −0.011366
nonsmooth −1.3109 · 10−7 −1.20302 · 10−7 −1.06138 · 10−7 −1.05108 · 10−7 −1.07309 · 10−7

max smooth 1.00641 1.00928 1.01043 1.00639 1.01008
nonsmooth 1 1 1 1 1
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(b) m = 1050625.

Fig. 2. Results for the smooth model over 20 time steps with L = I.

Newton steps were performed, which means that on average, only two SSN iterations
are run per time step. The average number of BiCG iterations per time step is 65 with
an average CPU time of 749.1s. Note that one should not compare the timing results,
as the evolution with smooth and nonsmooth potentials is very different and distinct
parameters are used. Table 1 illustrates the minimum and maximum phase value at
some time steps. We observe that the concentrations may exceed one and become
less than zero for smooth potentials. However, the overshoots and undershoots are
not reported to blow up. In conclusion, both types of potentials are used in many
applications. In some of them, like the deep-quench limit, the nonsmooth potential
must be used. In other applications, smooth potentials are preferred and produce
satisfactory results. Therefore, the development of efficient solvers is of great interest
in both cases.

9.2. Iteration numbers with the smooth potential. In this section, we
perform simulations for various uniform mesh sizes as well as for different number of
phases and compare the number of BiCG iterations and the CPU times. Figure 2
shows the average number of BiCG iterations needed per Newton step over 20 time
steps for the smooth model with ε = h and L = I. In the legend of Figure 2(a), the
number of grid points m is listed. The computations are done for N = 10 phases.
The legend of Figure 2(b) shows the number of phases N . Here, the computations
are done on uniform meshes of size h = 2−10. In all calculations, the number of BiCG
iterations does not exceed 37. Note also that the iteration numbers are almost the
same when the circulant mobility matrix L = I− 1

N 11T is used; see Table 2. In Table
2, the resulting CPU times (in seconds) are given. From left to right, the columns
indicate the choice of the mobility matrix L, the number of phases, the mesh size,
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Table 2

Performance of our preconditioner for the smooth potential.

L N h ∅ Newton Newton ∅ BiCG BiCG ∅ CPU (s) CPU (s)

I 10 2−6 2 5 24 29 33.2 1574.8
I 10 2−7 2 4 25 31 126.7 5843.1
I 10 2−8 2 4 27 33 504.5 17843.5
I 10 2−9 1 3 29 33 2650.9 70344.7
I 10 2−10 1 3 29 33 9775.8 229585.0

I 3 2−10 1 3 30 37 3152.3 74489.9
I 5 2−10 1 3 30 37 5197.0 121936.0
I 10 2−10 1 3 29 33 9775.8 229585.0
I 15 2−10 1 3 30 35 16345.8 380718.0
I 20 2−10 1 3 30 35 22830.8 532596.0

I − 1
N
11� 10 2−5 2 5 19 26 34.2 1467.2

I − 1
N
11� 10 2−6 2 5 22 28 119.6 5330.7

I − 1
N
11� 10 2−7 2 4 24 28 430.1 19707.8

I − 1
N
11� 10 2−8 2 4 25 30 1605.6 53587.7

m = 1089 m = 4225 m = 16641 m = 66049
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(b) N = 20.

Fig. 3. Results for the nonsmooth model over 50 time steps with L = I − 1
N
11T .

the average and maximum number of Newton and BiCG iterations during the whole
computation, and the average CPU time needed to solve the linear system during
the whole computation as well as the CPU time for the whole computation. The
results suggest that the convergence rate of average CPU time is linear with respect
to the number of components. All in all, the results show the robustness of our
preconditioner for both the mesh size and the number of phases.

