103 research outputs found

    Multi-user MIMO wireless communications

    Get PDF

    Multi-user MIMO wireless communications

    Get PDF
    Mehrantennensysteme sind auf Grund der erhöhten Bandbreiteneffizienz und Leistung eine Schlüsselkomponente von Mobilfunksystemen der Zukunft. Diese ermöglichen das gleichzeitige Senden von mehreren, räumlich getrennten Datenströmen zu verschiedenen Nutzern. Die zentrale Fragestellung in der Praxis ist, ob der ursprünglich vorausgesagte Kapazitätsgewinn in realistischen Szenarios erreicht wird und welche spezifischen Gewinne durch zusätzliche Antennen und das Ausnutzen von Kanalkenntnis am Sender und Empfänger erzielt werden, was andererseits einen Zuwachs an Overhead oder nötiger Rechenleistung bedeutet. In dieser Arbeit werden neue lineare und nicht-lineare MU-MIMO Precoding- Verfahren vorgestellt. Der verfolgte Ansatz zur Bestimmung der Precoding- Matrizen ist allgemein anwendbar und die entstandenen Algorithmen können zur Optimierung von verschiedenen Kriterien mit beliebig vielen Antennen an der Mobilstation eingesetzt werden. Das wurde durch die Berechnung der Precoding- Matrix in zwei Schritten erreicht. Im ersten Schritt wird die Überschneidung der Zeilenräume minimiert, die durch die effektiven Kanalmatrizen verschiedener Nutzer aufgespannt werden. Basierend auf mehreren parallelen Einzelnutzer-MIMO- Kanälen wird im zweiten Schritt die Systemperformanz bezüglich bestimmter Kriterien optimiert. Aus der gängigen Literatur ist bereits bekannt, dass für Nutzer mit nur einer Antenne das MMSE Kriterium beim precoding optimal aber nicht bei Nutzern mit mehreren Antennen. Deshalb werden in dieser Arbeit zwei neue Mehrnutzer MIMO Strategien vorgestellt, die vom MSE Kriterium abgeleitet sind, nämlich sukzessives MMSE und RBD. Bei der sukzessiven Verarbeitung mit einer entsprechenden Anpassung der Sendeleistungsverteilung kann die volle Diversität des Systems ausgeschöpft werden. Die Kapazität nähert sich dabei der maximalen Summenrate des Systems an. Bei gemeinsamer Verarbeitung der MIMO Kanäle wird unabhängig vom Grad der Mehrnutzerinterferenz die maximale Diversität erreicht. Die genannten Techniken setzen entweder eine aktuelle oder eine über einen längeren Zeitraum gemittelte Kanalkenntnis voraus. Aus diesem Grund müssen die Auswirkungen von Kanal-Schätzfehlern und Einflüsse des Transceiver Front-Ends auf die Verfahren näher untersucht werden. Für eine weitergehende Abschätzung der Mehrantennensysteme muss die Performanz des Gesamtsystems untersucht werden, da viele Einflüsse auf die räumliche Signalverarbeitung bei Betrachtung eines einzelnen Links nicht erkennbar sind. Es wurde gezeigt, dass mit MIMO Precoding Strategien ein Vielfaches der Datenrate eines Systems mit nur einer Antenne erzielt werden kann, während der Overhead durch Pilotsymbole und Steuersignale nur geringfügig zunimmt.Multiple-input, multiple-output (MIMO) systems are a key component of future wireless communication systems, because of their promising improvement in terms of performance and bandwidth efficiency. An important research topic is the study of multi-user (MU) MIMO systems. Such systems have the potential to combine the high throughput achievable with MIMO processing with the benefits of space division multiple access (SDMA). The main question from a practical standpoint is whether the initially predicted capacity gains can be obtained in more realistic scenarios and what specific gains result from adding more antennas and overhead or computational power to obtain channel state information (CSI) at the transceivers. In this thesis we introduce new linear and non-linear MU MIMO processing techniques. The approach used for the design of the precoding matrix is general and the resulting algorithms can address several optimization criteria with an arbitrary number of antennas at the user terminals (UTs). This is achieved by designing the precoding matrices in two steps. In the first step we minimize the overlap of the row spaces spanned by the effective channel matrices of different users. In the next step, we optimize the system performance with respect to the specific optimization criterion assuming a set of parallel single-user MIMO channels. As it was previously reported in the literature, minimum mean-squared-error (MMSE) processing is optimum for single-antenna UTs. However, MMSE suffers from a performance loss when users are equipped with more than one antenna. The two MU MIMO processing techniques that result from the two different MSE criteria that are proposed in this thesis are successive MMSE and regularized block diagonalization. By iterating the closed form solution with appropriate power loading we are able to extract the full diversity in the system and empirically approach the maximum sum-rate capacity in case of high multi-user interference. Joint processing of MIMO channels yields maximum diversity regardless of the level of multi-user interference. As these techniques rely on the fact that there is either instantaneous or long- term CSI available at the base station to perform precoding and decoding, it was very important to investigate the influence of the transceiver front-end imperfections and channel estimation errors on their performance. For a comprehensive assessment of multi-antenna techniques, it is mandatory to consider the performance at system level, since many effects of spatial processing are not tractable at the link level. System level investigations have shown that MU MIMO precoding techniques provide several times higher data rates than single-input single-output systems with only slightly increased pilot and control overhead

