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Abstract
Spatio-Temporal Deep Learning Approaches for Addressing Track Association

Problem using Automatic Identification System (AIS) Data

Md Asif Bin Syed

In the realm of marine surveillance, track association constitutes a pivotal yet chal-
lenging task, involving the identification and tracking of unlabelled vessel trajectories.
The need for accurate data association algorithms stems from the urge to spot unusual
vessel movements or threat detection. These algorithms link sequential observations
containing location and motion information to specific moving objects, helping to build
their real-time trajectories. These threat detection algorithms will be useful when a
vessel attempts to conceal its identity. The algorithm can then identify and track the
specific vessel from its incoming signal. The data for this study is sourced from the
Automatic Identification System, which serves as a communication medium between
neighboring ships and the control center. While traditional methods have relied on se-
quential tracking and physics-based models, the emergence of deep learning has signif-
icantly transformed techniques typically used in trajectory prediction, clustering, and
anomaly detection. This transformation is largely attributed to the deep learning al-
gorithm’s capability to model complex nonlinear relationships while capturing both
the spatial and temporal dynamics of ship movement. Capitalizing on this computa-
tional advantage, our study focuses on evaluating different deep learning architectures
such as Multi Model Long Short-Term Memory(LSTM), 1D Convolutional-LSTM, and
Temporal-Graph Convolutional Neural Networks— in addressing the problem of track
association. The performance of these proposed models are compared against different
deep learning algorithms specialized in track association tasks using several real-life
AIS datasets.
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CHAPTER 1

Introduction

Maritime surveillance serves as an essential component in both military and civilian sectors,

functioning as a pivotal instrument for ensuring safety and maintaining security across various

marine environments. A particularly salient challenge within this domain is the problem of

track association. This study aims to address the track association problem by utilizing spatio-

temporal algorithms applied to data generated from the Automatic Identification System (AIS).

To elaborate on the track association problem and our contribution, the ensuing segments of

this chapter will be systematically organized into the following sections: Track Association

and Automatic Identification System, Motivation, Objective of the Study, and Data Description,

thereby providing a coherent framework for understanding the problem.

1.1 Track Association and Automatic Identification System

The problem of the track association involves the accurate assignment of moving entities to their

respective trajectories. It helps to pinpoint and distinguish potential candidates posing threats

from other normal objects and monitor the anomalous trajectories until intervention [1]. The

challenge of track association can be tackled using various types of maritime data, including

satellite imagery, signals emitted from nearby ships, radar data, and readings from assorted

sensors. Notably, the Automatic Identification System (AIS) emerges as a focal point of schol-

arly attention in this domain. AIS predominantly functions on the back of self-reported data

from vessels in conjunction with satellite-derived information. It is instrumental in amplifying

the time-sensitive resolution, widening geographic oversight, and bolstering both near real-time

and prolonged surveillance capacities [2].

Introduced by the International Maritime Organization (IMO) in the year 2000, AIS is now a

ubiquitous technology, mandated for installation in commercial ships exceeding certain tonnage,
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CHAPTER 1: INTRODUCTION

as well as all passenger ships. Functionally, AIS operates through an ensemble of hardware and

software components that include one VHF transmitter, two VHF receivers, a GPS receiver, a

CPU with specialized software, and a display unit. This comprehensive setup allows the collec-

tion of a wide array of vessel-related information. On the one hand, there is static information,

which encompasses vessel identifiers like the IMO number, Maritime Mobile Service Identity

(MMSI) number, and other physical attributes such as the size and type of the vessel. On the

other hand, AIS also captures dynamic voyage-related data, including geographical coordinates

(latitude and longitude), speed, and heading direction. This data is then broadcasted to both

maritime authorities on the coast and other vessels, enhancing real-time situational awareness.

The primary function of the Automatic Identification System (AIS) was initially to prevent col-

lisions between vessels, thereby enhancing maritime safety [3]. However, the scope of AIS has

since expanded to serve as a comprehensive monitoring system for tracking vessel movements

both in open seas and near ports. This expanded role is partially due to AIS’s superior perfor-

mance in locating vessels under conditions of limited or zero visibility compared to traditional

radar systems. Such capabilities enable maritime authorities and watch guards to take proactive

measures [4]. Consequently, AIS has become an invaluable tool not only for collision avoid-

ance but also for maritime traffic management and coastal security maintenance. In terms of

data, AIS furnishes kinetic information, including current geographic coordinates and dynamic

infoormation such as Speed Over Ground (SOG) and Course Over Ground (COG). Additionally,

AIS provides voyage details as well as static information, such as the Maritime Mobile Service

Identity (MMSI) number and vessel name, facilitating a comprehensive understanding of marine

activities in a given area [5]. Depending on the goal of the model, the static data can be used

for different modeling techniques such as two factor regression analysis which can be utilized

in trajectory prediction [6].

The Track Association Problem in the context of AIS (Automatic Identification System) data

involves identifying and associating discrete data points, or "nodes," to their corresponding mar-

itime vessels when vessel identification information is absent . In a graphical representation

shown in figure1.1(a), when AIS data is complete with vessel IDs, each node can be easily

tagged to a specific vessel and its trajectory (Track 1, Track 2, etc.)(see in figure 1.1(b)). How-

ever, in figure 1.1(c), when this identification information is removed, the nodes are merely

represented as object IDs generated sequentially based on their timestamps. Consequently, the

track association problem focuses on reconstructing these tracks by leveraging the existing spa-

tial and temporal information such as timestamp, spatial coordinates (longitude and latitude)

2



CHAPTER 1: INTRODUCTION

and other dynamic attributes like speed and direction (See in figure 1.1(d)).

Figure 1.1: Track association problem

1.2 Motivation

A significant challenge in track association arises from occlusions or target breakages, which

are prevalent in marine monitoring scenarios. Vessels engage in various maneuvers, encounter

occlusions, or navigate through congested channels, all of which can lead to track interruptions

or discontinuities [7]. These disruptions introduce substantial difficulties in maintaining contin-

uous and precise track associations. In this particular scenario, MMSI number is missing from

the AIS system.

The intricacies of track association extend beyond occlusions, encompassing the issue of time

gaps in the vessel reporting system. Vessels can temporarily cease transmitting signals for nu-

merous reasons, ranging from equipment malfunctions to deliberate concealment of their trajec-

tory. Prolonged signal absences introduce significant challenges in correctly associating nodes.

During such gaps, vessels can undergo abrupt changes in direction, experience drastic alterations

in speed, or even come to a complete halt. These uncertainties complicate the establishment of

a consistent and accurate vessel trajectory.

Furthermore, the nature of the targets being tracked adds another layer of complexity to track

association [8] challenge. Notably, challenges intensify when vessels operate in proximity to

ports. Ports often host a multitude of vessels in close quarters, making it arduous to differentiate

3



CHAPTER 1: INTRODUCTION

between them. Additionally, vessels near ports frequently engage in maneuvers, whether for

parking or creating space for other vessels. As a result, tracking individual vessels in such

environments necessitates specialized attention and techniques to ensure precise and reliable

track association.

The scale of marine surveillance further compounds the challenges of track association. In

large-scale monitoring scenarios, a high density of vessels can lead to signal interference and

difficulties in distinguishing between high-density and low-density areas [9]. These factors can

have a detrimental impact on the accuracy of track associations, particularly in regions with

overlapping tracks.

In situations where the MMSI number is missing or compromised, the fundamental question

arises: Can one accurately associate these time-sequenced nodes within an AIS dataset to re-

construct vessel trajectories? To address track association challenges, various approaches and

algorithms have been proposed. These include nearest neighbor approaches, likelihood-based

algorithms, kalman filtering and adaptive filtering techniques [10, 11, 12, 13]. These methods

aim to improve the accuracy and robustness of track association in marine surveillance. How-

ever, these methods are more suitable for tracking linear motion and suffer in the presence of

nonlinear trajectories with multiple overlapping tracks and missing data. These issues can be

better handled by the physics-based models. While tracking, they consider the spatio-temporal

patterns of the vessels and proved to be more effective for tracking maritime vessels than these

approaches [1]. However, these frameworks use only the most recent datapoint for track asso-

ciation, thereby ignoring all the previous datapoints and the information hidden in them. These

sequences often contain the long-term trajectory pattern of vessels and can help in future track

association. Deep learning architectures are proven to be quite effective in modeling nonlinear

sequential data and thus can also be utilized for trajectory modeling. Recently, deep learning

algorithms have been proposed [14] to automatically learn hierarchical feature representations

using raw spatio-temporal data quite similar to our case. Therefore, deep learning methods offer

a promising solution for understanding intricate patterns essential for reliable AIS-driven ma-

rine vessel tracking. This study aims to explore different deep learning architectures to enable

accurate trajectory reconstruction and track association from AIS datasets.

