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Abstract
Non CF bronchiectasis and idiopathic pulmonary fibrosis (IPF) are pulmonary dis-

eases characterised by the abnormal and permanent dilatation of the airways. Com-

puted tomography (CT) is used in clinical practice to diagnose and monitor patients

with the disease. Currently, analysis of the scans is performed by manual inspec-

tion and there is no established computerised method to quantify the enlargement

of airways.

I developed a pipeline to quantify the cross-sectional area for a given airway

track. Using an airway segmentation, my proposed algorithm measures the area at

contiguous intervals along the airway arclength from the Carina to the most distal

point visible on CT. I showed the use of the data generated from the pipeline in two

applications. First, I proposed a novel tapering measure as the gradient of a linear

regression between a logarithmic area against the arclength. The measurement was

applied to airways affected by bronchiectasis. Second, I used Bayesian Changepoint

Detection (BCD) with the area measurements to locate the progression of IPF along

the airway track.

The proposed pipeline was applied to a set of clinically acquired scans. I

show a statistical difference (p = 3.4×10−4) in the tapering measurement between

bronchiectatic (n = 53) and controlled (n = 39) airways. In addition, I report a sta-

tistical difference (p = 7.2×10−3) in the change in measurement between airways

remaining healthy (n = 14) and airways that have become bronchiectatic (n = 5). I

show the tapering measurement is reproducible independent to voxel size, CT re-

construction, and radiation dose. Using BCD, I show on simulated data (n = 14) my

proposed method can detect the progression of IPF within 2.5mm. Finally, using

results from BCD, I present a novel measure of IPF progression as the percentage

volume change in the diseased region of the airways.
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Impact Statement
In my PhD I developed tools to describe the size of the airways from Computed

Tomography (CT) scans. I have shown that my proposed tools are accurate and can

be used with different CT scanners without loss of precision. The algorithms are

designed to be used on diseases that causes the airways to abnormally expand or

dilate. There are two possible applications to my work.

The first application concerns bronchiectasis. Patients with the disease can

experience exacerbation; a sudden deterioration of the patients health. These events
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exacerbations from a given patients.
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Chapter 1

Prologue

1.1 Introduction
In this thesis, I developed a set of algorithms to quantify and assess changes in

the size of the airways in the lungs. The motivation is to assess the severity and

progression of airways affected by non-cystic fibrosis bronchiectasis or idiopathic

pulmonary fibrosis. Both diseases are characterised by abnormal dilatation of the

airways. The analysis of the disease is strictly based on computed tomography, a

modality that uses ionising radiation to construct three dimensional images of the

human anatomy.

In this chapter, I give a general introduction to the thesis, discussing the back-

ground knowledge and assumptions. The chapter is organised in the following sec-

tions: (i) General anatomy of lungs (Sec. 1.2). (ii) Image acquisition from a CT

scanner (Sec. 1.3). (ii) Bronchiectasis and idiopathic pulmonary fibrosis (Sec. 1.4).

(iv) Summary of the proceeding chapters (Sec. 1.5).

1.2 Lung Anatomy
The human lungs are two sets of organs located inside the ribs, they are called the

left lung and right lung. (Fig. 1.1). Both lungs consist of airways, blood vessel and

connective tissue known as the lung parenchyma [7]. The right lung is larger then

the left lung. In addition, with typically incomplete division; the right and left lungs

contains three and two lobes respectively. Each lobe is separated by fissures. The

function of the lungs is for gas exchange, where air is transported by the trachea [8].
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Figure 1.1: An illustration of the general anatomy of the healthy lungs. The airways
is accompany by the pulmonary artery. At the end of each airway is the
alveoli, where gas is exchanged form the blood. Image was taken from
National Heart, Lung and Blood Institute, USA, www.nhlbi.nih.gov/
health-topics/how-lungs-work, last assessed May 4, 2021.

1.2.1 Pulmonary Airways

The airways are a set of bifurcating tubes from a single larger tube. As displayed

on Figure 1.1, the structure of the airway starts from the trachea - a tubular structure

that lies outside of the lung. The trachea then bifurcates into the main bronchi

where it enters the lung [7]. The bifurcation continues for around 22 to 24 times.

The airways then terminate into a sac known as the alveoli. The airways can be

described by generation. Conventionally, the trachea is labelled as generation 0.

Next, generation 1 is described as the group of airways starting at the bifurcation

from the trachea and to the end of the next bifurcation. The proceeding airway

generations are labelled by the same convention. For a healthy set of lungs, the

diameter of the airways decrease after each bifurcation [9, 10].

1.2.2 Pulmonary Blood Vessels

The pulmonary blood vessels are located inside the lungs. Similarly with the air-

ways, the blood vessels are a set of bifurcating tubes. A part of the pulmonary blood

vessel - the artery, follows closely with the airways. The artery bifurcates until the

www.nhlbi.nih.gov/health-topics/how-lungs-work
www.nhlbi.nih.gov/health-topics/how-lungs-work
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Figure 1.2: LEFT: A image of a CT scanner in a clinical setting. RIGHT: The internal
components of the CT scanner. The X-ray tube (green arrow) and detectors
(blue arrow) rotates as the patient transverse through the bore. Images adapted
from Wikipedia, en.wikipedia.org/wiki/CT_scan, last accessed on
May 4, 2021.

vessels become the capillaries [9].

1.3 Computed Tomography (CT)

1.3.1 Introduction

Computed Tomography is an imaging modality using ionising radiation to construct

3D images of the human anatomy at millimetre scale. The technology developed

in the seventies [11] and has become the recommended modality for investigating

the presence of bronchiectasis [12] and IPF [13] due to the high contrast between

air and soft tissue. In this section, we consider the fundamentals of CT imaging in

terms of image acquisition (Sec. 1.3.2), reconstruction (Sec. 1.3.3), representation

(Sec. 1.3.4) and sources of noise (Sec. 1.3.5).

1.3.2 Image Acquisition

To physically acquire a CT image, the patient lies on the CT bed and transverses

through the CT scanner (Fig. 1.2). The scanner (Fig. 1.2) consists of an X-ray tube

emitting X-rays towards a set of detectors. Both the X-ray tube and detector rotates

in the gantry as the patient transverses thought the bore. The output is a set planar

images along the patients [14, 15].

en.wikipedia.org/wiki/CT_scan
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1.3.2.1 Physics of Image Acquisition

The main component in image formation using ionising radiation is in the interac-

tion between X-ray and matter. To proceed, I consider the intensity of a beam of

X-ray denoted as I. The quantity is defined as the amount of energy crossing a unit

area in a normal position to the X-ray beam in unit time [16].

As X-rays are emitted, assuming the radiation passes through a given material,

the X-ray intensity decreases at an exponential rate and is determine as:

I = I0e
∫

µ(x)dx (1.1)

where I0 is the initial intensity and µ the linear attenuation coefficient [16]. I will

discuss in the next section that by taking a series of X-ray beam measurements

around the body, I can use the concept in Equation 1.1 to give information on the

geometry and contrast of a scanned object.

1.3.3 Image Reconstruction

In this section, I discuss the mathematical foundation of converting data acquired

from a CT scanner into an image displaying the physical geometry of the scanned

object. To this end, I relate the physical image acquisition with the mathematical

principle of filtered back-projection. The following is an adapted derivation of the

filtered back projection based on Heish [17] and Kalender [14].

To begin, consider the following setup of an X-ray beam, xcosθ + ysinθ = r

displayed on Figure 1.3. When the CT scanner completes a scan, the output is

a series of integral function p known as a sinogram (example on Fig. 1.4). The

output describes the sum of the attenuation coefficient of the object. Formally, the

function p is described along the X-ray beam and is defined as:

p(θ ,r) =
∫ ∫

µ(x,y)δ (xcosθ + ysinθ − r)dxdy. (1.2)

The purpose of considering Equation 1.2 is to recover the function µ . To this end,

it is observed Equation 1.2 is of the form of a Radon transformation. Thus, mathe-
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Figure 1.3: Schematic diagram linking the coordinate system in p(θ ,r) with the object
µ(x,y).

matically in order to recover µ , one would have to perform an inverse Radon trans-

formation.

To begin the inverse transformation, I consider the Fourier transformation of

p(θ ,r) which gives:

P(θ ,r) =
∫

µ(x,y)e−2πik(xcosθ+ysinθ)dxdy, (1.3)

where the P is the Fourier transform of p. To proceed, it is observed that Equation

1.3 is of the form the 2D Fourier transform when considered with the transformation

kx = k cosθ , ky = k sinθ . Thus by considering the 2D inverse Fourier transform and



1.3. Computed Tomography (CT) 23

Figure 1.4: LEFT: Example of a reconstructed chest CT scan. RIGHT: A simulated sino-
gram of the corresponding CT scan.

the coordinate transform of kx,ky, I obtained:

µ(x,y) =
∫

P(θ ,r)∗K(r)dθ (1.4)

where ∗ denotes a convolution operation and the function K(r) known as the ramp

kernel defined as:

K(r) =
∫
|k|e2πik(xcosθ+ysinθ)dk. (1.5)

Thus, the filtered back-projection has been derived. Equation 1.4 can be interpreted

as the sum of the Fourier transformed projection smoothed by a kernel. As the prob-

lem is discretize and ill-posed, to recover the exact attenuation map µ is infeasible.