9.3. Iteration numbers with the nonsmooth model. Similar computations
are done with the nonsmooth model. Again, we consider various uniform mesh sizes
and compare the number of BiCG iterations and the CPU times. Figure 3 shows the
average number of BiCG iterations needed per SSN step over 50 time steps for the
nonsmooth model with L = I − 1

N 11T . The legend shows the number of grid points
m. The computations are done for N = 5 phases in Figure 3(a) and for 20 phases in
Figure 3(b). Unfortunately, the numerical mesh and phase independence, which we
have obtained in the smooth setting, has been lost. Nevertheless, in consideration of
the complexity of the nonsmooth problem, the gaps in the iteration numbers between
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S232 JESSICA BOSCH AND MARTIN STOLL

Table 3

Performance of our preconditioner for the nonsmooth potential.

L N h ∅ Newton Newton ∅ BiCG BiCG ∅ CPU (s) CPU (s)

I − 1
N
11T 5 2−5 3 7 46 54 74.7 14066.7

I − 1
N
11T 5 2−6 4 8 59 99 307.3 67998.0

I − 1
N
11T 5 2−7 4 6 79 102 1551.5 361878.0

I − 1
N
11T 5 2−8 4 6 137 202 10831.3 2533990.0

I − 1
N
11T 20 2−5 4 7 79 105 632.9 153017.0

I − 1
N
11T 20 2−6 5 8 100 138 2360.0 636001.0

I − 1
N
11T 20 2−7 4 6 118 160 8781.3 2092530.0

I − 1
N
11T 20 2−8 4 7 205 304 59800.7 13792200.0

I 20 2−5 5 7 64 84 49.8 6639.0∗
I 20 2−6 5 7 95 128 1184.2 159206.0∗
I 20 2−7 4 6 102 129 3298.8 369418.0∗
I 20 2−8 5 7 149 212 15066.5 1838290.0∗

10−1 10−2 10−3 10−4 10−5 10−6 10−7101
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With prec., m = 1089
With prec., m = 4225
Without prec., m = 1089
Without prec., m = 4225

Fig. 4. Performance of BiCG and preconditioned BiCG for the nonsmooth potential.

two sequent mesh sizes are satisfying. Note that the whole system size is in fact
2mN . The maximum (maximum average) BiCG iteration numbers are 255 (219) for
five phases and 212 (188) for twenty phases when L = I is used, as well as 202 (158)
for five phases and 304 (235) for twenty phases when L = I − 1

N 11T is used. Further
improvements are the subject of current research. Additionally, we have tested two
more Krylov subspace solvers—GMRES and BiCGStab—but no improvements have
been observed.

The iteration numbers for the choice L = I are quite similar to the ones obtained
here; see Table 3. In Table 3, the resulting CPU times (in seconds) are given. From left
to right, the columns indicate the choice of mobility matrix L, the number of phases,
the mesh size, the average and maximum number of SSN and BiCG iterations during
the whole computation, and the average CPU time needed to solve the linear system
during the whole computation as well as the CPU time for the whole computation.
Note that the star sign in the column labeled CPU (s) indicates that the simulations
for L = I are performed over 20 time steps instead of 50.

Finally, we compare the average BiCG iteration numbers with and without pre-
conditioning during the first time step in Figure 4. Here, the number of phases is
three and L = I. As mentioned in the beginning of this section, we solve within
this first time step seven SSN methods for the sequence of penalty parameters ν1 =
10−1, . . . , ν7 = 10−7, respectively. As can be seen from this, although the precondi-
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(a) Adaptive mesh.

Time ν Grid m SSN BiCG CPU (s)

0 10−1 16641 166410 8 100 978.5
0 10−4 16641 166410 3 132 1903.3
0 10−7 16641 166410 2 141 2113.6
1 10−1 30947 309470 5 95 1893.9
1 10−4 30947 309470 3 116 2520.4
1 10−7 30947 309470 4 170 4524.5
2 10−7 104496 1044960 10 156 13567.8
4 10−7 106810 1068100 8 130 12237.2
6 10−7 105830 1058300 4 150 14147.8
8 10−7 104838 1048380 3 149 14455.8

10 10−7 104155 1041550 6 129 12066.1

(b) Performance of our preconditioner with N = 5 phases.