1.3 Objective of the Study

The objective of this work can be summarized as follows:
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CHAPTER 1: INTRODUCTION

✓ To propose spatio-temporal track association algorithms that can associate vessel measure-

ments collected from the AIS to their true tracks in real-time.

✓ To design a multimodal Long Short-Term Memory (LSTM) framework to model the trajec-

tory of vessels.

✓ To introduce and evaluate a novel 1D Convolutional-LSTM architecture, tailored for AIS

datasets and the track association task.

✓ To design and construct a Temporal Graph Convolutional Neural Network (T-GCNN) archi-

tecture, wherein each data point is interconnected through location-based edges, augmented

by a temporal layer such as LSTM or GRU to capture sequential features.

✓ To compare the performance of the different neural net architectures and discuss their relative

advantages and disadvantages.

1.4 Data Description

This section provides an overview of the datasets of the Automatic Identification System (AIS)

that will be utilized for the development and testing of our proposed framework. The AIS

dataset was obtained from the National Automatic Identification System, which is managed

by the Coast Guard department of a particular country. Upon reception of a signal within the

Automatic Identification System (AIS) framework, the incoming data is allocated a distinct

object identifier. Subsequently, a monitoring officer undertakes the task of verifying if the vessel

identifier is already recorded within the preexisting database. The vessel identification (VID),

including alphanumeric characters, functions as a distinct identifier for individual vessels inside

the system.

Figure 1.2: Automatic Identificaition System(AIS) dataset from a specific region
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If the information that is received corresponds to a VID that has been previously recorded, it

is stored using the same identifier. In the event that the vessel’s identification cannot be ascer-

tained, it is allocated an identifier that is derived from the timestamp. The AIS data encom-

passes necessary details such as velocity, the direction of motion, and geographical coordinates,

denoted by longitude and latitude. The aforementioned timestamps function as nodes in the

context of the track association problem.

The database used in this study was set up as a CSV file. A subset of 327 vessels is selected

from the database where the time intervals between signals are inconsistent. Traditional track

association algorithms are usually challenged by these uneven signal intervals. Approximately

25,000 data points are used for training and 5,000 vessel IDs are set aside for testing in order to

compare existing algorithms.

Seven parameters make up the dataset, including object ID, which serves as the database’s pri-

mary key. As illustrated in Figure 1.2, the other characteristics include vessel ID, timestamp

(which includes date and time), latitude and longitude stated in degrees, speed expressed in

knots, and course expressed in degrees. Labels like "vessel 1," "vessel 2," and so forth have

taken the place of long string combinations of alphanumeric characters that are exclusive to

each vessel in order to improve clarity.

Figure 1.3: Visualization of vessels and associated tracks in the AIS dataset. Each color corresponds to a
track from a different vessel. The map demonstrates the overlapping of the tracks of vessels
which makes the track association problem challenging

Timestamps, geographic data in the form of longitude and latitude, and dynamic factors like
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CHAPTER 1: INTRODUCTION

speed over ground and course of direction are chosen as the main input parameters for the model

design. These chosen parameters take both spatial and temporal information into consideration.

The target variable is set to be the vessel ID. The complexity of the track association problem we

intend to study is illustrated visually in figure 1.3. The chosen vessels have overlapping tracks,

which creates a difficult scenario that mimics the complexity found in real-world circumstances.

The figure’s colors each represent a distinct Vessel ID.

The structure of the remaining chapters is organized as follows: Chapter 2 delves into a compre-

hensive literature review. Chapter 3 elucidates the methodology with a detailed research design.

The comparative analysis of the results generated from multi-modal LSTM, 1D CNN-LSTM

and temporal GCN is presented in Section 4 and finally, the thesis is concluded in Section 5.
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CHAPTER 2

Literature Review

The study of AIS data has been ongoing for decades, with researchers exploring various facets

of this data. The researchers employed various literature review techniques, such as systematic

and bibliometric literature reviews [15] to obtain a broad understanding of the research topic.

Several types of studies, including trajectory prediction, trajectory classification, anomaly de-

tection, and the track association problem, have harnessed the capabilities of Automatic Identifi-

cation System (AIS). In this chapter, we embark on a comprehensive review of the existing body

of knowledge concerning track association techniques, with a specific focus on the application

of spatio-temporal algorithms to data derived from the AIS. To ensure a systematic and coher-

ent exploration, this chapter is thoughtfully organized into distinct segments, each dedicated

to a specific aspect of track association techniques. These segments encompass Multiple Ob-

ject Tracking, Sequential Tracking Models, Physics-Based Models, and Neural Network-Based

Models.

2.1 Multiple Object Tracking (MOT)

The process of monitoring an object over a sequence of frames to determine its location and

direction is referred to as object tracking [16]. Both single and multi-object tracking techniques

have been used in various applications, including computer vision problems, human behav-

ior analysis, and security surveillance to name a few. Multiple Object Tracking (MOT) can be

particularly useful in the context of marine security and surveillance, as they can combine in-

formation from multiple sensors like radar and sonar, instead of relying solely on AIS data and

track several vessels in real-time [1].

However, applying MOT approaches to AIS data for track association is not straightforward

and presents several challenging issues. Firstly, these approaches must appropriately handle

8
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the ambiguity surrounding the number of vessels. Sometimes this information is unknown and

must be learned on the go. Secondly, object (vessel) appearance and disappearance are often

uncertain, as they may emerge at unexpected times and locations and depart at the tracking

boundary. Finally, multiple incidences of overlapping tracks and time gaps must be considered

during the tracking process [1]. Over the past several decades, numerous research efforts have

been undertaken to develop innovative and efficient solutions to multiple object-tracking prob-

lems. However, very few of them can handle all the issues posed by the AIS track association

problem. The following subsections summarize these efforts into a few major areas namely

sequential tracking models, physics-based models, machine learning-based and hybrid models,

and finally deep learning approaches.

2.1.1 Sequential Tracking Models

Sequential tracking algorithms, such as global nearest neighbor (GNN) [17] and joint proba-

bilistic data association (JPDA) [18], are commonly employed to update tracks based on the

contribution of several objects. These algorithms utilize a cost assignment matrix to minimize

costs and employ soft assignment, also known as track association probability, to achieve this

goal. While Global Nearest Neighbor (GNN) [17] and Joint Probabilistic Data Association

(JPDA) [18] focus on a single hypothesis for tracking objects, there are other techniques avail-

able. For example, multiple hypotheses tracking (MHT) [19] constructs a tree of hypotheses for

each item and computes the likelihood of each track to determine the most probable combina-

tion of tracks. Random finite set (RFS) based approaches have also been utilized for tracking

objects, as they are capable of handling the inherent uncertainty involved in the tracking process

[20]. The majority of Sequential tracking-based algorithms are based on the Kalman filtering

(KF) approach [21] or its variations, which are frequently employed to track moving objects

and provide information regarding their velocity and acceleration based on their position. How-

ever, the accuracy of KF is predicated on the assumption of linear motion, and it struggles to

accommodate non-linear motion patterns. Furthermore, the KF framework has limited capacity

for handling the distinct characteristics of vessel movements.

2.1.2 Physics-based Models

The physics-based approaches rely on mathematical equations to describe the motion of ships,

taking into account factors such as mass, force, and inertia. These equations utilize physical laws

to calculate the future motion characteristics of the ship [22, 23, 24, 25]. Such motion models
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can be useful for developing simulation systems to study ideal ship kinematic characteristics or

even to train navigation systems. However, applying these models to track the trajectory patterns

of multiple ships can be challenging. While these models can incorporate the spatiotemporal

patterns of vessel movements [1] in the learning process, they are still limited in nature, only

considering the last known position to track vessels.