To compensate, manufacturers of CT scanners developed different reconstruction

kernels K(r) to highlight features to the radiologists [17].

1.3.4 Image Representation

After image reconstruction, we obtained the CT image (example on Fig 1.4). To

apply my proposed image processing algorithms, the images are required to be rep-

resented digitally. To this end, I discuss the digital representation of a CT image

and how anatomical features can be differentiated.

1.3.4.1 The CT image

The CT images are stored as a three dimensional matrix, where the location of the

array provides the coordinate system [18]. The axis are based on the anatomical
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Sagittal Plane

Coronal Plane

Axial Plane

Figure 1.5: Diagram of the axial, sagittal and coronal plane on the body. Image was
adapted from National Heart, Lung and Blood Institute, USA, training.
seer.cancer.gov/anatomy/body/terminology.html, last as-
sessed May 4, 2021.

plane – axial, sagittal and coronal plane as displayed in Figure 1.5.

Each entry values of the matrix corresponds to the property of a voxel or ”vol-

ume element”. It corresponds to a defined volume of the patient’s tissue. For

my work, we assume the voxels are at contiguous intervals i.e. each point on the

scanned objected is contained in a voxel. The intensity value of each voxel is known

as the CT number and is given in Hounsfield Units (HU), defined as:

µT −µwater

µwater
1000, (1.6)

where µT and µwater is the attenuation coefficient of an arbitrary tissue T and water

respectively [14].

1.3.4.2 Chest CT image

In order to quantify the airways, one would need to consider the intensities of the

structures of the lungs. The information enables image processing algorithms to

relate the voxel to the corresponding anatomy. For my work, I consider three com-

ponents of the lungs: airways, blood vessel and lung parenchyma.

training.seer.cancer.gov/anatomy/body/terminology.html
training.seer.cancer.gov/anatomy/body/terminology.html
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For airways, the structure consists of a lumen filled with air. Thus, in terms of

CT number, the airway wall is approximately 150HU and the internal lumen is ap-

proximately -1000HU [19]. For blood vessel, the lumen is filled with blood thus the

CT number is approximately 50HU [14]. Finally, for lung parenchyma, the struc-

ture has a CT number between −980HU to −800HU as it contains a combination

of connective tissue, alveoli and air [20].

1.3.5 Challenges in CT Image Processing

CT images can contain noise or artefacts causing image quantification tools to be-

come inaccurate or lose precision. In this section, I will discuss the main causes of

errors: (i) Photon starvation (Sec. 1.3.5.1). (ii) Partial volume (Sec. 1.3.5.2) . (iii)

Motion (Sec. 1.3.5.3). Finally, I discuss the effect of artefacts on measurements

taken from image processing tools (Sec. 1.3.5.4).

1.3.5.1 Photon Starvation

Photon starvation is caused when too few photons reach the detector, for instance in

low dose scans. The phenomenon causes two distinguishing artefacts. First, streaks

in the image, often from dense objects in the body like bone [21, 17]. Secondly,

an increase in standard deviation of intensities in a uniform material such as air in

the trachea [22]. Careful consideration is needed when designing algorithms for

low dose scans. An increase in noise will remove the appearance of edges. Various

image processing algorithms used edges to identify features in the image such as

airway lumen.

1.3.5.2 Partial Volume

Partial volume is caused when objects do not occupy the entire voxel. For example,

in CT chest scans, voxels can contain both the smaller airways and parenchyma. The

resulting intensity is a partial volume averaging in CT numbers between airways

and parenchyma. For image processing, partial volume reduces the precision the

image processing algorithms as features such as edges are only identifiable up to

the resolution of the image [17].
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1.3.5.3 Motion

Motion artefacts are caused when the patient moves during the scan. For example,

respiratory motion i.e. the patient breathes during the data acquisition. The moving

organs causes a misregistration during image reconstruction and hence results in

an inconsistent set of projections. The resulting image can contain streaking and

blurring. The artefacts can cause inaccuracy for image processing algorithms for

example when segmenting the airways. The motion artefact shifts the appearance

of the airways in the image [17, 23].

1.3.5.4 Overcoming Artefacts

Image artefacts can reduce precision for a range of image processing algorithms for

quantifying airways. For example, computing the centreline of the airways [24] and

finding the cross-sectional area of the lumen [25]. The resulting lack of precision

and reproducibility can limit the efficacy of any proposed algorithms in two ways.

(i) First, the data taken from images with artefacts may not be sensitive to monitor

disease progression thus unable to compare results across longitudinal scans. (ii)

Second, the lack of precision, may exclude images taken from different acquisitions

parameters or scanner thus limiting the amount of resources.

In the literature, a wide range of image processing algorithms have been pro-

posed to remove or reduce the appearance of artefacts on the image [26, 27, 28].

However, these methods can be computationally intensive and can potentially bias

the appearance of features. Thus, part of my contribution is to show my proposed

quantification algorithms are reproducible in images from different acquisition pa-

rameters such as radiation dose and voxel sizes.

1.4 Airway Diseases

In this section, I discuss two pulmonary diseases; bronchiectasis (Sec. 1.4.1) and id-

iopathic pulmonary fibrosis (IPF) (Sec. 1.4.2). Both diseases involves the abnormal

dilatation and damage of the airways.
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Figure 1.6: An illustration of healthy airways and airways affected by bronchiectasis. Im-
age was taken from National Heart, Lung and Blood Institute, USA, www.
nhlbi.nih.gov/health-topics/bronchiectasis, last accessed
May 4, 2021.

1.4.1 Bronchiectasis

1.4.1.1 Pathophysiology

Non-CF bronchiectasis or bronchiectasis is a disease defined by the British Thoracic

Society as the permanent damage or dilatation of the airways [12] as illustrated in

Figure 1.6. The cause of the dilatation are diverse; examples of aetiologies include

damage from a previous infection such as tuberculosis, an immunodeficiency like

HIV or obstruction in the airway such as a foreign body [12, 29, 30]. However,

for a large number of cases, between 30% to 50%, the cause remains unknown and

therefore classed as idiopathic [31, 12].

www.nhlbi.nih.gov/health-topics/bronchiectasis
www.nhlbi.nih.gov/health-topics/bronchiectasis
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Patients with bronchiectasis can present symptoms with cough, increase mu-

cus production, recurrent chest infection, chest discomfort, coughing of blood and

weight loss [12]. The progression of the disease has been described as the vicious

cycle of dilated airways causing infection, leading to inflammation and causing fur-

ther airway damage and dilatation [32].

Treatment and management of bronchiectasis are based on two approaches.

First, identify and if possible, treat the cause of the bronchiectasis. Second, to

stop the vicious cycle for example reducing airway inflammation. A range of rec-

ommended treatments include: physiotherapy to remove mucus, inhaled agents to

loosen mucus and hydrate airways and oral administered antibiotics [12]. Inhaled

antibiotics have been recommended for some patients however the effectiveness of

some drugs have been disputed. In some drug trials, some proposed drugs perform

worse than the placebo group [33, 29, 34].

Prognosis of bronchiectasis can vary, in severe cases patients can suffer de-

crease in lung function. In addition, patients can experience frequent exacerbations

[33], these events are defined where patients experience a worsening of symptoms

such that they require treatment. The study of exacerbations is an active area of re-

search as these events can have a devastating consequence on patients. Unexpected

occurrences of exacerbations can contribute to a decrease in quality of life. In ad-

dition, the frequency of exacerbations is used as an end point in clinical drug trials.

[35, 36].

1.4.1.2 The Role of CT Imaging

High resolution computed tomography is the gold standard for patients with sus-

pected bronchiectasis. The British Thoracic Society [12] recommends using vol-

umetric CT with slice thickness smaller than 1mm. Patients are scanned in the

supine position and at full inspiration. Key features that indicates the presence

of bronchiectasis are the ratio between the airway lumen and adjacent pulmonary

artery (broncho-arterial or BA ratio) are greater then 1, lack of tapering and airway

visibility in the periphery of the lungs (Examples on Fig. 1.7). In addition, the signs

of airway wall thickening and mucus blocking airways are indirectly associated with
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Figure 1.7: Examples of chest CT scans with bronchiectasis. LEFT: A bronchiectatic air-
way showing a lack of taper. RIGHT: Bronchiectatic airway being larger than
its accompany pulmonary artery.

bronchiectasis.

For radiological quantification, clinicians have qualified the presence of

bronchiectasis on a lobar basis. In particular, the gold standard of quantifying

bronchiectasis on CT images is through a variation of the Bhalla score [37]. The

scoring system requires a clinician to manually score from 0 to 3 based on a range

of features: broncho-arterial ratio, airway wall thickening, number of lobes with

bronchiectasis, abnormal amount of mucus and the presence of collapses or holes

in the lung.