Fig. 5. Results using adaptive meshes.

Table 4

Performance of our preconditioner with N = 3 phases on an adaptive and uniform mesh.

Time ν Grid m SSN SSNuni BiCG BiCGuni CPU (s) CPUuni(s)

0 10−1 4225 25350 7 7 99 96 32.2 1764.0
0 10−4 4225 25350 2 2 94 98 39.3 1848.5
0 10−7 4225 25350 1 1 102 101 42.2 2764.1
1 10−1 8508 51048 5 4 89 85 64.7 1591.4
1 10−4 8508 51048 4 2 88 100 70.5 1892.8
1 10−7 8508 51048 4 1 87 108 76.2 2941.6
2 10−7 24721 148326 7 +4 100 97 258.2 2717.3
4 10−7 26771 160626 5 4 89 91 250.1 2536.8
6 10−7 26367 158202 4 4 91 97 233.4 2691.7
8 10−7 26007 156042 4 4 91 91 230.4 2569.1

10 10−7 25520 153120 7 4 90 91 225.5 2567.3

tioned iteration numbers are considerably worse compared to the one in the smooth
model, the preconditioned version always outperforms the unpreconditioned method.
A factor of 1500 (3500) for h = 2−5 (h = 2−6) can be observed, and we would expect
this to be even more significant if a larger number of phases or grid sizes is used. The
average CPU time needed to solve the linear system ranges from 2.0s (7.4s) in the
case ν1 to 75.63s (986.1s) in the case ν7 for h = 2−5 (h = 2−6) in the unprecondi-
tioned method. Using the preconditioner, the corresponding CPU time ranges from
4.1s (16.8s) to 5.0s (24.4s).

9.4. Mesh adaption. As can be seen in section 9.3, the numerical mesh and
phase independence, which we have obtained in the smooth setting, have been lost
when we pass into the more complex nonsmooth formulation. Therefore, we go over
to the development of an adaptively refined and coarsened mesh strategy in order to
reduce the system size and accelerate our solver. As already mentioned above, it is
essential to ensure that at least eight grid points lie on the interface to avoid mesh
effects. We hence refine the interface up to the required level and coarse in areas
where the concentrations are constant, as can be seen in Figure 5(a).

Table 4 compares the iteration numbers and CPU times for an example with
N = 3 phases on an adaptive mesh with the results we get on an uniform mesh. The
parameters are taken as ε = 0.01, τ = 0.0003, and L = I. The minimum and maxi-
mum mesh sizes in the adaptive setting are set to be hmin = επ

9 and hmax = 10 hmin.
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S234 JESSICA BOSCH AND MARTIN STOLL

The uniform setting uses h = 2−8 as the mesh size.3 From left to right, the columns
of Table 4 indicate the time step, penalty parameter, and, for the adaptive setting,
the number of grid points as well as the number of unknowns. The columns labeled
SSN, BiCG, and costs show for the adaptive setting the number of SSN iterations, the
average number of BiCG iterations per SSN step, and the average CPU time (in sec-
onds) needed to solve the linear system with BiCG. The columns labeled BiCGuni and
costsuni show the same numbers when the uniform mesh (with 66049 grid points) is
used instead. We observe that, instead of solving a linear system of 396294 unknowns
(uniform setting) in each time step, we can use the adaptive mesh strategy to reduce
this number to sizes of order 153120. This is a reduction of a factor 2.5. Considering
that the phases will coarsen in the course of the ongoing process, the interfacial re-
gions will shrink further until the steady state is reached. Therefore, the system size
will be more reduced over time. Besides the reduction of unknowns, the average CPU
time needed to solve the linear system has been reduced by a factor of 11. Besides
these reductions, a slight increase in the number of SSN steps is observed when we
pass to the adaptive setting. Note, the plus sign in the column labeled SSNuni indi-
cates that we have used the sequence of penalty parameters ν1, . . . , ν7 until time step
three in the uniform setting. In contrast, we have already fixed ν = νmax from time
step two on in the adaptive setting. That means that the number of SSN iterations
marked with the plus sign might be slightly higher if we would have fixed ν = νmax