2.1.3 Machine Learning and Hybrid Models

These methods rely solely on historical data and employ machine learning techniques to learn

from past information, enabling them to predict future positions when provided with a new fea-

ture vector. These prominent machine learning methods used in trajectory prediction studies

include the Gaussian process, support vector machine, principal component analysis (PCA),

etc. While these methods [26, 27, 28, 29, 30] typically perform well in predicting immedi-

ate future positions, their prediction accuracy tends to decrease as the prediction time span

increases. Furthermore, the performance of these models is highly dependent on the proper

tuning of hyperparameters, which can be difficult to achieve. Additionally, they are not capable

of processing long sequences and unraveling the spatial and temporal dependencies present in

sequential observations. Hybrid approaches, on the other hand, combine physics-based models

and machine learning models or different machine learning models to enhance the quality of

the trajectory tracking process [31, 32, 33, 34, 35, 36]. These approaches, however, are not free

from the limitations imposed by the physics-based and machine learning models.

2.1.4 Deep Learning-based Models

Deep learning, which is a subclass of machine learning models, stands out from the rest due to

its superior learning capabilities. In the context of marine vessel trajectories, neural networks

have been widely used for their ability to process large datasets and discover long-term patterns

hidden in vessel trajectories. Because of the robust adaptability, the earliest form of neural net-

work such as Multi-Layer Perceptron (MLP) [37] and Artificial Neural Network (ANN) [38, 39]

have played a significant role in traffic and marine vessel trajectory prediction. Nevertheless,

despite their wide applications, these neural networks exhibit low interpretability. Addition-

ally, they present substantial challenges in terms of spatial and temporal information processing

capability [40] since these networks are not equipped to handle such characteristics.

The exploration of incorporating sequential temporal patterns into marine ship trajectory pre-
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diction has motivated researchers to investigate the potential application of Recurrent Neural

Networks (RNNs) [21]. However, RNNs encounter challenges in capturing long-term depen-

dencies within a sequence due to the issue of vanishing gradients during backpropagation [41].

As a result, the limited long-term memory of these networks can hinder their performance when

the data contains significant long-term dependencies [42, 43, 44]. Two prominent variations of

Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory (LSTM) [45, 46]

and Gated Recurrent Unit (GRU) [47], have garnered substantial attention for their remarkable

ability to uncover underlying patterns within extended input sequences, proving particularly

advantageous for trajectory prediction.

Further advancements in research have led to the utilization of more efficient variants of LSTM

and GRU, such as Bidirectional LSTM (Bi-LSTM) [48, 49], Bidirectional GRU (Bi-GRU) [50],

Context-Aware LSTM (C-LSTM) model [51], and Multi-step Prediction LSTM (MP-LSTM)

[52]. Distinct from traditional LSTM, Bi-LSTM has the ability to process data from both past

and future contexts. This bidirectional information processing, encompassing both forward and

backward information, empowers Bi-LSTM to capture a comprehensive understanding of the se-

quence. Consequently, numerous innovative models based on Bi-LSTM have been proposed for

ship trajectory prediction. However, these models often exhibit significant computational com-

plexity and limited generalization capabilities. The design parameters of these neural network-

based frameworks are adjusted in real-time as the vessel progresses, enabling them to identify

all potential trajectories a vessel may follow and reconstruct (predict) its trajectories for future

time points [39]. Additionally, LSTM networks have demonstrated remarkable multitasking

performance [53].

Another neural network, The Convolutional Neural Network (CNN), originally devised to ad-

dress computer vision problems, has also been explored for trajectory prediction and classifica-

tion of tracks [53] as it can help capturing the spatial patterns exist in the trajectory data. Instead

of using the original features, several methods advocate the use of latent features derived from

the neural network architecture. These methods leverage latent space representation using Vari-

ational Recurrent AutoEncoder (VRAE) [54] or LSTM [55]. These latent features can capture

the spatial patterns present in the data. Temporal ordering and attention maps are also proven to

be effective for object tracking [56].

In addition to conventional deep learning approaches, the research field has expanded to include

the application of hybrid deep learning architectures directly to raw datasets. This advance-
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ment goes beyond transforming data into a latent space and aims to reveal both temporal and

spatial relationships among features. It has proven to be particularly effective in extracting spa-

tiotemporal relationships within the AIS dataset. Hybrid deep learning-based models for ship

trajectory prediction, such as the integration of Bidirectional LSTM and RNN (BLSTM-RNN)

[57] and CNN-LSTM-SE [58], have emerged as notable techniques due to their rapid learning

and adaptability capabilities. These approaches excel in producing highly accurate results when

dealing with complex and dynamic trajectory data.

However, it is important to note that these methods primarily focus on predicting the next points

by considering the sequence of vessel nodes. This differs from track association, which aims

to link vessels to their respective tracks. Furthermore, following the prediction route would

require a separate prediction model for each vessel, which can complicate the tracking process

when dealing with more than ten vessels. To address these challenges and fill the gap in the

literature, in this work, we propose three different Deep learning architectures which are capable

of processing the multivariate sequential data and capture the spatio temporal behaviours of

the data for accurately assigning them to their correct track. These architectures are compared

with the standalone Convolutional Neural Network (CNN), standalone Long short term memory

(LSTM), Bidirectional-LSTM(Bi-LSTM) and Bidirectional-Gated Recurrent Unit (Bi-GRU).

12
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Methodology

The methodology chapter is structured into four core sections. It begins with data preprocessing,

which is the process of cleaning and preparing the data for ingestion into the proposed models.

Section 3.2 explains the foundational deep learning models to understand the architectures of

the proposed models. The proposed models are discussed in section 3.3. The chapter concludes

in section 3.4 with a discussion of performance metrics that have been used to evaluate the

proposed models with other deep learning architectures.

3.1 Data Preprocessing

The AIS data was collected and stored in a large CSV file, featuring data from 327 vessels.

The preprocessing procedure begins by splitting the vessels into batches, with each batch com-

prising approximately 30 vessels. Subsequently, each batch undergoes a preprocessing step,

encompassing data cleansing operations. Any timestamp that contains a null value is removed

during this stage. Following completion of the cleaning process, it has been observed that a

considerable proportion of vessels lack sufficient data to be chosen for training our model.

Model training parameters highly depend on the number of data points available for training.

To ensure good accuracy, a threshold of 50 observations (for each vessel) is set to ensure that

the model receives sufficient data for training. The data distribution for batch 1 is illustrated in

Figure 3.1. Initially, before the preprocessing, it is supposed to contain 30 vessels for training.

However, 23 vessels from this batch are eventually used as 7 of them do not meet the data point

threshold. In total, 63 vessels out of 327 vessels are excluded from further analysis and we

proceed with the remaining 264 vessels, divided into 11 batches, for the model training.

The batch data are then normalized using the standard scaler equation provided below:
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Figure 3.1: Observation frequency for each of thirty vessels

z = (X −u)/s (3.1.1)

Here, X represents the input data, u is mean and s represents the unit variance.

3.2 Deep Learning Architectures

Subsequent to the data preprocessing phase, the cleaned and prepared data is ingested into the

pre-designed architectural frameworks. To fortify the reader’s comprehension of the intricacies

of our proposed models, foundational discussions on basic neural network architectures like

Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Gated Recurrent

Units (GRU), Graph Neural Network and Graph Convolutional Neural Network are incorpo-

rated in this section. These foundational explorations serve to contextualize and substantiate the

reasoning behind the selection and adaptation of the advanced architectures used in this study.

3.2.1 Convolutional Neural Network (CNN)

Convolutional neural networks (CNNs) are a type of neural network that is designed to process

and analyze data with spatial relationships. CNN has been widely utilized in various applica-

tions, such as audio signal pattern recognition, image processing, natural language processing,

and time series prediction. The CNN architecture proposed by Lecun et al. [59] consists of an

input layer, an output layer, and multiple hidden layers. These hidden layers contain convolu-

tional layers, which perform dot products between the input matrix and the convolution kernel

[60].

