1,383 research outputs found

    Artificial neural network EMG classifier for functional hand grasp movements prediction

    Get PDF
    To design and implement an electromyography (EMG)-based controller for a hand robotic assistive device, which is able to classify the user's motion intention before the effective kinematic movement execution

    ROAD: Domestic Assistant and Rehabilitation Robot

    Get PDF
    This study introduces the concept design and analysis of a robotic system for the assistance and rehabilitation of disabled people. Based on the statistical data of the most common types of disabilities in Spain and other industrialized countries, the different tasks that the device must be able to perform have been determined. In this study, different robots for rehabilitation and assistance previously introduced have been reviewed. This survey is focused on those robots that assist with gait, balance and standing up. The structure of the ROAD robot presents various advantages over these robots, we discuss some of them. The performance of the proposed architecture is analyzed when it performs the sit to stand activity

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces

    Understanding Key Biomechanical Factors that Influence Rotator Cuff Tear Propagation

    Get PDF
    The high frequency of rotator cuff tears in an aging population, combined with their capacity to cause pain and limit normal activity, underscores the importance of treating these injuries in a judicious manner. However, high failure rates have been reported for non-operative and surgical treatment. Tear propagation may explain high failure rates of treatment as larger tears are more difficult to treat and are associated with worse clinical outcomes. Abnormal glenohumeral arthrokinematics and localized changes in mechanical properties are factors that explain why some tears propagate more easily than others. Furthermore, clinicians lack a tool to non-invasively quantify tendon mechanical properties. Therefore, the objective of this dissertation is to better understand the role of glenohumeral arthrokinematics and location specific mechanical properties on tear propagation as well as the utility of ultrasound techniques to quantify mechanical properties of tendons through in-vivo, cadaveric, and computational experiments. Following exercise therapy for 5 subjects with a rotator cuff tear, glenohumeral arthrokinematics for internal/external rotation with the arm at the side did not improve. Abnormal glenohumeral arthrokinematics may be a result of unbalanced force couples, exposing the torn supraspinatus tendon to loads that may promote tendon remodeling that increases the likelihood of tear propagation. Using a subject-specific finite element model of a supraspinatus tendon, tendon remodeling in terms of increased stiffness at the tear tips lead to more tear propagation. Cadaveric experiments showed that quantitative ultrasound measures, which analyze the grayscale echotexture of an ultrasound image, correlates to measures of tendon quality as quantified through histology. Acoustic Radiation Force Impulse (ARFI) imaging a technique where localized radiation forces push onto the tissue, the resulting displacement is measured. The mechanical properties of the tissue can then be inferred. However, our findings suggest that ARFI imaging is limited for high stiffness tissues such as tendons. Despite large differences in tissue modulus, differences in ARFI displacement are minimal. Ultimately, understanding how changes in localized tendon mechanical properties influence tear propagation and the capabilities of currently available ultrasound techniques to measure tendon mechanical properties will enable clinicians to make better treatment decisions for patients with a rotator cuff tear

    Force measurement during spinal mobilisation

    Get PDF
    PhDSpinal mobilisation or manipulation techniques are frequently used by physiotherapists in the treatment of musculoskeletal disorders. Despite the reliance on these techniques in clinical practice, there is little scientific evidence to substantiate their use. A standard mobilisation couch was instrumented to enable measurement of the forces applied to the trunk during mobilisation of the lumbar spine. Six load cells were incorporated into the couch frame and linked to a personal computer to facilitate data collection. The couch allowed the assessment of the magnitude of the mobilisation force, its direction and the variation in applied load over time. The system was found to be reliable and sensitive over the range of forces applied during mobilisation. The system was used to collect data from a sample of 30 experienced therapists to evaluate repeatability and reproducibility during the application of four grades of a posteroanterior mobilisation and an End Feel, on the third lumbar vertebra. Whilst some therapists demonstrated considerable variation in the forces applied both within one measurement session and over a two week period, others were found to be relatively consistent. The range of forces used by different therapists when performing the same technique was substantial ranging between 63 N and 347 N for a Grade IV mobilisation. A study was carried out involving 26 young healthy subjects, to determine the characteristics of a mobilisation force applied to an asymptomatic spine. A further study was undertaken involving a clinical sample of 16 patients, aged between 47- 64 years, to evaluate the effect of age related degenerative changes of the lumbar spine on the application of these techniques. The magnitude of the mobilisation force was found to be similar for the healthy and the patient groups with median forces of 175 N and 171 N during a Grade IV procedure, respectively. However, the forces applied to the patient group exhibited a statistically significantly smaller amplitude and higher frequency of oscillation than the healthy group for the same procedure (p < 0.01). Such measurements are essential for the assessment of the efficacy of these techniques in clinical practice.Chartered Society of Physiotherap

    Capsule endoscopy of the future: What's on the horizon?