    Multidimensional Index Modulation for 5G and Beyond Wireless Networks

    Get PDF
    This study examines the flexible utilization of existing IM techniques in a comprehensive manner to satisfy the challenging and diverse requirements of 5G and beyond services. After spatial modulation (SM), which transmits information bits through antenna indices, application of IM to orthogonal frequency division multiplexing (OFDM) subcarriers has opened the door for the extension of IM into different dimensions, such as radio frequency (RF) mirrors, time slots, codes, and dispersion matrices. Recent studies have introduced the concept of multidimensional IM by various combinations of one-dimensional IM techniques to provide higher spectral efficiency (SE) and better bit error rate (BER) performance at the expense of higher transmitter (Tx) and receiver (Rx) complexity. Despite the ongoing research on the design of new IM techniques and their implementation challenges, proper use of the available IM techniques to address different requirements of 5G and beyond networks is an open research area in the literature. For this reason, we first provide the dimensional-based categorization of available IM domains and review the existing IM types regarding this categorization. Then, we develop a framework that investigates the efficient utilization of these techniques and establishes a link between the IM schemes and 5G services, namely enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable low-latency communication (URLLC). Additionally, this work defines key performance indicators (KPIs) to quantify the advantages and disadvantages of IM techniques in time, frequency, space, and code dimensions. Finally, future recommendations are given regarding the design of flexible IM-based communication systems for 5G and beyond wireless networks.Comment: This work has been submitted to Proceedings of the IEEE for possible publicatio

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Air Interface for Next Generation Mobile Communication Networks: Physical Layer Design:A LTE-A Uplink Case Study

    Get PDF

    Holographic MIMO Communications: Theoretical Foundations, Enabling Technologies, and Future Directions

    Full text link
    Future wireless systems are envisioned to create an endogenously holography-capable, intelligent, and programmable radio propagation environment, that will offer unprecedented capabilities for high spectral and energy efficiency, low latency, and massive connectivity. A potential and promising technology for supporting the expected extreme requirements of the sixth-generation (6G) communication systems is the concept of the holographic multiple-input multiple-output (HMIMO), which will actualize holographic radios with reasonable power consumption and fabrication cost. The HMIMO is facilitated by ultra-thin, extremely large, and nearly continuous surfaces that incorporate reconfigurable and sub-wavelength-spaced antennas and/or metamaterials. Such surfaces comprising dense electromagnetic (EM) excited elements are capable of recording and manipulating impinging fields with utmost flexibility and precision, as well as with reduced cost and power consumption, thereby shaping arbitrary-intended EM waves with high energy efficiency. The powerful EM processing capability of HMIMO opens up the possibility of wireless communications of holographic imaging level, paving the way for signal processing techniques realized in the EM-domain, possibly in conjunction with their digital-domain counterparts. However, in spite of the significant potential, the studies on HMIMO communications are still at an initial stage, its fundamental limits remain to be unveiled, and a certain number of critical technical challenges need to be addressed. In this survey, we present a comprehensive overview of the latest advances in the HMIMO communications paradigm, with a special focus on their physical aspects, their theoretical foundations, as well as the enabling technologies for HMIMO systems. We also compare the HMIMO with existing multi-antenna technologies, especially the massive MIMO, present various...Comment: double column, 58 page

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin
    • …
    corecore