Convolutional Neural Network(CNN) is particularly effective at extracting spatial patterns by

using convolutional layers, which apply a set of learnable filters to the input data to detect
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features at different spatial locations. The convolution layer can be multi-dimensional, with its

width t and height I representing the filter dimension. The output of the t-th filter, which operates

on the input matrix X, is calculated below

kt = tanh(at.X +bt) (3.2.1)

where X is the input matrix, bt is the bias matrix, at represents the weight matrix and kt is the

output function. The output of the filter is then fed into the LSTM layer which is described in

the following subsection.

3.2.2 Long Short Term Memory (LSTM)

Long short-term memory (LSTM) is a variant of Recurrent Neural Network (RNN) [61]. RNNs

are a type of artificial neural network that can process sequential data by maintaining a memory

of past inputs. In contrast to regular feedforward neural networks that process data in a single

pass, RNNs are designed to handle data that has temporal dependencies, such as time series or

sequences of text. One of the challenges faced by conventional RNNs is the vanishing gradi-

ent problem, in which the gradient of the error function can either diminish or explode during

backpropagation when it is propagated through multiple time steps.

However, the LSTM architecture overcomes this issue by incorporating a novel memory cell

that regulates the information flow through the network. This mechanism selectively retains or

discards information, which mitigates the vanishing or exploding gradient problem and allows

learning long-term dependencies in sequential data. LSTM enables RNNs to perform long-term

sequential prediction [62]. To enable sequential learning, LSTM employs three gates: a forget

gate ft , an input gate it , and an output gate ot , which are depicted in Figure 3.7. These gates

control the flow of information through the memory cell. Elaborating on these three gates, the

complex mechanism of LSTM architecture is explained below.

In LSTM, the forget gate plays a crucial role in determining which pieces of information to

retain or discard from its existing memory, taking into account the arrival of fresh input. Let us

denote the input time series as X = (x1,x2, . . . ,xt) and the hidden state of the memory cell as

H = (h1,h2, . . . ,ht). The forget gate takes the concatenation of previous hidden state ht−1 and

the current input xt as inputs, and produces a forget vector ft as output as in Equation 3.2.2 [63]:
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Forget gate 

Input gate 

Output gate 

Figure 3.2: Long Short Term Memory model schematic diagram

ft = σ(Wf [ht−1,xt ]+b f ) (3.2.2)

Here, σ denotes the sigmoid activation function, which is a nonlinear function that maps its

input to a value between 0 and 1. The weight matrix Wf represents the weights associated with

the forget gate and determines how strongly the inputs affect the forget vector. b f represents the

bias vector, which contains constant values that are added to the weighted sum of these inputs

and can be thought of as the intercept term in the forget gate equation. The weights and the bias

values are learned during the LSTM training process.

LSTM employs the input gate to regulate the inflow of fresh data into the memory cell, which

is composed of two components: the input activation gate and the candidate memory cell gate.

The input activation gate dictates the extent to which the new input ought to be incorporated

into the memory cell, whereas the candidate memory cell gate governs the portion of new data

that must be retained in the memory cell.

By taking the previous hidden state ht−1 and the current node xt as inputs, the input gate gener-

ates an input vector it and a candidate memory cell vector c̃t in an LSTM. The operation of the

input activation gate can be expressed using Equation (3.2.3), which involves the weight matrix

Wi and bias vector bi. Meanwhile, Equation (3.2.4) illustrates how the candidate memory cell

c̃t is formed by applying the hyperbolic tangent activation function (tanh) to the same set of

inputs, using the weight matrix Wc and bias vector bc.

it = σ (Wi [ht−1,xt ]+bi) (3.2.3)

c̃t = tanh(Wc [ht−1,xt ]+bc) (3.2.4)
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The input vector and the candidate memory cell vector are then combined to update the previous

memory cell ct−1 (see Equation (3.2.5)). Here, ⊙ denotes element-wise multiplication.

ct = ft ⊙ ct−1 + it ⊙ c̃t (3.2.5)

The final gate, the output gate, controls the flow of information from the current memory cell to

the current hidden state, which is also the output of the LSTM at the current time step. First, the

output vector ot is generated as in Equation (3.2.6).

ot = σ (Wo [ht−1,xt ,ct ]+bo) (3.2.6)

Then the current hidden state, ht is obtained using Equations (3.2.7) and (3.2.8) where h̃t repre-

sents the candidate hidden state value for the current time step of the LSTM network.

h̃t = tanh(ct) (3.2.7)

ht = ot ⊙ h̃t (3.2.8)

3.2.3 Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU) is another variant of the standard Recurrent Neural Network

(RNN) architecture. Designed to address the vanishing gradient problem commonly encoun-

tered in traditional RNNs, GRU maintains the capability to remember long-term dependencies

in a sequence. Comprising fewer parameters than the Long Short-Term Memory (LSTM) model,

the GRU is computationally more efficient, yet still capable of capturing complex temporal re-

lationships.

The specific mathematical formulation of the GRU is detailed below:

The reset gate rt is computed as in Equation 3.2.9. This gate enables the decision-making

mechanism on how to amalgamate the new input xt with the previous memory ht−1.

rt = σ (Wt +[ht−1,xt ]+bt) (3.2.9)

Following this, the update gate zt is formulated as in Equation 3.2.10. This gate regulates the
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Figure 3.3: Gated Recurrent Units (GRU) schematic diagram

extent to which the hidden state is updated during the learning process.

zt = σ (Wz · [ht−1,xt ]+bz) (3.2.10)

Upon calculating the reset and update gates, we obtain the candidate hidden state h̃f using Equa-

tion 3.2.11. This candidate will contribute to the formation of the final hidden state ht .

h̃f = tanh(Wht · [rtΘht−1,xt ]+bh) (3.2.11)

Lastly, the new hidden state ht is calculated using Equation 3.2.12.

ht = (1− zt)⊙ht−1 + zt ⊙ h̃t (3.2.12)

In these equations, [·] symbolizes the concatenation of two vectors, ⊙ indicates element-wise

multiplication, Θ signifies that each element in the matrix is multiplied accordingly, and σ is

the sigmoid activation function. The matrices W and vectors b are learnable parameters in the

GRU architecture.

In summary, the GRU simplifies the LSTM architecture by merging certain gates and states (see

in figure 3.3, thereby reducing the number of trainable parameters while retaining the capacity

for modeling complex sequence dependencies.

18



CHAPTER 3: METHODOLOGY

3.2.4 Graph Neural Network

Among the various types of neural networks, Graph Neural Networks (GNNs) have gained

considerable attention for their ability to handle graph-structured data. Formally, a GNN is

represented as G = (V,E), where V constitutes the set of vertices or nodes, and E represents

the set of edges in the graph G. Within this framework, information is systematically embedded

into both nodes and edges to facilitate nuanced inferences. Each node in the graph is denoted by

hi ∈V , while each edge is represented as ei j, with i and j serving as the indices for the respective

nodes. Importantly, the edges in a GNN can be either directed or undirected, depending on the

nature of the relationships they represent.

Figure 3.4: Different types of Graph Structure

In graph theory, A directed graph is a graph with all edges directed from one node to another.

An undirected graph is considered a specific subset of directed graphs in which each pair of

connected nodes is linked by a pair of edges with inverse directions. A graph is undirected if

and only if the adjacency matrix is symmetric. While ship trajectory information itself does

not have a graph structure, it contains temporal and spatial features, such as location features,

distance features, and speed features. It can extract the connection relationship information

between track points to establish a topological association network, which can effectively extract

spatial features for machine learning. Information is encoded into the nodes and edges in these

temporal graphs. Node encodings correspond to enc
(
hl

i
)

where l is the layer index and i is the

node index in the corresponding graph layer. Edge encodings correspond to enc
(

el
i j

)
where

l is the layer index and i and j denote the corresponding node indices. Node-level, edge-level

and graph-level inferences are possible by taking into account node and edge encodings [64].

In this particular study, we adopt a node-level prediction method to associate the track. Node-

level outputs relate to node regression and node classification tasks. A variety of Graph neural

network has been developed over the decade. Among them, GCNNs can extract high-level node
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representations by graph convolution. With a multi-perceptron or a softmax layer as the output

layer, GCNNs are able to perform node-level tasks in an end-to-end manner [65]. The next

subsection discusses the Graph Convolutional Neural Network in detail.