Radiological scoring combined with other clinical measurements have shown

to be predictors of future hospitalization or mortality. Two bronchiectasis severity

scores have been developed. First, The Bronchiectasis Severity Index (BSI) [38] is

a tool design to identify patient at risk of exacerbations or mortality. Inputs used

in the BSI are lung function, Reiff score [39] (a variation of the Bhalla score) and

bacteriology in the lung. Second, The FACED score [40] was designed to score the

severity of bronchiectasis in terms mortality in the next 5 years. The scoring system

uses a combination of data: spirometry, age, bacteriology, number of lobes effected

by bronchiectasis, breathing difficulties. Both scoring systems have been validated

on large international datasets and shown to be effective predictors of mortality

[41, 42]. Thus, in both editorials [43, 44] and reviews [34, 45] both scoring system

are considered state of the art.
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1.4.1.3 Current Challenges in CT Imaging

Current radiological quantification has several limitations and challenges. In terms

of anatomy, it has been acknowledged that the blood vessel may not remain con-

stant, thus contradicting the broncho-arterial ratio as feature for diagnosis [46].

In terms of the Bhalla scoring system, the method is labour intensive and crude.

As mentioned by Saleh and Hurst [43], patients with localised, heavy dilated

bronchiectasis may score equivalently to a patient with widespread but mild form

of bronchiectasis. Finally, the Bhalla score was developed for cystic fibrosis pa-

tients thus includes features such as the presence of mucus which may not appear

in non-CF bronchiectasis.

I address the limitations by developing a novel computerize tapering measure-

ment. The proposed tapering measurement has several advantages:

1. The measurement only considers the dilatation of the airways thus removing

the need of the broncho-arterial ratio.

2. After airway segmentation, acquiring the tapering measurement is an auto-

matic processing thus removing manual processing and inter user errors.

3. The output is a continuous numerical variable compared to a discrete 0 to 3

Bhalla score, thus providing a sensitivity to measure subtle changes in the

airways.

1.4.2 Idiopathic Pulmonary Fibrosis (IPF)

1.4.2.1 Pathophysiology

Idiopathic Pulmonary Fibrosis (IPF) is the disease defined by the American Tho-

racic Society [13] as a chronic, progressive, fibrosing (scarring) interstitial pneu-

monia (inflammation) of unknown cause (illustrated on Fig 1.8). IPF mainly affects

patients over 50 years old. Factors that increases the risk of the disease includes be-

ing male, history of cigarette smoking and family history of fibrosing lung disease.

Patients with IPF are treated with a range of approaches, the overall aim is to

improve the quality of life and slow progression of the disease. Management of
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IPF involves stopping smoking, vaccinations against influenza, pulmonary rehabil-

itation (structured exercise) and providing supplementary oxygen. Lung transplan-

tation has also been suggested as a possible treatment however, for many patients,

the referral is too late for transplantation [47, 48]. In terms of pharmacologic man-

agement, two drugs; Nintedanib [49] and Pirfenidone [50] were shown to be effec-

tive at slowing the progression of IPF. However, both drugs have major challenges

and limitations. First, both drugs are expensive with each medication costing over

$100,000 USD. Secondly, both drugs can cause patients to experience adverse ef-

fects such as skin problems and diarrhoea, resulting in patients reducing dosage or

stopping treatment completely. Finally, there has been no head to head compari-

son on the effectiveness between the two drugs, thus causing clinicians difficulty to

choose a single drug or to use both drugs at the same time [47].

Prognosis of patients with IPF is poor, the median survival time is 2 to 4 years

[48]. Furthermore, patients with IPF have an increased risk of blood clots, high

blood pressure and lung cancer. It is recognised by Lindell at al. [51] that patients

with IPF will reach a stage where death is imminent. Understanding the rate of the

IPF progression remains poor [52] and can have clinical consequences on treatment.

As mentioned in Recheldi et al. [48] patients with decrease lung capacity during

treatment may not be a sign of treatment failure as it is impossible to compare

progression of the same patient without treatment.

1.4.2.2 The Role of CT Imaging

CT is used to diagnose and monitor the progression of IPF. Patients with suspected

IPF are recommended to be CT scanned in contiguous thin slices (<2mm) with a

high frequency reconstruction kernel [53]. Patients should be scanned at full inspi-

ration to total lung capacity. The patterns used to determine the presence of IPF are

known as usual interstitial pneumonia (UIP). The UIP patterns mainly consists of

three anatomical features: honeycombing, reticular pattern and traction bronchiec-

tasis (Examples on Fig. 1.9) [13, 53].

Honeycombing is defined as the cystic (abnormal sac) airspaces which are clus-

tered, of a similar size (3-10mm) with thick and well-defined walls [53]. It has been
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Figure 1.8: An illustration of how the alveoli changes in patients with IPF. Image was
taken from National Heart, Lung and Blood Institute, USA, www.nhlbi.
nih.gov/health-topics/idiopathic-pulmonary-fibrosis,
last assessed May 4, 2021.

reported in honeycombing may not be a reliable indicator of IPF. In Jacobs and

Hansell [54], they stated that patients with IPF may not have honeycombing. In ad-

dition, the literature [55, 53] reports high level of disagreement between observers

when identifying the presence of honeycombing.

Reticular pattern are high contrast fine lines on the lungs. In UIP, the lines are

irregularly spaced and consist of different thickness [53]. Digitalised identification

of reticular pattern is a challenging task. In Jacob et al. [56], the proposed comput-

erized algorithm misclassified regions of reticular pattern as vessels. Furthermore,

in Maldonado et al. [57], there have been some disagreements between computerize

www.nhlbi.nih.gov/health-topics/idiopathic-pulmonary-fibrosis
www.nhlbi.nih.gov/health-topics/idiopathic-pulmonary-fibrosis
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Figure 1.9: Examples of chest CT scans affected by IPF: LEFT: Example of honeycombing
(blue arrow). MIDDLE: Examples of reticular pattern (blue arrow). RIGHT:
Example of traction bronchiectasis caused by IPF.

and manual labels of reticulation.

Finally, traction bronchiectasis are airways that can be seen in the periphery of

the lungs and where the airway wall are varicose or beaded like in appearance [13].

Traction bronchiectasis shares similarities to non CF bronchiectasis (Sec. 1.4.1).

However, the distinguishable difference is traction bronchiectasis occurs when the

dilatation is caused by the fibrosis pulling the airway lumen. In my thesis, I solely

qualify traction bronchiectasis for the following reasons: (i) Identification of trac-

tion bronchiectasis has less inter-observer variation compared to honeycombing.

(ii) Compared to reticular patterns, traction bronchiectasis is based on the airways,

a clear indefinable anatomical structure. Thus, avoiding misclassification errors

with the pulmonary vessels [56]. (iii): The progression of traction bronchiectasis is

strongly linked to lung function [58].

1.4.2.3 Current Challenges in CT Imaging

For radiological scoring of IPF, there exist computerized scoring systems such as

CAILPER [59] and QLF [60] which links features on CT to the severity of IPF.

However, there is no computerized analysis that tracks IPF progression across lon-

gitudinal CT scans solely in terms of traction bronchiectasis. Currently, monitoring

of traction bronchiectasis across CT scans are limited to crude visual inspection and

categorical labelling [58]. Thus, in this thesis, I address the limitation by propos-

ing a quantitative measure based on the appearance of traction bronchiectasis. The

analysis provides the following advantages: (i) Assuming an airway segmentation is



1.5. Contribution & Thesis Outline 34

available, the quantification is automatic. (ii) The method provides an interpretable

measurement as percentage volume change to qualify the progression of IPF.

1.5 Contribution & Thesis Outline
My contribution is developing computerized methods to solely quantify the dilata-

tion of airways in bronchiectasis and IPF patients. Currently, digital quantifica-

tion tools are based on using multiple features such as pulmonary arteries and lung

parenchyma. This approach has several problems: (i) Some features are based on

false assumption such as pulmonary artery remaining a constant shape. (ii) Cer-

tain features like reticular patterns are difficult to precisely segment. (iii) Scoring

systems like Bhalla may not be sensitive at measuring subtle progression of the dis-

ease. I address these problems by proposing a tapering measurement and a novel

method of detecting the most proximal point of dilatation along the airway track

in longitudinal scans. The proceeding chapters are organised and summarizes as

follows:

• In Chapter 2, I proposed a pipeline to acquire a novel tapering measurement

using state of the art image processing methods. The measurement is the gen-

eral trend between the airway arc length and the logarithmic cross-sectional

area. I showed the clinical utility by applying the tapering measurement on

airways affected by bronchiectasis.

• In Chapter 3, I quantified the accuracy of the tapering measurement by devel-

oping bespoke airway phantoms. The phantoms utilise different components

of the pipeline in order to acquire accurate area measurements.

• In Chapter 4, I assessed the reproducibility of the measurement in relation to

CT dose, voxel size and CT reconstruction algorithms. In addition, I analysed

the effect of airway bifurcations on the taper measurement.

• In Chapter 5, I proposed a novel method using Bayesian changepoint analysis

to changes in dilatations across longitudinal scans of airway affected by IPF.
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Furthermore, in terms of clinical utility, I show the method could be used to

measure volume changes in disease regions of IPF.

• Finally in Chapter 6, I summarise my contributions and propose possible fu-

ture works.