also here from time step two on. Nevertheless, the slight increase in SSN steps does
not prevent the decrease of costs needed per time step. To show some more results
using adaptive meshes, we have repeated the same experiment using N = 5 phases,
ε = 0.007 and τ = 0.0001; see Figure 5(b). An important observation is the further
increase of SSN iteration numbers. These can be reduced, for example, if we use the
sequence of penalty parameters for some more time steps at the beginning, since here
we fixed again ν = νmax from time step two on. Another reason might be a too tight
choice of the time step size τ here. Remember that we need the uniqueness condition
τ < 4ε2 = 0.000196. A slight decrease of our choice of τ should usually slightly reduce
the SSN iterations.

9.5. Comparison of different constant mobilities. In this section, we visu-
ally compare various constant mobilities. We test the choices L1 = I as well as the
two different circulant mobilities L2 = I − 1

N 11T and

L3 =

⎡
⎢⎢⎣

0.5 −0.25 0 −0.25
−0.25 0.5 −0.25 0

0 −0.25 0.5 −0.25
−0.25 0 −0.25 0.5

⎤
⎥⎥⎦ .

The test example is taken from [47, section 4.6] and considers four phases. We use their
initial state on the domain Ω = [0, 1]2 with uniform mesh size h = 2−7, as illustrated

in Figure 6(a). The expression u
(0)
i , u

(0)
j indicates that the initial phase u

(0)
i is set to

be randomly between 0.5 and 0.51 and the initial phase u
(0)
j is set to be 1−u(0)i in the

considered rectangle. The results after 50 time steps are illustrated in Figure 6(b)–
(d). There are no differences in the morphologies; only small time differences seem
to occur. The same observations are made with a smooth potential. In [23] and
references therein, the requirement of concentration dependent mobilities for many

3This is the required refinement in order to resolve the interface with about eight grid points in
the uniform setting.
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(a) Initial state. (b) L1. (c) L2. (d) L3.

Fig. 6. Simulation results for different mobilities after 50 time steps.

applications is mentioned, for example, if the mobility in the interface is larger than
in the pure phases. This motivates us to consider concentration dependent mobilities
in the future in order to model other physical situations.

10. Other available solvers. In this section, we compare our solution tech-
nique to existing solution methods. A block preconditioning strategy for multicompo-
nent Cahn–Hilliard problems using smooth potentials is proposed by Boyanova and
Neytcheva [14]. They have extended their techniques, developed regarding to scalar
systems [13, 1], to the multicomponent case. In general, these works study Cahn–
Hilliard equations with and without convection. Similar to us, they have considered
so far some special forms of the mobility matrix L, namely, diagonal ones. The nu-
merical method consists of a time discretization scheme, where during each time step
a nonlinear system is solved by a quasi-Newton method. Each Newton step involves
the solution of a nonsymmetric linear system with the Jacobian matrix. The pre-
conditioning technique is based on two steps: First, the system matrix is simplified
by neglecting small entries,4 so that it is replaced by a high-quality and symmet-
ric matrix approximation. Second, they prove that the resulting approximation can
be preconditioned by an optimal preconditioner. To be more precise, the proposed
preconditioner (applied to the system matrix in (6.2) with L = I) is given by

Â0 =

[
I ⊗M −ε2(I ⊗K)
τ(I ⊗K) I ⊗M + 2

√
τε(I ⊗K)

]

and proved to be an optimal preconditioner for the simplified system matrix K0 in