3.2.5 Graph Convolutional Neural Network

The Graph Convolutional Network (GCN) is a pioneering architecture in the realm of graph-

based machine learning, designed to operate directly on graphs. Unlike traditional neural net-

works that require a fixed-size vector as input, GCNs are adept at handling irregular structures

by leveraging the graph’s topology. In a GCN, each node is associated with a feature vector,

and the network learns to update these features based on the features of neighboring nodes.

This is typically achieved through a series of layers where each layer is a non-linear function of

the previous one, often involving a combination of convolutional operations on the graph and

point-wise non-linearities. The adjacency matrix of the graph plays a crucial role in these op-

erations, guiding the feature aggregation process. By doing so, GCNs are capable of capturing

both local and global graph structures, making them highly effective for various tasks such as

node classification, link prediction, and graph clustering.

Similar to Convolutional Neural Networks (CNNs) or Multi-Layer Perceptrons (MLPs), Graph

Convolutional Networks (GCNs) learn to generate new feature representations for each node

across multiple layers. These new feature vectors are then employed for linear classification

tasks. For the k-th layer of the GCN, we use H(k−1) to denote the input feature matrix for all

nodes and H(k) to represent the output feature matrix. Initially, the node features are simply the

original input features, as represented by the equation:

H(0) = X (3.2.13)

This equation signifies that the original feature matrix X serves as the initial input for the first

layer of the GCN.

In a K-layer Graph Convolutional Network (GCN), the network operation closely resembles

that of a K-layer Multi-Layer Perceptron (MLP) applied to each node’s feature vector xi. The

key difference lies in the initial step of each layer, where the hidden feature representation

of each node is an average of its own features and those of its neighbors. Each layer of a

GCN comprises three main phases: feature propagation, linear transformation, and pointwise

nonlinear activation. To facilitate comprehension, these phases are elaborated below:[66].
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What sets GCNs apart from MLPs is the feature propagation stage. At the start of each layer,

the feature hi of a node vi is averaged with the features of its surrounding nodes, as described in

equation 3.2.14.

h̃(k)
i =

1
di +1

h(k−1)
i +

∞

∑
j=1

ai j√
(di +1)(d j +1)

h(k−1)
j (3.2.14)

To describe this process in a more compact form, we use the matrix operation in equation 3.2.15.

Let S be the ‘normalized’ adjacency matrix that includes self-loops,

S = D̃− 1
2 Ã− 1

2 (3.2.15)

where A = A+ I and D is the degree matrix of A. The simultaneous update in equation 3.2.14

for all nodes becomes a simple sparse matrix multiplication in equation 3.2.16

Ĥ(k) = SH(k−1) (3.2.16)

This operation effectively smoothens the features at the local level and fosters similar predictions

for nodes that are closely connected.

Following feature propagation, the GCN enters the stage of feature transformation and nonlinear

transition. At this point, the layer in a GCN resembles a conventional layer in an MLP. Each

layer is affiliated with a weight matrix Θ
(k) that has been learned during the training process.

Subsequently, the smoothed feature vectors undergo a linear transformation. Afterward, a point-

wise nonlinear activation function, typically ReLU, is employed to generate the output feature

representation H(k). Formally, the update rule for the representation of the k-th layer is defined

as:

H(k) = ReLU
(

H(k)
Θ

(k)
)

(3.2.17)

The pointwise nonlinear transformation of the k-th layer is followed by the feature propagation

of the (k+1)-th layer.

In the context of node classification tasks, the GCN behaves analogously to a standard Mul-

tilayer Perceptron (MLP) in its final layer, utilizing a softmax classifier to make predictions.

Let Ŷ ∈ Rn×C represent the matrix of class probabilities for n nodes. Here, ŷic signifies the

likelihood that node i belongs to class c. The class predictions Ŷ for a K-layer GCN can be

formalized as follows:

ŶGCN = softmax
(

SH(K−1)
Θ

(k)
)

(3.2.18)

In equation 3.2.18, the softmax function serves as a normalizer across all classes and is defined
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as

softmax(x) =
exp(x)

∑
C
c=1 exp(xc)

(3.2.19)

.

3.3 Proposed Deep Learning Architectures

In the section, we delve into the architecture of the proposed models, namely Multi-modal

LSTM, 1D CNN-LSTM, and Temporal-GCN. The steps for implementing the architechtures

have also been discussed.

3.3.1 Multi Model LSTM

The initial architecture to be implemented on the AIS dataset consists of the construction of

individual models for each vessel. The predictive accuracy of these models will be assessed

using the Haversine distance metric. The methodology for applying a Multimodel Long Short-

Term Memory (LSTM) framework is delineated as follows:

Step 1: To train the LSTM models the available AIS messages are partitioned into training

and testing sets. Let w be the number of testing data. Then, from the original dataset X =

{x1,x2, . . . ,xn} of size n× k, the training sequences {x1,x2, . . . ,xn−w} and {y1,y2, . . . ,yn−w} are

created. Here, xt ∈ R1×k is the input sequence, and yt ∈ R is the output data at time t. k and n

represent the number of features and the total number of observations, respectively.

Step 2: To adapt to the dimensional requirements of the LSTM architecture, the input sequence

xt is formulated by taking m continuous sequences, defined as xt : xt+m−1. This results in a

matrix of shape m× k for t ∈ {1,2, . . . ,n−m−1}.

Step 3: When the model is initiated from t = 1, the input layer accepts m number of timesteps

as inputs and predicts the output ym+1. The accuracy and validation loss of the output are

subsequently calculated and integrated into the model. In these architectures, the output of

one timestep serves as an input for the next timestep. This feedback mechanism empowers the

model to make decisions based on the most recent input and output data. Consequently, after

the prediction of ym+1, it is reintroduced as an input along with the last m timesteps from the

current timestep to predict the output ym+2.

Step 4: This cycle is repeated for all the training data. A training stage pipeline was designed
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Figure 3.5: Detailed methodological framework for our proposed multi-model LSTM algorithm

to have multiple parallel input sequences for multivariate values as input, instead of flat input

structures for multi-output prediction. Four features will be used which are longitude, latitude,

speed and direction of the vessel for generating the multivariate input sequence.Since the ves-

sel’s position needs to be predicted, the longitude and latitude values will be generated as output.

Step 5: Once we estimate the ship’s position at the times of new AIS messages, we need to

find a suitable formula to calculate the similarity between the actual location and predicted

location. One highly precise geodesic approach for computing the distance between two points

on a sphere using their respective latitude and longitude is the haversine formula (illustrated

in the red outlined box in the Figure 4.2). This formula, which is a modified version of the

spherical law of cosines, is particularly well-suited for calculating small angles and distances

due to its use of haversines [67]. By calculating the Haversine distance using the Equation

3.3.1, the deviation between the predicted location and actual location of the current node can

be determined.

Cdist(pk, pn j) = 2r× arcsin

√
sin2

(
ϕk −ϕn j

2

)
+ cosϕk cosϕn sin2

(
λk −λn j

2

)
(3.3.1)

where, pk := (ϕk,λk) and pnj := (ϕnj,λnj). here pk and pnj refers to two specific position such as

predicted and output location. Additionally, ϕk and ϕnj are the the longitudes of the positions,

whereas λk and λnj are the latitudes of the positions. then, the node will be Assign to the closest

vessel based on the LSTM model location prediction.

While the Multi-LSTM model demonstrates strong performance, it has a significant limitation.
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The number of individual LSTM model is directly proportional to the number of vessels under

study, leading to an elongated training period and increased computational cost. The limitation

could be overcome by the following architectures.

3.3.2 1D CNN-LSTM Architecture

To address the track association problem, it is essential to devise a model that can effectively

incorporate both temporal and spatial information. The CNN-LSTM model, as illustrated in

Figure 3.6, represents a comprehensive solution that integrates one CNN layer and two LSTM

layers to capture the underlying temporal and spatial dependencies present in AIS data. The

architecture depicted in the figure 3.6 showcases the CNN-LSTM model, designed to extract

salient features by incorporating an input layer following a 1D Convolutional layer.
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Figure 3.6: The proposed 1D CNN-LSTM architecture

Subsequently, the output from the convolutional layer undergoes further processing through

LSTM layers, with the inclusion of two dropout layers after each LSTM layer. The parameter

configurations for the CNN, LSTM, and Dropout layers are displayed at the bottom of each

respective layer in the figure. Finally, the model concludes with an output layer in the form of

a dense layer, containing a number of neurons equivalent to the count of vessels present in the

training data.