Chapter 2

Airway Tapering Measurement

2.1 Abstract

The gold standard to diagnose and monitor bronchiectasis is accomplished by in-

spection of chest computed tomography (CT) scans. A clinician examines the

broncho-arterial ratio to determine if an airway is brochiectatic. The visual anal-

ysis assumes the blood vessel diameter remains constant, although this assumption

is disputed in the literature. In this chapter, I proposed a simple scalar measurement

to quantify the tapering of a single airway track on CT. I defined an airway track

as a path from the Carina to the most distal point observable on CT. To this end,

I implemented a pipeline to measure the cross-sectional area of the airway at con-

tiguous intervals. The tapering measurement is the gradient of the linear regression

between area in logarithmic space and arclength of the airway track.

I showed the clinical utility by evaluating on three datasets. First, comparing

the tapering of 35 healthy and 39 bronchiectatic airway tracks identified by an expert

radiologist. Second, computing the tapering difference between 14 pairs of healthy

airways in longitudinal scans. Third, computing the tapering difference in 5 pairs of

healthy airways that became bronchiectatic. The first dataset showed bronchiectatic

airways have a reduction in taper rate (mean 3.17×10−2 vs. 2.11×10−2 mm−1, p =

7.1×10−7). The second dataset showed a good agreement with ICC > 0.99 between

the two sets and standard deviation of the tapering difference is 1.45×10−3mm−1.

Finally, I found a statistical difference (p = 7.2×10−3) in tapering difference be-
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tween airways remaining healthy and airways becoming diseased. Our technique

provides the potential for use in the diagnosis of bronchiectasis, and the assessment

of progression of bronchiectasis over time.

2.2 Publications
The following content has originally appeared in the following publication:

• K Quan, R J Shipley, R Tanno, G McPhillips, V Vavourakis, D Edwards, J

Jacob, J R Hurst, D J Hawkes, “Tapering analysis of airways with bronchiec-

tasis.” In Proceedings of SPIE, 2018.

In addition, the content has appeared in the following abstract:

• K Quan, J Jacob, R J Shipley, D J Hawkes, J R Hurst, “Airway tapering

in bronchiectatic and healthy airways.” European Respiratory Journal, 52:

Suppl. 62, OA3793, 2018.

2.3 Introduction & Motivation
Various groups have proposed methods to automatically and semi automatically

compute the BA ratio for bronchiectatic airways [61, 62, 63]. However, use of the

BA ratio to diagnose bronchiectasis has two major flaws. First of all, the healthy

range of the BA ratio can be 1.5 times size of the artery [64]. Second, blood vessels

can change size as a result of various factors including altitude [65], age [66] and

smoking status [67]. This conflicts with the assumption that the pulmonary artery

is always at a constant size.

An alternative approach to diagnose and monitor bronchiectatic airways is to

analyse the taper of the airways i.e. the rate of change in the cross-sectional area

along the airway [12]. In patients with bronchiectasis, the airway is dilated and so

the tapering rate must be reduced. Airway tapering is difficult to assess visually

and to measure interactively from the images. As described by Hansell [64], the

observer would have to make multiple cross-sectional area measurements along the

airway. As mentioned in Cheplygina et al. [68], measuring multiple lumen is a

manually exhaustive task and prone to mistakes.
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2.3.1 Literature Review

There have been various strategies to quantify tapering in the airways. The initial

proposed tapering measurements by Odry et al. [69] were restricted to short lengths

of the airways. A segmented airway would be spilt into four equal parts. Each seg-

ment had a series of lumen diameter measurements taken along each branch. The

tapering was measured as the linear regression of the lumen diameters along the

branch. The method shared similarity to Venkatraman et al. [70], but the diameter

measurements were taken across the central half of each branch. Various analyses

attempted to measure the taper of airways containing multiple branches. In Oguma

et al. [3] they measured the region of interest from the carina to the fifth generation

airway, however this was only performed in patients with COPD. Finally, Wein-

heimer et al. [71] used a graphical model of the airways for their proposed tapering

measurement. The graphical model was based on a graphical tree originating at the

trachea and extending into distal branches, depending on airway bifurcations. A

tapering measure was assigned to the edge of the graph depending on the lumen

area and generation. They also proposed a scoring system based on a collection of

tapering values within a lobe.

2.3.2 Contribution

The tapering measurements described above suffer from the following limitation.

The region of interest for the tapering measurement was restricted to airways that

were segmented using the respective airway segmentation software. Bronchiectasis

is a heterogeneous disease - it can affect any area in the lung including the peripheral

regions [29]. Thus, to encapsulate the disease in the tapering measurement, one

would need to consider the region of interest as the entire airway, from the trachea

to the most distal point.

My contribution addresses these limitations by proposing a measurement to

describe the taper of the entire airways. The measurement is a scalar value to quan-

tify the taper rate of a given airway track form the carina to the most distal point

measurable on a CT image. In Section 2.4, I present a pipeline consisting of images

analysis techniques to compute the taper measurement. In Section 2.5, I demon-



2.4. Method 39

strate the potential clinical utility in two experiments. First, comparing taper mea-

surements from healthy and bronchiectatic airways. Second, computing the change

in taper rate form airways remaining healthy and airways that were healthy but be-

came bronchiectatic. Finally, in Section 2.6 the advantages of choosing various

digital processing methods for my pipeline.

2.4 Method
I first, describe in detail the steps to acquire the airway tapering measurement, sum-

marised in Figure 2.1. The pipeline required two inputs. First, the most distal point

of each airway of interest was identified. Secondly, a complete segmentation of the

airway was produced. In this paper, an experienced radiologist (JJ) was used to

identify and label the distal point. For each chosen airway, the radiologist manually

tracked the airway to the most distal point visible on the image. The distal point

was marked by a single voxel. When the airway was dilated at the periphery of the

lung, the point at which it was judged to be at the end of the centreline was marked.

The entire analysis was completed using ITK-snap1.

I obtained an airway segmentation by implementing a method developed by

Rikxoort et al. [72] The algorithm was based on a region growing paradigm. In

summary, a wave front was initialised from the trachea. Voxels on each new itera-

tion were classed as airways based on a voxel criterion. The wave front continued

until a wave front criteria was met. In most cases, the airway segmentation was un-

able to reach the distal points and in these cases I extended the airway segmentation

to the distal points by manual delineation.

2.4.1 Centreline

The centreline was used to identify and order the airway segments for the tapering

measurement. I implemented a curve thinning algorithm developed by Palagyi et

al. [73] At initialisation, the algorithm used the airway segmentation and distal

points acquired in Section 2.4. The final input was the start of the centreline at the

trachea. The shape of the trachea was assumed to be tubular, with an approximate

1http://www.itksnap.org, last accessed May 4, 2021

http://www.itksnap.org
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(a) Airway Segmentation (b) Centreline Computation (c) Reconstruct planes on the centreline spline

(d) Lumen identification via 

ray casting 

(e) Lumen area along the airway (f) Area profile in log space with 

line of best fit

Figure 2.1: Summary of steps in our pipeline

constant diameter and orientated near perpendicular to the axial slice as shown on

Figure 2.2. Thus, the centreline of the trachea lay on the local maximum value of

the distance transform of the segmented trachea [74]. Algorithm 1 was used to find

the centreline start point.

Algorithm 1 Locating the start of centreline on the trachea

Input: Dz(x,y), 2D Distance image on the zth axial slice. An example is shown
on Figure 2.2.
Output: (xs,ys,zs), Start point of trachea
z← First slice at the top of the trachea.
while max(x,y)Dz < max(x,y)Dz+1 do
(xmax,ymax) = argmax(x,y)Dz
z = z+1

end while
(xs,ys,zs) = (xmax,ymax,z)

2.4.2 Recentring and Spline fitting

The next task was to separate the centreline of each individual airway from the

centreline tree. To this end, I modelled the centreline tree as a graphical model

similar to Mori et al. [75] The nodes corresponded to the centreline voxels and the
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A B

Figure 2.2: A: An axial slice of a chest CT scan with a trachea segmentation. B: A dis-
tance transformation Dz(x,y) of the same trachea segmentation. I used a local
maximum as the start point of the centreline.

edges linked neighbouring voxels. I performed a breath first search algorithm [76]

on the centreline image. Starting from the carina, I iteratively found the next set

of sibling branches. When a distal point was found at the end of a parent branch,

the path leading to the distal point was saved. The output was an array of ordered

paths describing the unique route from the trachea to the distal point. The proposed

tapering measurement started at the carina. Thus, centreline points corresponding

to the trachea were removed from further analysis.

For each path I corrected for the discretization error - a process known as re-

centring [77]. I implemented a similar method to that described by Irving et al. [78]

A five point smoothing was performed along each path. I modelled the centreline

as a continuous model by fitting a cubic spline F : [0,kn]→ R3 denoted as
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F(t) =



f1(t), t ∈ [0,k1]

...

fi(t), t ∈ [ki−1,ki]

...

fn(t) t ∈ [kn−1,kn]

, (2.1)

where fi(t) = ∑
3
j=0 ci, jt j and ci ∈ R3. The knots ki where taken on every smoothed

point on the centreline. The spline fitting was performed using the cscvn2 function

in Matlab. The continuous model should enable computations of the arc length and

tangent at sub-voxel intervals along the airway.