    Get PDF
    Capsule endoscopes have evolved from passively moving diagnostic devices to actively moving systems with potential therapeutic capability. In this review, we will discuss the state of the art, define the current shortcomings of capsule endoscopy, and address research areas that aim to overcome said shortcomings. Developments in capsule mobility schemes are emphasized in this text, with magnetic actuation being the most promising endeavor. Research groups are working to integrate sensor data and fuse it with robotic control to outperform today's standard invasive procedures, but in a less intrusive manner. With recent advances in areas such as mobility, drug delivery, and therapeutics, we foresee a translation of interventional capsule technology from the bench-top to the clinical setting within the next 10 years

    Cable-driven parallel robot for transoral laser phonosurgery

    Get PDF
    Transoral laser phonosurgery (TLP) is a common surgical procedure in otolaryngology. Currently, two techniques are commonly used: free beam and fibre delivery. For free beam delivery, in combination with laser scanning techniques, accurate laser pattern scanning can be achieved. However, a line-of-sight to the target is required. A suspension laryngoscope is adopted to create a straight working channel for the scanning laser beam, which could introduce lesions to the patient, and the manipulability and ergonomics are poor. For the fibre delivery approach, a flexible fibre is used to transmit the laser beam, and the distal tip of the laser fibre can be manipulated by a flexible robotic tool. The issues related to the limitation of the line-of-sight can be avoided. However, the laser scanning function is currently lost in this approach, and the performance is inferior to that of the laser scanning technique in the free beam approach. A novel cable-driven parallel robot (CDPR), LaryngoTORS, has been developed for TLP. By using a curved laryngeal blade, a straight suspension laryngoscope will not be necessary to use, which is expected to be less traumatic to the patient. Semi-autonomous free path scanning can be executed, and high precision and high repeatability of the free path can be achieved. The performance has been verified in various bench and ex vivo tests. The technical feasibility of the LaryngoTORS robot for TLP was considered and evaluated in this thesis. The LaryngoTORS robot has demonstrated the potential to offer an acceptable and feasible solution to be used in real-world clinical applications of TLP. Furthermore, the LaryngoTORS robot can combine with fibre-based optical biopsy techniques. Experiments of probe-based confocal laser endomicroscopy (pCLE) and hyperspectral fibre-optic sensing were performed. The LaryngoTORS robot demonstrates the potential to be utilised to apply the fibre-based optical biopsy of the larynx.Open Acces

    Gemelli-obturator complex in the deep gluteal space: an anatomic and dynamic study

    Get PDF
    Objective: To investigate the behavior of the sciatic nerve during hip rotation at subgluteal space. Materials and methods: Sonographic examination (high-resolution ultrasound machine at 5.0–14 MHZ) of the gemelli-obturator internus complex following two approaches: (1) a study on cadavers and (2) a study on healthy volunteers. The cadavers were examined in pronation, pelvis-fixed position by forcing internal and external rotations of the hip with the knee in 90° flexion. Healthy volunteers were examined during passive internal and external hip rotation (prone position; lumbar and pelvic regions fixed). Subjects with a history of major trauma, surgery or pathologies affecting the examined regions were excluded. Results: The analysis included eight hemipelvis from six fresh cadavers and 31 healthy volunteers. The anatomical study revealed the presence of connective tissue attaching the sciatic nerve to the structures of the gemellus-obturator system at deep subgluteal space. The amplitude of the nerve curvature during rotating position was significantly greater than during resting position. During passive internal rotation, the sciatic nerve of both cadavers and healthy volunteers transformed from a straight structure to a curved structure tethered at two points as the tendon of the obturator internus contracted downwards. Conversely, external hip rotation caused the nerve to relax. Conclusion: Anatomically, the sciatic nerve is closely related to the gemelli-obturator internus complex. This relationship results in a reproducible dynamic behavior of the sciatic nerve during passive hip rotation, which may contribute to explain the pathological mechanisms of the obturator internal gemellus syndrome.Peer ReviewedPostprint (author's final draft

    Quantifying Airway Dilatation in the Lungs from Computed Tomography

    Get PDF
    Non CF bronchiectasis and idiopathic pulmonary fibrosis (IPF) are pulmonary diseases characterised by the abnormal and permanent dilatation of the airways. Computed tomography (CT) is used in clinical practice to diagnose and monitor patients with the disease. Currently, analysis of the scans is performed by manual inspection and there is no established computerised method to quantify the enlargement of airways. I developed a pipeline to quantify the cross-sectional area for a given airway track. Using an airway segmentation, my proposed algorithm measures the area at contiguous intervals along the airway arclength from the Carina to the most distal point visible on CT. I showed the use of the data generated from the pipeline in two applications. First, I proposed a novel tapering measure as the gradient of a linear regression between a logarithmic area against the arclength. The measurement was applied to airways affected by bronchiectasis. Second, I used Bayesian Changepoint Detection (BCD) with the area measurements to locate the progression of IPF along the airway track. The proposed pipeline was applied to a set of clinically acquired scans. I show a statistical difference (p = 3.4×10−4 ) in the tapering measurement between bronchiectatic (n = 53) and controlled (n = 39) airways. In addition, I report a statistical difference (p = 7.2×10−3 ) in the change in measurement between airways remaining healthy (n = 14) and airways that have become bronchiectatic (n = 5). I show the tapering measurement is reproducible independent to voxel size, CT reconstruction, and radiation dose. Using BCD, I show on simulated data (n = 14) my proposed method can detect the progression of IPF within 2.5mm. Finally, using results from BCD, I present a novel measure of IPF progression as the percentage volume change in the diseased region of the airways
    • …
    corecore