(7.1). In fact, the spectrum of Â0
−1K0 is contained in the interval [0.5, 1]. Solutions

with Â0 require four steps: one solution with I ⊗M , two with I ⊗M +
√
τε(I ⊗

K), and some matrix-vector operations. As shown in section 7.1, our smooth Schur
complement based preconditioner P is also proved to be optimal in the case L = I
with the same eigenvalue bound λ

(P−1K0

) ∈ [0.5, 1]. In fact, solutions with P require
three steps, namely, the same first three steps which are performed by the application
of Â0. In total, the application of our proposed preconditioner requires one step less,
which is the one performing some matrix-vector operations. But as these are cheap
operations, they are negligible. Table 5 contains comparisons of the performance of

4Remember that we have applied the same technique in order to construct our proposed Schur
complement approximation.
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Table 5

Performance of our preconditioner compared to the one proposed in [14].

Preconditioner in [14] Our preconditioner

N h ∅ BiCG BiCG ∅ CPU (s) CPU (s) ∅ BiCG BiCG ∅ CPU (s) CPU (s)

3 2−5 19 25 2.7 134.2 24 31 3.3 194.1
3 2−6 22 27 8.9 427.6 24 29 9.3 479.4
3 2−7 22 30 32.2 1588.4 26 35 37.1 1888.9
3 2−8 22 28 133.2 4882.3 27 31 153.7 5574.3
3 2−9 23 29 635.2 18303.4 29 36 773.0 21415.4
3 2−10 27 31 2819.3 66465.0 31 37 3152.3 74489.9

10 2−5 19 27 9.0 434.5 21 31 10.1 474.3
10 2−6 21 27 29.4 1463.5 24 29 33.2 1574.8
10 2−7 22 30 112.9 5151.4 25 31 126.7 5843.1
10 2−8 23 30 456.4 17715.4 27 33 504.5 17843.5
10 2−9 25 28 2356.5 62074.1 29 33 2650.9 70344.7
10 2−10 25 29 8902.8 209855.0 29 33 9775.8 229585.0

the preconditioner proposed by us (concerning the smooth potential) with the one
proposed in [14]. We have applied both strategies to the solution of the time-discrete
systems (3.1)–(3.2), which are solved by the standard Newton method. The numerical
solutions are computed on the uniform meshes of size h = 2−i for i = 5, . . . , 10. For
each case, ε = h and τ = 73ε2 is used, 20 time steps are performed and N = 3, and 10
phases are considered. The mobility matrix L is set to be the identity matrix. From
left to right, the columns of Table 5 indicate the number of phases, the mesh size, the
average and maximum number of BiCG iterations during the whole computation, and
the average CPU time (in seconds) needed to solve the linear system during the whole
computation as well as the CPU time for the whole computation. Table 5 confirms
the high efficiency of both rigorous analyzed preconditioners, the one in [14] as well
as the one proposed by us. Moreover, it illustrates a slightly better performance in
terms of iteration numbers as well as CPU times with the strategy proposed in [14],
when considering diagonal mobility matrices. The case of more general forms of the
mobility matrix are in both cases a topic of further research and is of great interest.
At least for circulant matrices, our preconditioner is shown to be numerically mesh
and phase independent.

A nonlinear multigrid method is proposed by Lee and co-authors [46, 47], who
consider smooth potentials. The first work uses the mobility matrix L = I, and a
practically unconditionally gradient stable scheme is presented which is based on a
nonlinear splitting method. This allows them to decouple the N -component Cahn–
Hilliard system into N − 1 scalar Cahn–Hilliard equations. The efficiency of the ap-
proach is shown by means of the average CPU time whose convergence rate is linear
with respect to the number of phases. The second work [47] uses a concentration de-
pendent mobility matrix and Crank–Nicolson’s method for the discretization in time.
The authors develop a full approximation storage multigrid method with a pointwise
Gauß–Seidel relaxation scheme as a smoother. The nonlinearity is treated using one
Newton step. The second-order accuracy of the numerical scheme is demonstrated.
They also visually compare phase separation of four phases with a constant and a de-
generate concentration dependent mobility, and the differences in morphologies and
evolution dynamics can be seen.