2.4.3 Arc Length

The tapering measurement required an array of arc lengths at contiguous intervals

from the carina to the distal point. For our pipeline, I considered small parametric

intervals ti on the cubic spline F(t). At each interval ti, I computed the arc length

from the carina to ti as described in Kreyszig [79]:

s(ti) =
∫ ti

0

√
dF
dt
· dF

dt
dt, (2.2)

where (·) is the dot product. For our work, I considered parametric intervals of 0.25

units along the spline.

2.4.4 Plane Cross Section

I measured the cross-sectional area accurately by constructing a cross-sectional

plane perpendicular to the airway. Using the interval ti from the arc length com-

putation, I computed tangent vector q ∈ R3 by

q(ti) =
Ḟ
|Ḟ |

, (2.3)

2https://uk.mathworks.com/help/curvefit/cscvn.html, last accessed on
May 4, 2021

https://uk.mathworks.com/help/curvefit/cscvn.html
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where Ḟ = dF
dt .

From linear algebra, points on the plane can be generated by their corre-

sponding basis vector [80]. To this end, I generated a set of orthonormal vectors

v1,v2 ∈ R2 using the method stated in Shirley and Marschner [81]. The method is

summarised in Algorithm 2.

Algorithm 2 Constructing the basis for the plane reconstruction, adapted from
Shirley and Marschner [81].

Input: q Unit tangent vector of the spline
Output: v1,v2 Basis of the orthogonal plane
a← Arbitrary vector such that a and q are not collinear
v1 =

a×q
|a×q|

v2 = v1×q

Assuming F(ti) was the origin, each point u ∈ R3 on the plane can be written

as:

u = α1v1 +α2v2. (2.4)

I selected the scalars α1,α2 ∈R such that the point spacing are 0.3mm isotropically.

2.4.5 Lumen Cross Sectional Area

I calculated the cross sectional area using the Edge-Cued Segmentation-Limited

Forward Width Half Maximum (FWHMESL), developed by Kiraly et al. [82] The

method is as follows: the cross-sectional planes were aligned on both the CT image

and airway segmentation. The intensities of the plane were computed for both im-

ages using cubic interpolation. Fifty rays were cast out in a radial direction, from

the centre of the plane. Each ray sampled the intensity of the two planes at a fifth

of a pixel via linear interpolation. Thus, each ray produced two 1D profile with

the first from the binary plane rb, and second from the CT plane rc. I then applied

Algorithm 3 to find boundary point l.

The final output of the FWHMESL was an array of 2D points corresponding to

the edge of the lumen. Finally, I fitted an ellipse based on the least square principle.

The method was developed and implemented in Matlab by Fitzgibbon et al. [83] I

considered the cross sectional area as the area of the fitted ellipse.
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Algorithm 3 Summary of the FWHMESL, adapted from Kiraly et al. [82]. The
purpose of the algorithm was to find the point of the ray which crossed the lumen.

Input: The rays: rb : [0, p]→ R[0,1], rc : [0, p]→ R where p is the length from
the centre to the border of the plane.
Output: The position of the lumen edge, l.
s← The first index of the ray such that rb(s)< 0.5
Imax← Local maximum intensity in rc nearest to s
xmax← The index such that rc(xmax) = Imax
Imin←Minimum intensity in rc from 0 to xmax
xmin← The index such that rc(xmin) = Imin
l← The index such that rc(l) = (Imax + Imin)×0.5 and l ∈ [xmin,xmax]

2.4.6 Tapering Measurement

I assumed for a healthy airway that the cross-sectional area was modelled by an

exponential decay along its centreline. It has been shown in human cadaver studies

that the average cross section area in a branch reduces at an exponential rate at each

generation [84]. The same observation has been also observed in porcine models

[85]. Using the decay assumption, I modelled the relationship between the arc

length and the cross-sectional area as

y = T x+ logA, (2.5)

where x is the arc length of the spline, T is the proposed tapering measurement, y is

the cross-sectional area and A is an arbitrary constant.

In terms of implementation, for each airway track. I considered the array arc

length and cross-sectional area computed for each individual airway. A logarithmic

transform log(x) was applied only on the cross-sectional area array. I fitted a linear

regression on the signal, the tapering measurement is defined as the gradient from

the line of best fit.

2.5 Evaluation & Results
I demonstrate the utility of my tapering measurement for diagnosing and monitoring

bronchiectasis by using 3 datasets. First, a set of healthy airways (n = 35) and a set

of bronchiectatic airways (n = 39) from 10 scans. The selection of bronchiectatic
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Figure 2.3: The same pair of airways from longitudinal scans. LEFT: Initial healthy airway.
RIGHT: The same airway at the same location becoming bronchiectatic.

airways were based on clear dilatation along the airways. Diseased airways that

contained mucus or had airway wall thickening were excluded from the study. Sec-

ond, a set of healthy pairs of airways (n = 14) from 3 longitudinal scans. Third,

a set of airways (n = 5) from a single pair longitudinal scan, where the airways

were healthy on the initial scan but become bronchiectatic on the second scan. An

example is displayed on Figure 2.3. All airways were selected by an experienced

radiologist. The image properties of the first dataset are displayed on Table 2.1. The

images properties of the second and third dataset are displayed on Table 2.2.

2.5.1 Tapering in Healthy and Bronchiectatic Airways

Figure 2.4 compares the tapering measurement between healthy and diseased air-

ways. On a Wilcoxon Rank Sum Test between the populations, p = 3.4× 10−4.

The difference between the mean of the two populations was 0.011mm−1 and dif-

ference between the medium of the two population was 0.006mm−1. In addition,

with receiver operating characteristic (ROC) analysis shows the area under curve,

AUC = 0.84.

2.5.2 Tapering Change in Longitudinal Scans

I compared the change in taper measurement in healthy airways across longitudi-

nal scans. The results are displayed as a Bland-Altman graph on Figure 2.5. The
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Radiologically Normal (n = 35) Bronchiectatic (n = 39)
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Figure 2.4: LEFT: Comparing the proposed tapering measurement with labelled healthy
and bronchiectatic airways. On a Wilcoxon Rank Sum Test between the popu-
lations, p = 3.4× 10−4. RIGHT: ROC curve on the same data. On the graph,
the dotted line is the identity line. For the area under the curve; AUC = 0.84
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10-3 Tapering progression in the same patients
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Figure 2.5: Bland-Altman [1] graph comparing tapering measurement on the same airways
from the first and subsequent scan, ICC > 0.99.

95% confidence interval in taper difference was ±4.0×10−3mm−1, the confidence

interval was less than the average difference between healthy and bronchiectatic

airways, described in Section 2.5.1. The results demonstrated good agreement with

an intraclass correlation coefficient [86] ICC > 0.99. The standard deviation of the

tapering difference was 1.45×10−3mm−1.

Finally, I compared the taper rate change between airways remaining healthy

and airways that became the bronchiectatic. The metric used for comparison was

the difference in tapering i.e. the taper rate of the initial scan minus the taper rate

on the subsequent scan. Figure 2.6, shows the tapering change between airway

pairs remaining healthy and airway pairs that were initially healthy but became

bronchiectatic. The comparison shows statistical difference between the two popu-

lations, on a Wilcoxon Rank Sum Test between the populations, p = 7.2×10−3. In

addition, the diseased airway pairs showed greater change in magnitude compared

with the controlled airway pairs.



2.6. Discussion 49

H to H (n = 14) H to D (n = 5)

-4

-2

0

2

4

6

8

T
ap

er
 D

iff
er

en
ce

 (
La

te
r 

- 
E

ar
ly

) 
m

m
-1

10-3 Longitudinal Changes in Tapering

Figure 2.6: Comparing the change in taper rate between airways remaining healthy and
airways that were healthy and became bronchiectatic.The time period between
taper rates are displayed in Table 2.2. On a Wilcoxon Rank Sum Test between
the populations, p = 7.2×10−3.

2.6 Discussion

In this chapter, I proposed a tapering measurement for airways imaged using CT

and validated the reproducibility of the measurement. The tapering measurement

is the exponential decay constant between cross-sectional area and arclength from

the carina to the distal point of the airway. To compute the taper measurement,

I constructed a pipeline consisting of various established image processing algo-

rithms. The steps include centreline computation, orthonormal plane reconstruction

and area lumen measurement.

The pipeline consists of various established image processing algorithms. I

chose the centreline algorithm developed by Palagyi et al. [73]. Unlike other pro-

posed methods [74, 87, 88] the algorithm explicitly links the distal points to the

carina. Furthermore, it has been shown that the algorithm of Palagyi et al. [73] can

be used on images with non-isotropic voxel sizes [78]. By modelling the centreline

as a graphical model similar to Mori et al. [75], I performed a breadth first search

[76] to avoid analyses of false airway branches. The removal of false branches is
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not a trivial task [75, 78, 89].

I corrected the centreline discretisation error or recentring by smoothing points

on the centreline. Smoothing has been an established method in the literature

[78, 90]. A recentring method was proposed by Kiraly et al. [89] which shifts

the centreline voxels in relation to a distance transform. The process is iterative

compared to a single computation of smoothing.