The detailed step by step implementation for track association using one Dimensional CNN-

LSTM is discussed below:
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Step 1: The proposed hybrid architecture takes an input vector represented by

X =


x11 x12 x13 x14

x21 x22 x23 x24
...

...
...

...

xn1 xn2 xn3 xn4


with dimensions (None, 4, 1). The first dimension, denoted as “None," signifies the dynamic

batch size commonly used in Keras implementation. Keras is a Python-based open-source neu-

ral network library that simplifies the prototyping of neural networks. The input vector consists

of four variables, expressed as one-dimensional arrays.

Step 2: To extract salient features from the input, a 1D convolutional layer is constructed. The

1D CNN operates with a kernel that can traverse only in a single direction. The convolutional

layer processes the input and generates an output of size (None, 2, 32).

Step 3 : Subsequently, the output from the convolutional layer undergoes further processing

through LSTM layers, with the inclusion of two dropout layers after each LSTM layer. The

parameter configurations for the CNN, LSTM, and dropout layers are displayed at the bottom

of each respective layer in the figure.

Step 4 : Finally, the model concludes with an output layer in the form of a dense layer, contain-

ing a number of neurons equivalent to the count of vessels present in the training data.

3.3.3 Temporal-Graph Convolution Neural Network (T-GCN)

Temporal-Graph Neural convolutional Neural Network (T-GCNN) serves as an advanced ex-

tension of the conventional Graph Neural Network (GNN). Specifically designed to handle

graph-structured data, the T-GCNN incorporates temporal dynamics to offer a more nuanced

analysis. The Spatial Graph Convolutional Neural network help to capture spatial aspects of

nodes in Graph created by the AIS dataset. However, The Graph structure created by the nodes

and edges have temporal dependency as well. Acquiring the temporal dependence is another

key problem in track association. The key idea of Spatio-temporal graph convolutional neural

networks is to consider spatial dependency and temporal dependency at the same time. Many

current approaches integrate graph convolutions to capture spatial dependency with RNNs or

1D CNNs to model the temporal dependency.

At present, the most widely used neural network model for processing sequence data is the

25



CHAPTER 3: METHODOLOGY

Gr
ap

h 
Co

nv
ol

ut
io

na
l L

ay
er

 

Dr
op

ou
t L

ay
er

 

LSTM/GRU

LSTM/GRU

LSTM/GRU

Dr
op

ou
t L

ay
er

 

Input variable 
converted into 
Graph 

y1

y2

yk

………..
………..

…………………..

…………………..

Fu
lly

 C
on

ne
ct

ed
 La

ye
r

Figure 3.7: Proposed Temporal-Graph Convolutional Neural Network(T-GCNN

recurrent neural network (RNN). However, due to defects such as gradient disappearance and

gradient explosion, the traditional recurrent neural network has limitations for long-term pre-

diction [41] The LSTM model [61] and the GRU model [68] are variants of the recurrent neural

network and have been proven to solve the above problems. The basic principles of the LSTM

and GRU are roughly the same [69]. They all use gated mechanism to memorize as much long-

term information as possible and are equally effective for various tasks. As illustrated in Figure

3.7, the architecture of the Temporal-GCN is specifically designed to manage the unique chal-

lenges posed by the AIS dataset. Initially, the input is transformed into a graph structure, which

serves as the input to the Graph Convolutional Network (GCN) layer. A dropout layer follows

the GCN, serving as a regularization mechanism to prevent overfitting. Subsequently, the output

from the dropout layer is processed by a Long Short-Term Memory (LSTM) or Gated Recur-

rent Unit (GRU) layer. This stage is crucial for capturing the temporal dependencies inherent

to the AIS data. Finally, a fully connected layer is appended to the network, its dimensions

corresponding to the number of vessels present in the training set.

The detailed step by step implementation for track association using Temporal-Graph Convolu-

tion Neural Network is discussed below:

Step 1: We employ an unweighted graph G = (V,E) to delineate the topological configuration

of the AIS dataset, treating each timestamp as a node. In this context, V is a set of vessel nodes,

V = {v1,v2, . . . ,vN}, where N denotes the total number of nodes in the surveillance area. E

constitutes the set of edges representing interactions or spatial proximities between vessels.

Step 2: The adjacency matrix A serves to encapsulate the connectivity between each nodes.

Specifically, A ∈ RN×N . This adjacency matrix contains only binary elements—0 and 1—to

signify the existence or absence of a relationship between any two nodes. An element is set to 1
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if the node belongs to a particular vessels, if it doesn’t belong to a specific vessels then it is 0.

Step 3: To further enrich the representation of the AIS dataset, a feature matrix XN×P is in-

troduced. This matrix encapsulates vessel-related attributes, serving as node attributes in the

network. Formally, X ∈ RN×P, where P signifies the number of node attribute features, which

include the latitude, longitude, speed and course related to each vessel.

Step 4: The Temporal-Graph Convolutional Neural Network (T-GCN) is initialized with pre-

defined hyperparameters. The input layer is designed to accept sequences with a shape of t ×P,

where t represents the number of timesteps and P denotes the feature dimension.

Step 5: Spatial features are convolved through a Graph Convolutional Network (GCN) layer.

The adjacency matrix A of the graph G is utilized to capture the spatial correlation between

nodes.

Step 6: A temporal layer is applied to the output of the GCN layer, capturing the temporal

dependencies. This is typically achieved through 1D convolutional layers or LSTM layers or

GRU layers.

Step 7: Finally, the model concludes with an output layer in the form of a dense layer, containing

a number of neurons equivalent to the count of vessels present in the training data.

3.4 Performance Evaluation Metrics

To evaluate the effectiveness of our model, we generate the confusion matrix, which compares

the actual classes with the predicted ones. The diagonal entries of the matrix represent the true

positive predictions made by the model. However, relying solely on the confusion matrix is not

enough to accurately quantify the performance of the model. Therefore, we compute several

commonly used evaluation metrics to fully assess the model’s performance, including:

Sensitivity =
TP

TP+FN
(3.4.1)

Specificity =
TN

TN+FP
(3.4.2)

F1 score =
Sensitivity + Specificity

2
(3.4.3)

Accuracy =
TP+TN

TP+FP+FN+TN
(3.4.4)

The abbreviations TP, TN, FP, and FN correspond to true positive, true negative, false positive,
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and false negative predictions, respectively. Since the dataset has a class imbalance, we calculate

the micro-average value for all metrics, which aggregates the contributions of all classes to

determine the average metric.
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Results and Discussion

The results and discussion chapter is divided into four sections. In the initial section of the re-

sult analysis, we delve into the efficacy of the Multi-model Long Short-Term Memory (LSTM)

framework, particularly focusing on its application to datasets of a smaller scale. This examina-

tion is accompanied by a detailed overview of the chosen hyperparameters. Subsequently, we

present a comparative evaluation of performance metrics for both small and large-scale datasets,

highlighting the proficiency of the 1D convolutional LSTM architecture. The rationale behind

the selection of specific hyperparameters is also illustrated in this context. The third section

evaluates the performance of the Temporal Graph Convolutional Neural Network, assessing its

applicability and effectiveness across datasets varying in scale. The concluding section presents

a comprehensive comparison between our hybrid neural network model and conventional neural

network methodologies, thereby highlighting the relative improvement in performance achieved

by our approach.

4.1 Multi-Model LSTM

To initiate the performance evaluation of the multi-model Long Short-Term Memory (LSTM),

the evaluation begins with a dataset of relatively smaller magnitude, encompassing five distinct

maritime vessels. The dataset utilized in this study consists of a total of 5,688 data points. These

data points have been strategically chosen and employed for both training and validation of the

model. An additional database containing 1,422 data points has been specifically set aside

for the purpose of performing tests. The application of the model to the test dataset yielded

results that can be described as notably promising. To provide a comprehensive analysis of the

model’s effectiveness in accurately categorizing different types of vessels, we present a thorough

examination of the confusion matrix and evaluation metrics. The confusion matrix, depicted in
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Figure 4.1: Confusion matrix for the multi model LSTM

Figure 4.1, offers a visual representation of the model’s classification performance. It illustrates

the number of instances where the model correctly or incorrectly predicted the vessel types.

