1,683 research outputs found

    Learning recurrent representations for hierarchical behavior modeling

    Get PDF
    We propose a framework for detecting action patterns from motion sequences and modeling the sensory-motor relationship of animals, using a generative recurrent neural network. The network has a discriminative part (classifying actions) and a generative part (predicting motion), whose recurrent cells are laterally connected, allowing higher levels of the network to represent high level phenomena. We test our framework on two types of data, fruit fly behavior and online handwriting. Our results show that 1) taking advantage of unlabeled sequences, by predicting future motion, significantly improves action detection performance when training labels are scarce, 2) the network learns to represent high level phenomena such as writer identity and fly gender, without supervision, and 3) simulated motion trajectories, generated by treating motion prediction as input to the network, look realistic and may be used to qualitatively evaluate whether the model has learnt generative control rules

    Spatio-Temporal Deep Learning Approaches for Addressing Track Association Problem using Automatic Identification System (AIS) Data

    Get PDF
    In the realm of marine surveillance, track association constitutes a pivotal yet challenging task, involving the identification and tracking of unlabelled vessel trajectories. The need for accurate data association algorithms stems from the urge to spot unusual vessel movements or threat detection. These algorithms link sequential observations containing location and motion information to specific moving objects, helping to build their real-time trajectories. These threat detection algorithms will be useful when a vessel attempts to conceal its identity. The algorithm can then identify and track the specific vessel from its incoming signal. The data for this study is sourced from the Automatic Identification System, which serves as a communication medium between neighboring ships and the control center. While traditional methods have relied on sequential tracking and physics-based models, the emergence of deep learning has significantly transformed techniques typically used in trajectory prediction, clustering, and anomaly detection. This transformation is largely attributed to the deep learning algorithm’s capability to model complex nonlinear relationships while capturing both the spatial and temporal dynamics of ship movement. Capitalizing on this computational advantage, our study focuses on evaluating different deep learning architectures such as Multi Model Long Short-Term Memory (LSTM), 1D Convolutional-LSTM, and Temporal-Graph Convolutional Neural Networks— in addressing the problem of track association. The performance of these proposed models are compared against different deep learning algorithms specialized in track association tasks using several real-life AIS datasets

    Bidirectional recurrent learning of inverse dynamic models for robots with elastic joints: a real-time real-world implementation

    Get PDF
    Collaborative robots, or cobots, are designed to work alongside humans and to alleviate their physical burdens, such as lifting heavy objects or performing tedious tasks. Ensuring the safety of human–robot interaction (HRI) is paramount for effective collaboration. To achieve this, it is essential to have a reliable dynamic model of the cobot that enables the implementation of torque control strategies. These strategies aim to achieve accurate motion while minimizing the amount of torque exerted by the robot. However, modeling the complex non-linear dynamics of cobots with elastic actuators poses a challenge for traditional analytical modeling techniques. Instead, cobot dynamic modeling needs to be learned through data-driven approaches, rather than analytical equation-driven modeling. In this study, we propose and evaluate three machine learning (ML) approaches based on bidirectional recurrent neural networks (BRNNs) for learning the inverse dynamic model of a cobot equipped with elastic actuators. We also provide our ML approaches with a representative training dataset of the cobot's joint positions, velocities, and corresponding torque values. The first ML approach uses a non-parametric configuration, while the other two implement semi-parametric configurations. All three ML approaches outperform the rigid-bodied dynamic model provided by the cobot's manufacturer in terms of torque precision while maintaining their generalization capabilities and real-time operation due to the optimized sample dataset size and network dimensions. Despite the similarity in torque estimation of these three configurations, the non-parametric configuration was specifically designed for worst-case scenarios where the robot dynamics are completely unknown. Finally, we validate the applicability of our ML approaches by integrating the worst-case non-parametric configuration as a controller within a feedforward loop. We verify the accuracy of the learned inverse dynamic model by comparing it to the actual cobot performance. Our non-parametric architecture outperforms the robot's default factory position controller in terms of accuracy.IMOCOe4.0 [EU H2020RIA-101007311]Spanish national funding [PCI2021-121925INTSENSO [MICINN-FEDER-PID2019- 109991GB-I00]INTARE (TED2021-131466B-I00) projects funded by MCIN/AEI/10.13039/501100011033EU NextGenerationEU/PRTR to ERThe SPIKEAGE [MICINN629PID2020-113422GAI00]DLROB [TED2021 131294B-I00]Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRT
    • …
    corecore