Gräser, Kornhuber, and Sack [38] propose globally convergent nonsmooth Schur–
Newton methods (NSNMG) for the solution of discrete multicomponent Cahn–Hilliard
systems. They consider logarithmic as well as obstacle potentials. NSNMG can be
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formulated in primal-dual form and results in a preconditioned Uzawa method. Each
step consists first of the update of the primal variable which includes the direct work
with the inverse (A + ∂ϕ)−1. Here, A is a symmetric positive definite matrix and
∂ϕ is the subdifferential of the nonsmooth part that includes the indicator function∑N

i=1 χ[0,∞)(ui). The second step of NSNMG is to compute the dual variable, which
can be done by solving a truncated linear saddle point problem and updating the step
size for the Uzawa method. The authors solve the linear systems by a preconditioned
GMRES method with restart after 50 steps. They numerically investigated local mesh
independence of NSNMG as well as a robust convergence speed of NSNMG and the
truncated nonsmooth Newton method for different numbers of phases.

In our previous works [12, 11] dealing with scalar smooth and nonsmooth Cahn–
Hilliard systems, we have already tested the use of finite differences combined with
an FFT-based solver against finite element methods. As the FFT basis functions are
eigenvectors of the finite difference operators, which form the discrete Laplacian, FFT
methods rapidly solve diffusion equations on simple domains. For the scalar Cahn–
Hilliard equation using a double-well potential, Eyre [28] presents an FFT method for
the fast inversion of the preconditioner. He uses a finite difference scheme and suggests
unconditionally gradient stable methods. In order to solve the preconditioned system,
Eyre proposes the use of a conjugate gradient squared method. The overall effort for
solving the linear system is dominated by the FFTs and is m log(

√
m). Another use

of FFT methods appears in [35, 5, 16] for the smooth, scalar Cahn–Hilliard inpainting
problem. They propose a two-dimensional FFT method and achieve fast inpainting.
In fact, regarding the computational time, FFT methods are hard to beat, but with
respect to more complex problems, spectral methods on complicated domains are dif-
ficult; see, e.g., [15]. Extending the idea of using an FFT-based solution scheme to the
nonsmooth problem is a challenge. An efficient FFT-based implementation employing
a nonsmooth potential would typically suffer from the nonconstant, nonsmooth term
that originates in the discretization of the penalization term. In general, it holds for
spectral methods: the smoother the function is, the faster the convergence. It is shown
in [12, 11] how the iteration numbers increase with the nonsmoothness obtained by
varying the penalty parameter ν. This is the motivation for this work to focus on a
discretization via finite elements especially for the nonsmooth problem.

11. Conclusions. In this paper, we have analyzed the linear systems arising
in smooth and nonsmooth vector-valued Cahn–Hilliard systems. For the latter, we
have applied a semismooth Newton method combined with a Moreau–Yosida reg-
ularization technique for handling the pointwise constraints. In order to make the
semismooth Newton method more efficient, we have used a Krylov subspace solver.
We have introduced and studied block-triangular preconditioners using an efficient
Schur complement approximation. This approximation can be done using multilevel
techniques, such as AMG (as in our case), and the numerical results justify this choice.
In particular, the proposed preconditioner is proved to be optimal for a high-quality
approximation of the system matrix when the smooth potential together with the
identity mobility matrix L = I is used.

Appendix A. Proof of Theorem 3.1. Throughout the following, we will make
use of the scalar product

(u,v) =

∫
Ω

u · v dx =

N∑
i=1

(ui, vi)
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in L2(Ω)N with norm ‖·‖, of the H1(Ω)-inner product (·, ·)1 and of the scalar product

(u,v)1 = (u,v) + (∇u,∇v) =

N∑
i=1

((ui, vi) + (∇ui,∇vi)) =
N∑
i=1

(ui, vi)1

in H1(Ω)N with norm ‖ · ‖1.
Proof. Assume that there exist two solutions (u,w) and (ũ, w̃) of (3.1)–(3.2).