The model demonstrated commendable proficiency in accurate class prediction of the Vessels,

achieving an average accuracy rate of 81% across the board.

Accuracy Precision Recall F1 score
Vessel One 0.696 0.725 0.670 0.70
Vessel Two 0.745 0.712 0.782 0.75
Vessel Three 0.942 1.000 0.890 0.94
Vessel Four 0.909 0.840 0.990 0.91
Vessel Five 0.792 0.826 0.760 0.79

Table 4.1: Evaluation metrics for the multi-model LSTM

Furthermore, Table 4.1 presents a detailed summary of the evaluation metrics employed to as-

sess the model’s performance. These metrics include precision, recall, and F1-score, which

provide insights into the model’s ability to correctly identify each vessel type. It is observed

that the performance of the multi-LSTM model exhibits a degree of variability across different

classes. Particularly, in scenarios where vessel tracks intersect or overlap, the model’s predic-

tive accuracy diminishes noticeably. For instance, the overlapping trajectories of Vessel 1 and

Vessel 2 resulted in a reduced accuracy performance of 73% and 75%, respectively. In contrast,

Vessels 4 and 5 displayed superior predictive accuracy, each achieving an accuracy rate of 94%

and 91%. The hyperparameters are optimized using the random search method. The optimized
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hyperparameters are listed in table 4.2.

Hyperparameters Value
Number of LSTM hidden cells 32
Return sequences for first layer True

Number of skip connections 2
LSTM activation function Relu

Batch size 10
Loss function Mean Squared error
Learning rate 0.0001

Epochs 100

Table 4.2: Hyperparameters setting of the multi model LSTM

Multi-LSTM model for vessel trajectory classification requires constructing multiple classifi-

cation models as the number of vessels increases. This introduces complexity in model devel-

opment and inference. Additionally, incorporating new vessel trajectories necessitates train-

ing additional models on the new data, as the current approach relies on computing Haversine

distance matrices between trajectories outside of the neural network. This matrix calculation

imposes additional computational overhead.

To mitigate these challenges, we proposed several hybrid neural network architectures for joint

modeling of all vessel trajectories. Convolutional layers in a hybrid neural network can extract

spatial features from trajectory data. This eliminates the requirement for computation of dis-

tance matrices external to the model. A single model can be trained on trajectory data from all

vessels and later fine-tuned to incorporate new trajectories. This reduces model complexity and

computational burden relative to multi-model LSTM approaches. The proposed model aims to

improve scalability while retaining the representational capacity for accurate track association.

4.2 1D Convolutional LSTM

To evaluate the performance of a 1D-CNN LSTM, at first, we start with a small-scale dataset

consisting of five vessels same as the multi-model LSTM model.

The efficacy of the model is assessed through a confusion matrix, as depicted in Figure 4.2.

The outcomes of this assessment for the small-scale model are notably accurate, except for one

vessel that demonstrated an accuracy of 96.4%. This high level of precision can be ascribed to

the advantageous combination of well-balanced class data and the limited quantity of vessels

requiring classification.
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Figure 4.2: Confusion matrix implementing CNN-LSTM architecture for small scale dataset.

Further, to probe the model’s capability to adapt and perform in varied settings, an extensive

large-scale experiment was undertaken. The proposed hybrid Neural Network aimed to address

two main challenges often seen in real-world situations: the difference in the amount and timing

of data collected from different vessels, and the occurrence of paths crossing over each other.

For this extensive analysis, we looked at 327 vessels, divided into 11 groups, with each group

starting with around 30 vessels. After preprocessing the data, the final number of vessels was

reduced to 264. The success of the model in this larger setting is measured using the 95%

confidence interval from the results of all 11 groups, as calculated using Equation 4.2.1.

Confidence Interval = x̄±
(

1.96× s√
n

)
(4.2.1)

where x̄ is the sample mean, s is the standard deviation of the sample, n is the sample size, and

1.96 is the z-score from the standard normal distribution corresponding to a 95% confidence

level. The standard error of the mean (SEM) is calculated as s√
n . Table 4.3 presents the evalu-

ation metrics for a deep learning architecture, specifically the CNN-LSTM model, across four

principal indicators: Accuracy, Precision, Recall, and F1 Score. Accompanying each metric is

the Standard Error of the Mean (SEM), which serves to quantify the estimate’s uncertainty. An

accuracy of 0.89 ± 0.02 is reported for the CNN-LSTM model, indicating a 95% confidence

interval about the mean accuracy score. Precision and f1 score are similarly reported as 0.89 ±

0.02, while recall is 0.91 ± 0.02.

32



CHAPTER 4: RESULTS AND DISCUSSION

Table 4.3: Evaluation matrix for the deep learning architectures.

Deep Learning Models Accuracy Precision Recall F1 Score

CNN-LSTM 0.89 ± 0.02 0.89 ± 0.02 0.91 ± 0.02 0.89 ± 0.02

This research offers a crucial understanding of how the 1D-CNN LSTM model can be adapted

for use in complicated, real-life situations, underlining its usefulness for practical implementa-

tions. The intricacies involved in the thorough assessment of the 1D-CNN LSTM model are

depicted in figure 4.3, where vessels from the first batch that lack specific identifiable details are

shown as white dots. This includes cases where vessel paths overlap without clear markers for

their beginning and ending points.

Figure 4.3: Unclassified vessels

However, as demonstrated in figure 4.4, our model is capable of accurately detecting these ves-

sels and recovering their tracks, even in cases where navigation routes overlap. The exceptional

performance of 1D CNN-LSTM is also evident from the stability of its AUC curve for the train-

ing and validation loss and accuracy, as shown in figure 4.5. The model’s performance can also

be quantitatively assessed by comparing its predictions with the true labels.

To identify the optimal blend of CNN and LSTM layers, various configurations were tested.

We have found that 1 CNN layer and two LSTM layers outperform the other combination with

approximately 90% accuracy (see in figure 4.6). The improvement of the model depends on

hyperparameter tuning. Parameters such as the number of filters in the convolutional layer, the

size and stride of the convolutional kernel, and the number of hidden cells in the LSTM layer are

optimized using the random search method [70] (as specified in Table 4.4). The optimization

of these hyperparameters spans numerous levels, leading to a computationally demanding and

time-intensive task. This is due to the vast number of experiments generated by the combination
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Figure 4.4: Track association using the proposed algorithm

Figure 4.5: Training and validation loss and accuracy curve for CNN-LSTM architecture.

of these hyperparameters. The results for the different hyperparameters are shown in the figure

4.7.
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Figure 4.6: Ablation study for finding the optimized combination of CNN layers and LSTM layers. The
combination of one CNN layer and two LSTM layers outperforms the other in terms of
validation accuracy score.

Table 4.4: Hyperparameter tuning for the hybrid 1D CNN LSTM architecture.

Parameters Value

Convolutional layer filters 32
Convolutional kernel size 5

Convolutional kernel stride 3
Convolutional layer activation function ReLU

Convolutional layer padding Causal
Number of LSTM hidden cells 32

Number of skip connections 2
LSTM activation function Sigmoid

Batch size 100
Loss function Categorical cross entropy
Learning rate 0.0001

Epochs 100
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Figure 4.7: Selecting the optimal hyperparameters using the grid search method. (a) Validation accu-
racy for different batch sizes; (b) Validation loss for different batch sizes; (c) Performance of
different activation functions in CNN layer; (d) Performance of different activation functions
in LSTM layers.
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4.3 Temporal GCN

Temporal graph convolutional networks (TGCNs) have demonstrated exceptional ability for

capturing sequential and spatial behaviors in time series data [71]. To implement TGCNs for

multi-object track association, we represent each object id as a node vi in a graph G = (V,E).

Edges ei j ∈ E connect nodes vi and v j if the corresponding tracks belong to the same vessel. The

goal is to predict these edges, which depend on whether a pair of nodes/tracks are associated

with the same vessel. We encode each node vi with features xi consisting of timestamp, longi-

tude, latitude, speed, and course. Edges ei j are encoded with a temporal feature τi j representing

the time difference between nodes vi and v j.
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Figure 4.8: Confusion matrix implementing Temporal GCN architecture for a small-scale dataset.