For our pipeline, I generated the orthonormal plane based on the method of

Shirley and Marschner [81]. Other methods have been proposed. In Kreyszig

[79], they generated a binormal and principle normal. However, the method is

not robust as the binormal vector can become a zero vector. Grelard et al. [91]

used Voronoi cells, a method that requires two parameters whereas Shirley and

Marschner [81] is parameter free. For our work, intensities on the cross-sectional

plane were computed via cubic interpolation. Various papers have used linear in-

terpolation [92, 82, 93]. However, it has been shown by Moses et al. [94] that the

method can create high frequency artefacts in the image [95].

Various methods have been proposed to measure the area of the airway lumen

[96, 97, 98]. I used the FWHMESL because of two distinct advantages. First, the

method is parameter free. Second, the method is robust against slight variations

in intensities [82]. The method can therefore be applied to images from different

scanners and using different reconstructions.

Part of the evaluations consist of analysing the difference in tapering across

longitudinal scans. The timescales between scans ranges from 9 to 35 months. The

motivation for a long timescale is a proof of principle demonstration that the taper-

ing measurement is reproducible for clinical studies. Examples include, drug trials

[99] and investigations in exacerbations [100], where the timescales in monitoring

patients were 12 months and 60 months respectively.

2.6.1 Limitation

In this study, I compared the tapering measurement for healthy and diseased airways

using a Wilcoxon Rank Sum Test. The test assumes the data points are independent.

However, we used a variety of airways from the same lung. Thus, the tapering
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profiles of the same patients will have a degree of overlap. Future work is needed

to analyse data points that are not dependent on each other.

In the study, all diseased airways were chosen on an ad hoc basis. The criteria

for selection was a clear dilatation of the inner lumen without mucus or with airway

wall thickening. In addition, the airways were selected independently from lobe

location or defined cylindric, varicose or cystic appearance as described in Cantin

et al. [101]

A key limitation of the tapering measurement is the requirement of having a

robust airway segmentation. In this paper, the airway segmentation software was

often unable to reach the visible distal point of an airway. Thus, time-consuming

manual delineation was needed to extend the missing airways. The distal point is

usually located at the periphery of the lungs. Thus, to avoid manual labelling, a

segmentation algorithm would need to automatically segment the airways past the

sixth airway generation. From the literature, the state of the art software developed

by Charbonnier et al. [102] using deep learning could still only consistently segment

airways to the fourth bifurcation. The segmentation of small and peripheral airways

is not a trivial task [94, 103, 104].

2.7 Conclusion

I demonstrated the clinical utility of the tapering measurement through comparing

the taper rate of a set bronchiectatic and healthy airways. I show a statistical differ-

ence between the two population and the magnitude of tapering in healthy airways

is greater than the diseased set. The observation concurs to the hypothesis that dis-

ease airways retains a larger cross sectional area along the arc length. The results

shows potential towards distinguishing between bronchiectatic and healthy airways.

I considered clinical utility in of my propose tapering measurement on longi-

tudinal scans. I computed the difference in taper rates in pairs of healthy airways.

The results show changes in normal airways on Figure 2.5 do not overlap between

healthy and diseased airways identified by a radiologist on Figure 2.4. Furthermore,

I showed a statistical difference between changes in taper rates in airways initially
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healthy but became bronchiectatic to controls. Thus, as a proof of principle ex-

periment I showed the measurement could potentially be use to track and monitor

airways becoming bronchiectatic.

I further developed and validated the analysis of the taper measurements in

the following chapters. In Chapter 3, I will quantify the accuracy of the proposed

tapering measurement. In Chapter 4, I present methods to assess the precision and

reproducibility of the tapering measurement.



Chapter 3

Accuracy of the Image Analysis

Components that Form the Airway

Tapering Analysis System

3.1 Abstract

In Chapter 2, I proposed a pipeline to compute an airway taper measurement. To

obtain the taper rate, I require a series of contiguous cross-sectional area measure-

ments. To compute the area, I need to perform centreline computation, centreline

recentring and generating cross-sectional planes. Each stage can affect the accuracy

of the computed area. In this chapter, I quantified the accuracy of my pipeline in

acquiring contiguous cross-sectional area measurements. To this end, I used a phan-

tom with calibrated 3D printed structures. To encapsulate, different morphologies

of the airways, the printed tube structures differ in diameter, curvature and linear

area change.

Results showed my pipeline is accurate to measuring cross sectional area to sub

voxel level scale for diameters above 1.1mm. I showed the accuracy is independent

of curvature and can be used to measure linear trends along tubular structures in CT.

Our results showed the pipeline is robust to a range of airway morphologies. Thus,

verifying the accuracy of my tapering measurement.
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3.2 Publications
The following content has originally appeared in the following publication:

• K Quan, R J Shipley, R Tanno, G McPhillips, V Vavourakis, D Edwards, J

Jacob, J R Hurst, D J Hawkes, “Tapering analysis of airways with bronchiec-

tasis.” In Proceedings of SPIE, 2018.

3.3 Introduction & Motivation
As stated in Section 2.4, a key input of my tapering measurements is an array of

cross-sectional areas measurements along the airway. The accuracy of the tapering

measurement is dependent on the accuracy and robustness of acquiring lumen area

measurements. To compute area measurements, various image processing algo-

rithms were used including centreline computation, centreline recentring and gen-

erating cross-sectional planes. Such methods can affect the accuracy of area mea-

surement [77, 87, 94]. In addition, the pipeline is required to take hundreds of

cross-sectional area measurements along vessels that can change size and tortuos-

ity. Thus, it is necessary to quantified the accuracy of my pipeline against differing

morphologies of the vessel.

3.3.1 Literature Review

One common method to validate the accuracy of airway lumen measurement are

through in-silico images [24]. However, for more realistic simulations of the air-

ways, various groups have used physical phantoms. The phantom consists of two

parts: First, the airways are represented by non-metallic hollow tubes with vary-

ing diameters [20, 96, 105]. Second, padding materials such as foodstuff [98, 106]

or polyurethane foam [20, 107] are used to surround the tubes. These materials

are used to simulate surrounding lung parenchyma. In most experiments phantoms

were scanned with tubes perpendicular to the axials slice [20, 96, 105]. The exper-

iments were extended by Oguma et al. [108] and Hasegawa et al. [107] where the

tubes were tilted such that lumen appeared elliptical on the CT axial slice. Finally,

Achenbach et al. [109] used porcine lungs to assess the accuracy of their airway
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quantification algorithm. The ground truth were obtained by freezing the lung after

scanning and obtaining histological slices.

3.3.2 Contribution

In previous experiments, two factors were not assessed in detail: First, area mea-

surements were not taken on a connected vessel with a narrowing lumen. Second,

the area measurements were not taken at contiguous intervals.

The contribution of this chapter is to quantify the accuracy of my proposed

lumen area measurement using a phantom airway with differing morphologies. The

morphologies were chosen such that to obtain accurate cross-sectional area at con-

tiguous intervals, it will utilise all the steps in my pipeline. The layout of the chapter

is as follows: In Section 3.4, I describe methodology to generate the airway phan-

tom using 3D printing. In Section 3.5, I showed results of cross-sectional area

results on a range of morphologies. In Section 3.6, I discussed the results and ex-

periments.

3.4 Method
My methodology followed a similar experimental setup to Wiemker et al. [110].

In Section 3.4.1, I discussed the construction of my phantom using 3D printing.

In Section 3.4.2, I discuss verification of the accuracy of the 3D printed structures

using a micro CT scanner.

3.4.1 Phantom Experiment

The aim of the phantom was to have a ground truth to assess the accuracy and

precision of the pipeline. The design of the phantom was to encapsulate various

morphologies of the airway lumen. To this end, the airway lumen structures were

built using 3D printing.

3.4.1.1 Phantom Design

The body of the phantom was a cylindrical Perspex case, 240mm in diameter. A set

of 3D printed structures was attached on the flat side of the cylinder. The remaining

space was filled with rice to approximately mimic the attenuation properties of lung
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Tube Number Narrowing Gradient t Start Diameter/mm End Diameter/mm
1 0.051 2.5 5.1
2 0.083 2.5 6.7
3 0.109 2.5 8.0
4 0.132 2.5 9.1
5 0.168 2.5 10.4

Table 3.1: The parameters of each tube in the narrowing phantom.

parenchyma. A similar material was used by Robinson et al. [106] for the same

effect.

I designed the 3D printed structures to simulate various morphologies based

on the appearance of airways in CT. Three parameters were used; diameter, ra-

dius of curvature and narrowing. Each structure consists of 5 tubes attached to a

circular base, with wall thickness 1.7mm and length 50mm. The designs are dis-

played in Figure 3.1. All structures were made using an EnvisionTEC ULTRA 3SP

printer with the ABS 3SP Tough resin. The voxel resolution ranges from 0.05mm

to 0.1mm. The resolution was set to the lowest possible setting. The supporting

structure was set at the base of the tubes.

The diameter lumen consist of tubes of diameters: 1.1mm, 2.5mm, 3.9mm,

5.3mm, and 6.7mm. The curvature lumen consists of 2.5mm diameter tubes with

its centreline radius of curvature of 30mm, 25mm, 20mm, 15mm, and 10mm. For

the narrowing structures, I used the linear change in diameter along the tube. All

narrowing tubes started at 2.5mm at the tip and diameter d along the tube was

calculated as:

d = 2.5+ zt, (3.1)

with centreline arc length z and narrowing gradient t. The diameter gradient varies

with each tube, as shown on Table 3.1. I chose parameters through visual inspection

of the CT image and cadaver experiments from the literature [84].