Then we get

(u− ũ,v) + τ (L∇(w − w̃),∇v) = 0(A.1)

− (w − w̃,v) + ε2 (∇(u− ũ),∇v)

+ (f(u)− f(ũ),v)− 1

N

⎛
⎝ N∑
j=1

(f(uj)− f(ũj))1,v

⎞
⎠ = 0(A.2)

for all v ∈ H1(Ω)N . Choosing v = w − w̃ in (A.1) gives

(A.3) 0 ≥ (u− ũ,w − w̃) + τλmin ‖∇(w − w̃)‖2

(see also [4]). Choosing v = u− ũ in (A.2) gives

(A.4) 0 = − (u− ũ,w − w̃) + ε2 ‖∇(u− ũ)‖2 + (f(u)− f(ũ),u− ũ)

− 1

N

⎛
⎝ N∑
j=1

(f(uj)− f(ũj))1,u− ũ

⎞
⎠ .

The last term in (A.4) is zero since we can reorder this term to

⎛
⎝ N∑
j=1

(f(uj)− f(ũj))1,u− ũ

⎞
⎠ =

N∑
i=1

⎛
⎝ N∑
j=1

(f(uj)− f(ũj)), ui − ũi

⎞
⎠

=
N∑
j=1

(
f(uj)− f(ũj),

N∑
i=1

(ui − ũi)

)

and
∑N
i=1 (ui − ũi) = 0 for a.e. x ∈ Ω. The second last term in (A.4) can be reformu-

lated using the Taylor expansion of the potential

ψ(u) = ψ(ũ+ u− ũ) = ψ(ũ) + f(ũ) · (u− ũ) +
1

2

N∑
i=1

f ′(si)(ui − ũi)
2,

ψ(ũ) = ψ(u+ ũ− u) = ψ(u) + f(u) · (ũ− u) +
1

2

N∑
i=1

f ′(s̃i)(ui − ũi)
2,
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where f ′(si) = ∂2ψ
∂ui

2 (s) and s, s̃ lie between u and ũ. Subtracting these two equations
gives

(f(u)− f(ũ)) · (u− ũ) =
1

2

N∑
i=1

(f ′(si) + f ′(s̃i)) (ui − ũi)
2

(3.3)
≥ −T

N∑
i=1

(ui − ũi)
2.

Therefore, we obtain in (A.4)

(A.5) 0 ≥ − (u− ũ,w− w̃) + ε2 ‖∇(u− ũ)‖2 − T ‖u− ũ‖2 .

The last equation we need is the one we obtain with the choice v = u− ũ in (A.1)

0 = ‖u− ũ‖2 + τ (L∇(w − w̃),∇(u− ũ))(A.6)

= T ‖u− ũ‖2 +
(
τT√
2ε
L∇(w − w̃),

√
2ε∇(u− ũ)

)

≥ T ‖u− ũ‖2 − τ2T 2

4ε2
‖L∇(w − w̃)‖2 − ε2 ‖∇(u− ũ)‖2(A.7)

≥ T ‖u− ũ‖2 − τ2T 2‖L‖2
4ε2

‖∇(w − w̃)‖2 − ε2 ‖∇(u− ũ)‖2 ,(A.8)

where we have used Young’s inequality in (A.7). Now, adding (A.3), (A.5), and (A.8),
we get

0 ≥ τλmin ‖∇(w − w̃)‖2 − τ2T 2‖L‖2
4ε2

‖∇(w − w̃)‖2

= τ

(
λmin − τT 2‖L‖2

4ε2

)
‖∇(w − w̃)‖2 .