We trained the Temporal GCN on the same small dataset. The performance evaluation of our

model, as illustrated in figure 4.8, demonstrates outstanding predictive accuracy across five dis-

tinct vessel categories. The model exhibits exceptional precision with Vessel Three and Vessel

Five, achieving a perfect classification rate of 100%. Similarly, Vessel Four shows near-perfect

accuracy with 99.1% of predictions being correct. Vessel One and Vessel Two also display ro-

bust classification capabilities with 93.54% and 95.47% accuracy, respectively. Further tuning

of the model architecture and training process could improve multi-object discrimination for
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intersecting tracks.

While the temporal graph convolutional network (TGCN) demonstrated impressive results on a

smaller dataset, its effectiveness diminished when applied to a larger dataset consisting of 264

ship trajectories divided into 11 groups. The TGCN-LSTM model managed to attain an average

accuracy of 78%, but this was accompanied by a 4% variation across the different groups (see in

table 4.5). This pattern suggests that the T-GCN’s performance is influenced by the total number

of data points in each group, showing a decrease in efficiency as the number of tracks in each

group increases.

Table 4.5: Evaluation metrics for the Temporal GCN architectures.

Deep Learning Models Accuracy Precision Recall F1 Score

Temporal GCN (LSTM) 0.78 ± 0.04 0.77 ± 0.03 0.78 ± 0.04 0.78 ± 0.04
Temporal GCN (GRU) 0.73 ± 0.03 0.75 ± 0.03 0.75 ± 0.03 0.74 ± 0.03

The large number of training parameters of the Temporal Graph Convolutional Network (T-

GCN), which increases in size with the dataset, likely led to issues of instability and under-

performance. This was also evident in the case of a T-GCN combined with a Gated Recurrent

Unit (GRU) model, referred to as T-GCN(GRU). The overall effectiveness of the T-GCN(GRU)

model was subpar, achieving an accuracy of 73% and an F1 score of 74%. The hyperparameters

used for the optimized performance are listed here in the table 4.2.

Table 4.6: Hyperparameter tuning for the T-GCN (LSTM) architecture.

Parameters Value

GCN output size 32
Number of LSTM units 64
Optimization algorithm Adam

Loss function Sparse categorical cross entropy
Model performance metrics Accuracy
Number of training epochs 100

Fraction of data for validation 0.15
Batch Size 100

Length of input sequences 10

Scaling up temporal graph networks likely requires more robust regularization and optimiza-

tion methods. Further analysis is needed to adapt temporal graph networks to large real-world

transportation datasets.
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4.4 Overall Comparison

Through a comprehensive quantitative approach, we conducted an evaluation of the performance

of nine alternative deep learning architectures. The following architectures are being studied:

1D CNN LSTM, Temporal GCN (LSTM), Temporal GCN (GRU), Conventional Convolutional

Neural Network (CNN), long short-term memory (LSTM), Bi-directional LSTM (Bi-LSTM)

[48, 49], Bi-directional gated recurrent unit (Bi-GRU) [50], and the feedforward artificial neural

network (ANN). All of the models have been tested using the same large-scale dataset, which

consists of 264 vessels that are split into eleven batches. The models are tested to see their

versatility to handle the large dataset, their overall performance, and the variability of perfor-

mance among the batches. The comparative analysis presented in table 4.7 clearly delineates

the performance hierarchy among the evaluated deep learning architectures.

Table 4.7: Comparison of performance metrics for the deep learning architectures

Deep Learning Models Accuracy ± SEM Precision ± SEM Recall ± SEM F1 Score ± SEM

CNN-LSTM 0.89 ± 0.02 0.89 ± 0.02 0.91 ± 0.02 0.89 ± 0.02
Bi-LSTM 0.87 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 0.86 ± 0.02
Bi-GRU 0.83 ± 0.03 0.83 ± 0.03 0.84 ± 0.03 0.83 ± 0.03
LSTM 0.80 ± 0.03 0.80 ± 0.03 0.81 ± 0.03 0.80 ± 0.03

Temporal GCN (LSTM) 0.78 ± 0.04 0.77 ± 0.03 0.78 ± 0.04 0.78 ± 0.04
CNN 0.74 ± 0.04 0.74 ± 0.04 0.74 ± 0.04 0.73 ± 0.04

Temporal GCN (GRU) 0.73 ± 0.03 0.75 ± 0.03 0.75 ± 0.03 0.74 ± 0.03
ANN 0.46 ± 0.05 0.46 ± 0.05 0.45 ± 0.05 0.48 ± 0.05

The CNN-LSTM model emerges as the front-runner, attaining an exemplary accuracy of 0.89 ±

0.02, matched by its precision and underscored by a superior recall of 0.91 ± 0.02, culminating

in an F1 score of 0.89 ± 0.02. This performance is not only consistent across metrics but also

signifies the robustness of the model, as reflected by the low standard error of the mean (SEM).

Trailing closely, the Bi-LSTM and Bi-GRU models exhibited commendable performances with

accuracies of 0.87 ± 0.02 and 0.83 ± 0.03, respectively. These bidirectional models, by virtue of

their architecture, effectively captured the sequential dependencies in both forward and reverse

directions, which is instrumental in complex temporal pattern recognition tasks.

The LSTM model, with its accuracy of 0.80 ± 0.03, stands out for its ability to surpass more

conventional models like the CNN, which recorded an accuracy of 0.74 ± 0.04. This high-

lights the LSTM’s capacity to capture long-term dependencies, a critical aspect often missing in

traditional CNNs.

The Temporal Graph Convolutional Network (GCN) models, when integrated with LSTM and
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GRU units for sequence processing, exhibited promising outcomes despite not achieving peak

performance. These models, with accuracies of 0.78 ± 0.04 for the TGCN-LSTM and 0.73 ±

0.03 for the TGCN-GRU, demonstrate the effective combination of graph-based neural networks

with temporal processing units. This integration marks a significant advancement in the field,

opening up new possibilities for handling structured time series data.

In stark contrast, the ANN model lagged significantly behind, with the lowest accuracy of 0.46

± 0.05, a clear indication of its inability to model the spatial and temporal dynamics inherent to

the dataset. This reinforces the critical importance of choosing architectures that align with the

complex nature of the data and the task at hand.

The superior performance of the 1D CNN-LSTM architecture can be ascribed to its distinctive

ability to extract salient features while concurrently considering the sequential nature of the AIS

dataset, which is essential for accurate prediction in time series datasets. The architecture takes

into account both the spatial and temporal characteristics of the dataset, resulting in exceptional

performance in all performance evaluation metrics. Taken together, these findings underscore

the efficacy of deep learning models in addressing intricate maritime problems and emphasizing

the potential of the 1D CNN-LSTM architecture for future tracking applications.
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Conclusion

This research demonstrates the efficacy of neural networks in solving the track association prob-

lem, which traditionally relies on physics-based methods. These methods often face constraints

due to their dependence on only the preceding node to estimate the likelihood of the succeeding

node’s path. To overcome such limitations, this study employs neural network-based sequential

models designed to encapsulate the spatio-temporal dynamics within the data. A noteworthy

strategy is the multi-model LSTM technique, which, despite its effectiveness, encounters a de-

crease in computational efficiency as the count of vessels—and consequently, the number of

required models—grows. Graph Neural Networks (GNNs) offer an alternative by represent-

ing nodes within a graph structure, creating distinct graphs for individual vessels. However,

the growth in model parameters with increasing complexity has been observed to cause over-

fitting, which compromises the model’s predictive power. Among the tested architectures, the

1D CNN-LSTM model distinguishes itself by its adeptness at assimilating spatial and temporal

data, particularly within the AIS dataset context.

The study acknowledges the unexplored avenue of integrating novel vessels into the tracking

system. Future developments could potentially introduce an innovative mechanism to track

nodes related to new vessels, integrating them effectively into the existing framework. While the

temporal GCN has shown promise in handling datasets of limited size, optimizing and refining

the model’s architecture could substantially augment its applicability and performance.
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