3.4.1.2 Image Acquisition and Post Processing

The phantom was imaged in a Toshiba Aqulilion ONE CT scanner at the Royal

Free Hospital. The image voxel size were 0.625mm by 0.625mm by 1mm and re-
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Figure 3.1: FAR LEFT: Different narrowing lumen. CENTRE LEFT: Different lumen
diameter. CENTRE RIGHT: Different lumen centreline curvatures. FAR
RIGHT: Physical phantom.

constructed using the Lung kernel. To test the pipeline, every tube was segmented

using SegEM1 with manual corrections. The endpoints were semi-manually demar-

cated using the centre of mass [111] of each segmented tube.

3.4.2 3D Printer Analysis

The scale of the CT image is sub-millimetre, thus, I verified the precision and ac-

curacy of the 3D printer. To this end, two airways were manufactured, both with a

nominal lumen diameter of 2.5mm - one 3D printed and another from a lathe. The

milled lumen had a tolerance of 0.05mm.

Both lumens were micro CT scanned consecutively. The scanner was a

Skyscan 1172 with a voxel size of 11.0µm isotropically. The large image size

made it difficult to perform any post-processing. Thus I downsampled the images

to 22µm isotropically with Sinc interpolation.

To avoid computing the centreline, the lumen needed to be perpendicular to

the in-plane slice. To this end, the lumen was initially semi-manually segmented

with SegEM. The misaligned angles was computed through the centre of mass of

the segmented lumen. The image was then rotated with the misaligned angles with

Sinc interpolation. Finally, in the realigned image, the lumen was semi-manually

segmented using SegEM.

1http://cmictig.cs.ucl.ac.uk/wiki/index.php/Seg_EM, last accessed on
May 4, 2021.

http://cmictig.cs.ucl.ac.uk/wiki/index.php/Seg_EM
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3.5 Results
I present the results in two sections. First, in Section 3.5.1, I established the ground

truth of the 3D printed structures from the micro CT scan. Second, in Section 3.5.2,

I showed the measurement acquired from the 3D printed structures.

3.5.1 Micro CT

The micro CT scanned images of the milled and 3D printed lumens are displayed in

Figure 3.2. The 3D printed lumen contained abnormalities in the structure. Errors

include holes and jagged surface indicated by the yellow and red arrows respec-

tively.

Diameter measurements were taken 449 times in each slice from the tip to

the base of the lumen. Figure 3.2, shows a systematic underestimation of the 3D

printed lumen compared to the milled counterpart. The outliers were located near

the ends of the lumen. The outliers were removed by only considering two-thirds of

the lumen starting at the midpoint and expanding in both directions. I define mean

difference between the inner lumen of the milled and 3D printed diameters as the

offset error, and was calculated as 0.38mm.

Figure 3.2: TOP LEFT: Slice of the 2.5mm diameter lumen made from a lathe. BOTTOM
LEFT: Slice of the 2.5mm diameter lumen made using the 3D printer. The
yellow arrow shows a hole within the resin. The red arrow shows the jagged
surface. RIGHT: A box plot comparison of diameters between the milled and
3D printed lumens.



3.6. Discussion & Conclusion 59

3.5.2 Clinical CT

I present the diameter measurements from each of the 3D printed structures. How-

ever, I first corrected the offset error found in Section 3.5.1. To this end, I added

0.38mm to every diameter measurement from the clinical CT phantom.

For the differing diameter lumen, Figure 3.3 shows the accuracy was at sub

voxel level for diameters above and equal to 2.5mm. In the 1.1mm lumen, there is a

significant overestimation by approximately 0.8mm. In terms of precision, the error

range for each lumen was within 0.3mm and therefore at sub voxel level. When the

measured diameters were plotted against the ground truth without calibration, there

is an offset of -0.44mm in the line of best fit.

For the differing curvature lumen, Figure 3.3 shows the pipeline is accurate to

sub voxel level. The mean error difference was within 0.2mm and the interquartile

range was within 0.2mm for all curvatures. Thus the pipeline is precise to the sub

voxel level and the precision is independent of the orientation of the lumen.

For the differing narrowing lumen, I computed the narrowing gradient from the

image. The diameter measurements were plotted against the centreline length of the

tube, starting from the base. Next, the diameter gradient was taken as the gradient of

the linear regression of the plotted data. Figure 3.3, shows good correspondence be-

tween the measured and ground truth diameter gradient. The correlation coefficient

was r > 0.99.

3.6 Discussion & Conclusion
This chapter presents a set of experiments to quantify the accuracy of the pipeline.

To this end, we developed a phantom with calibrated 3D printed structures. The

phantom were designed such that my proposed pipeline had to utilised various com-

ponents to achieve an accurate measurement. I showed the pipeline can measure di-

ameters accurate to 0.3mm – independent of orientation. As expected, the accuracy

was reduced when the size of the lumen was near the voxel size of the image. From

Figure 3.3, the pipeline can measure a range of linear changes along the centreline

of the vessel.
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Figure 3.3: TOP LEFT: The diameter error difference when measuring the five tubes of
varying diameters. TOP RIGHT: The diameter error difference when measur-
ing the five tubes of varying curvatures. All tubes have a diameter of 2.5mm.
BOTTOM LEFT: Relationship between the computed diameter gradient and
its corresponding ground truth on the narrowing lumen with the identity line.
BOTTOM RIGHT: A slice of the narrowing lumen, with the segmentation in-
dicated in red.

In this chapter I showed at contiguous intervals, the area measurements are

accurate to sub voxel scale. Furthermore, I showed the accuracy is independent of

curvature and changes in area along the vessel. My tapering measure considers the

general trend of hundreds of area measurement. Thus, I can infer that the taper

measurement is highly accurate and the accuracy is independent to the complex

morphologies of the airway tack.

In this work, I used a micro CT scanner without detailed calibration. As stated

in Kagadis et al. [112], geometric calibration of a scanner ensures the signals is

related to the image. The method involves scanning a phantom and setting the CT

reconstruction to map pixels on the detector to the voxels in the image [113]. I

believe the errors caused by any miscalibration are negligible as there is an loga-

rithmic difference between the errors of interest in CT at a magnitude of 0.1mm and
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errors in micro CT miscalibration at a magnitude of 0.01mm.

In the post-processing of the clinical CT results (Sec. 3.5.2), I assume an

offset error of 0.38mm to the airway lumen, the error is similar to those reported

in the literature [114]. Future work is required to establish if errors from 3D prints

are multiplicative or offset errors. For my work, we assumed an offset error as I

verified a single sized lumen. Furthermore, the errors of 3D printed lumen reported

in Matsumoto et al [114] are within a magnitude of 0.38mm.

In the next chapter, I investigate the precision and reproducibility of my taper

measurement. I will compute the tapering measurement against different CT acqui-

sitions parameters. Finally, I will examine the effect of bifurcations on the tapering

measurement.



Chapter 4

Precision of Tapering Measurement

4.1 Abstract

In Chapter 2, I proposed a tapering measurement for clinical utility of airways af-

fected by bronchiectasis. In this chapter, I extended the work by showing the mea-

surement is applicable for images acquired in a clinical environment. To this end, I

quantified the reproducibility of tapering measurement against differing acquisition

parameters. For this work, I performed 3 set of experiments: First, I compute the

tapering measurement using 74 airways from 10 CT scans with differing radiation

doses and voxel sizes. Second, on a subset of the same data, I compared the tapering

measurement on airways taken from two different reconstruction kernels. Third, on

a selected set of airways, I analysed how bifurcations affects the reproducibility of

the tapering measurements.

Results showed in simulated low dose scans, the tapering measurement re-

tained a 95% confidence interval of±0.005mm−1 in a 25 mAs scan. In simulations

assessing different voxel sizes, the tapering measurement retained a 95% confidence

of ±0.005mm−1 up to 1.5 times the original voxel size. The tapering shows good

correspondence with r > 0.99 when comparing tapering measurements against re-

construction kernels (n=44) and bifurcations regions (n=19). In conclusion, I have

established an estimate of the precision of the tapering measurement and estimated

the effect on precision of simulated voxel size and CT scan dose. I recommend

that the scanner calibration be undertaken with the phantoms as described, on the
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specific CT scanner, radiation dose and reconstruction algorithm that is to be used

in any quantitative studies.

4.2 Publications
The following content has originally appeared in the following publication:

• K Quan, R J Shipley, R Tanno, G McPhillips, V Vavourakis, D Edwards, J

Jacob, J R Hurst, D J Hawkes, “Tapering analysis of airways with bronchiec-

tasis.” In Proceedings of SPIE, 2018.

• K Quan, R Tanno, R J Shipley, J S Brown, J Jacob, J R Hurst, D J Hawkes

“Reproducibility of an airway tapering measurement in computed tomogra-

phy with application to bronchiectasis” In Journal of Medical Imaging, 2019.