Hence, we obtain uniqueness if λmin − τT 2‖L‖2

4ε2 > 0 ⇔ τ < 4ε2λmin

T 2‖L‖2 . Since then, it

follows that ‖∇(w − w̃)‖ = 0, which implies that (w− w̃) = const. Using this, (A.1)
yields (u− ũ,v) = 0 for all v ∈ H1(Ω)N and therefore u = ũ a.e. Finally, (A.2) then
gives w = w̃ a.e.

Appendix B. Proof of Theorem 3.2.
Proof. Choosing v = w in (3.1) gives

(B.1) 0 ≥
(
u− u(n−1),w

)
+ τλmin ‖∇w‖2 .

Choosing v = u− u(n−1) in (3.2) gives

(B.2) 0 = −
(
u− u(n−1),w

)
+
ε2

2

(
‖∇u‖2 −

∥∥∥∇u(n−1)
∥∥∥2 + ∥∥∥∇(u− u(n−1))

∥∥∥2)

+
(
f(u),u− u(n−1)

)
− 1

N

⎛
⎝ N∑
j=1

f(uj)1,u− u(n−1)

⎞
⎠ .
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As in the proof before, we can show that the last term in (B.2) is zero and the second
to last term in (B.2) can be reformulated using the Taylor expansion of the potential

f(u) ·
(
u− u(n−1)

)
= ψ(u)− ψ(u(n−1)) +

1

2

N∑
i=1

f ′(si)(ui − u
(n−1)
i )2

(3.3)
≥ ψ(u)− ψ(u(n−1))− T

2

N∑
i=1

(ui − u
(n−1)
i )2,

where s lies between u and u(n−1). Therefore, we obtain in (B.2)

(B.3) 0 ≥ −
(
u− u(n−1),w

)
+
ε2

2

(
‖∇u‖2 −

∥∥∥∇u(n−1)
∥∥∥2 + ∥∥∥∇(u− u(n−1))

∥∥∥2)

+ (ψ(u), 1)−
(
ψ(u(n−1)), 1

)
− T

2

∥∥∥u− u(n−1)
∥∥∥2 .

The last equation we need is the one we obtain with the choice v = u − u(n−1) in
(3.1),

0 = ‖u− ũ‖2 + τ
(
L∇w,∇(u− u(n−1))

)
=
T

2

∥∥∥u− u(n−1)
∥∥∥2 + (

τT

2ε
L∇w, ε∇(u− u(n−1))

)

≥ T

2

∥∥∥u− u(n−1)
∥∥∥2 − τ2T 2

8ε2
‖L∇w‖2 − ε2

2

∥∥∥∇(u− u(n−1))
∥∥∥2(B.4)

≥ T

2

∥∥∥u− u(n−1)
∥∥∥2 − τ2T 2‖L‖2

8ε2
‖∇w‖2 − ε2

2

∥∥∥∇(u− u(n−1))
∥∥∥2 ,(B.5)

where we have used Young’s inequality in (B.4). Now, adding (B.1), (B.3), and (B.5),
we get

0 ≥ τ

(
λmin − τT 2‖L‖2

8ε2

)
‖∇w‖2 + ε2

2

(
‖∇u‖2 −

∥∥∥∇u(n−1)
∥∥∥2)

+ (ψ(u), 1)−
(
ψ(u(n−1)), 1

)
.

Now, we can bound the energy

E(u) − E(u(n−1)) =
ε2

2

(
‖∇u‖2 −

∥∥∥∇u(n−1)
∥∥∥2)+ (ψ(u), 1)−

(
ψ(u(n−1)), 1

)

≤ τ

(
τT 2‖L‖2

8ε2
− λmin

)
‖∇w‖2 .

Hence, we obtain energy stability if τT
2‖L‖2

8ε2 − λmin ≤ 0 ⇔ τ ≤ 8ε2λmin

T 2‖L‖2 .
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