4.3 Background
Quantification of the reproducibility of the tapering measurement is clinically use-

ful as it allows statistical testing between measurements taken from different scan-

ners and scanner parameters. Thus, extending clinical applicability of my proposed

measurement to scanners that lack calibration and low dose scans.

4.3.1 Literature Review

Obtaining the cross-sectional area is a necessary input for computing the tapering

measurement. There have been various analyses attempting to validate the repro-

ducibility and precision of measurements against dose [115, 116], voxel size [96]

and reconstruction kernel [117, 118, 119]. In most of the validation experiments,

area measurements were taken from phantom [117, 118] or porcine [115, 116] mod-

els. In Fetita et al. [120], they used synthetic models of the lung. None of these

experiments were explicitly performed on scans with bronchiectasis. Furthermore,

the area measurements were not taken at contiguous intervals along the lumen thus

missing possible dilatations from a bronchiectatic airway.

In the literature, investigations of the repeatability of arc length computation

in airways are limited. In Palagyi et al. [73] they used simulated rotation of in vivo
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scans. The assessment of repeatability was based on the lengths of a single branch

rather than multiple generations of branches, thus precluding the repeatability of

length quantification from the carina to an airway’s most distal point.

4.3.2 Contribution

In all the proposed tapering measurements described in Section 2.3.1, there is no

detailed quantification of the reproducibility when considering differences in speci-

fications of the CT scanner, or reconstruction kernel, making it difficult to compare

tapering statistics from two different CT scanners or from the same CT scanner but

with different scanning parameters.

The contribution of this chapter is to quantify the reproducibility of my pro-

posed tapering measurement under various acquisition and anatomical parameters.

The chapter is organised as follows: Section 4.4 describes a set of methods to ac-

quire images with varying dose, voxel size, reconstructions kernels. In addition, I

constructed a protocol to assessed the effect of including region of airway bifurca-

tions within in the taper measurement. In Section 4.5, I present the results of the

reproducibility experiments on the tapering measurements and its constituent com-

ponents: arclengths and cross-sectional areas. Finally, in Section 4.6, I discussed

the clinically utility of the tapering measurements in light of these experiments.

4.4 Methods
The methodology is presented as follows, I applied my tapering measurement on a

range of images with different parameters: First, in Section 4.4.1, I undertake silico

simulations of differing dose and voxel sizes. Second, in Section 4.4.2, I acquired

images with differing reconstruction kernels directly from the CT scanner. Third,

in Section 4.4.3, I removed the bifurcation regions on airway tracks.

4.4.1 Simulated Images

I assessed the reproducibility of the tapering measurement experiment with in silico

simulations of varying radiation dose and voxel sizes. For both experiments I used

the entire dataset as described in Section 2.5.
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 1 function noisySlice = AddingDoseNoise(axialSlice,lambda)
 2 
 3 %Creating the sinogram
 4 sinogram = radon(axialSlice,0:0.1:179);
 5 
 6 %Adding the Gaussian Noise
 7 noisySinogram = sinogram + randn(size(sinogram))*10^lambda;
 8 
 9 %Converting the noisy sinogram into physical space using Filter Backprojection
10 noisySlice = iradon(noisySinogram,0:0.1:179,length(axialSlice));
11 
12 %Converting into integer precision intensities
13 noisySlice = uint16(noisySlice);
14          
15 end
 

Figure 4.1: The Matlab code used simulate noise from differing doses.

4.4.1.1 Dose

To simulate the images acquired with different radiation doses, I used the method

adapted from Frush et al. [121], I performed a Radon transform on each axial slice

of the original CT image. The output is a sinogram of the respective axial slice.

To simulate different radiation doses, Gaussian noise was added on each sinogram

with standard deviation σ = 10λ ; with a range of λ . The noisy sinograms were

then transformed back into physical space using the filtered back projection. The

final output is a noisy CT image in Hounsfield units in integer precision. A Matlab

implementation is displayed on Figure 4.1. For our experiment I varied λ from 0.5

to 5 in increments of 0.5. An example of the output image are displayed in Figure

4.2.

To relate λ to the physical dose from a CT scanner, I adopted the method

described in Reeves et al. [22] This paper quantified the dose of an image with a

homogeneous region in the chest CT scan. To this end, I used the homogeneous

region inside the trachea. Using the airway segmentation, I considered the first 60

axial slices of the segmented trachea. To avoid the influence of the boundary, the

tracheas were morphologically eroded [122] with a structuring element of a sphere

of radius 5. All segmentations were visually inspected before further processing.

Finally, I computed the standard deviation of the intensities inside the mask, denoted

as Tn. Table 4.2, shows values of Tn on a selection of images against a range of λ .

Using results from Reeves et al. [22] and Sui et al. [123], a low dose scan with
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a tube current-time product 25mAs has maximum Tn of 55HU. Thus, I assume

λ = 3.5 corresponds to a low dose scan. I considered higher values of λ to verify

any correlations in the results.

I computed the taper measurement on the noisy images using the same seg-

mented airways and labelled distal point on the respective original image. The lit-

erature has shown in low dose scans, airway segmentation software [72, 24] cannot

segment as distally compared to standard dose scans of the same patient. But these

methods can still segment a large number of branches in low [72] and ultra-low

[24] dose scans. Furthermore, research have shown there are minor differences in

the performance of radiologists when attempting to detect features from standard

and low dose CT scans [124, 125, 123].

4.4.1.2 Voxel Size

I analysed the effect of voxel sizes on the tapering measurement. For each CT im-

age, the voxel spacing sx,sy,sz, was subsampled to new spacing of σsx,σsy,σsz.

The intensities at each new voxel position was computed using sinc interpolation

with a small amount of smoothing. To compute the tapering value, I downsampled

the segmented airway and distal point to the same coordinate system using nearest

neighbour interpolation. Some morphological filtering was used on segmented air-

ways to remove artefacts caused by the downsampling. For our experiment I used

the parameters; σ = 1.1, . . . ,2 with increments of 0.1.

4.4.2 CT Reconstruction

On a subset of images, four patients were scanned using the Toshiba Aquilion One

Scanner. A total of 44 tapering measurements were computed. On the same acqui-

sition data, two different images were computed. The images were reconstructed

using the Lung and Body kernel respectively, an example of the reconstruction ker-

nels are displayed on Figure 4.3. Table 4.1 shows which image was used to generate

both the airway segmentation and distal point. The tapering measurement was com-

puted on both reconstruction kernels using the same airway segmentation and distal

points.
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Patients Reconstruction kernel used for prepocessing
bx503 FC56 - Lung
bx507 FC18 - Body
bx513 FC56 - Lung
bx515 FC18 - Body

Table 4.1: The images used for the reconstruction kernel experiment. The table lists which
reconstruction kernel was used to generate the airways segmentation and distal
point labelling. The make, model and voxels size of the images are displayed in
Table 2.1.

Figure 4.3: Images from the same CT scan with the body kernel (LEFT) and lung kernel
(RIGHT). Both images are displayed in the same intensity window.
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Figure 4.4: FAR LEFT: A region of bifurcation along the reconstructed slices. The green,
blue and red regions are the slices corresponding to the enlargement, break and
separation slices respectively. The labelled region consists of slices from green
to red. CENTRE LEFT: A cross sectional plane where the airway is at the point
of bifurcation, indicated by the blue arrow. CENTRE RIGHT: First slice of the
bifurcation region. FAR RIGHT: The final slice of the bifurcation region. The
slides are chronologically ordered with the protocol described in Section 4.4.3.

4.4.3 Effect of Bifurcations

I analysed the effect of airway bifurcations on the tapering measurement. To this

end, I manually identified regions of bifurcating airways. On a selected subset of

airways, I considered the reconstructed airway image described on Figure 4.14. Us-

ing ITK-snap, I started at the cross sectional plane corresponding to the carina and

scrolled towards the distal point. Using visual inspection, the following protocol

was developed to identify bifurcations on cross sectional planes:

1. The scrolling stops when the airway is almost or at the point of separation.

2. The author scrolls back until the airway stops decreasing in diameter. An

alternative interpretation is when the airways are about to enlarge due to the

bifurcation.

3. Starting at the point of enlargement and scrolling forward, each slice is delin-

eated until complete separation of bifurcating airways is reached. The criteria

for a complete separation is the lumen wall of both airways are completely

visible and separate. The entire protocol is summarised in Figure 4.4.

For our experiment, I selected 19 airways from Section 2.5. The data consist

of 11 healthy and 8 bronchiectatic airways.
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4.5 Results

I present the results in the following sections: Section 4.5.1 & Section 4.5.3 com-

pares the reproducibility of taper and cross-sectional area measurements against

simulated doses and CT kernels respectively. In Section 4.5.2, compares the re-

producibility of taper and arc length measurements against simulated voxel sizes.

Finally, Section 4.5.4, compares the taper measurements with and without bifurca-

tion regions.

4.5.1 Dose

I analysed the difference in cross-sectional area measurements and the final tapering

measurements at different CT radiation doses.

For the cross-sectional areas, Figure 4.5 compares the cross-sectional areas be-

tween the original image and one of the noisy images. Each graph contains approx-

imately 30000 unique lumen measurements. The correlation coefficients between

the populations was r > 0.99 on all graphs. The 95% confidence intervals increase

with the amount of noise. For the tapering measurement, Figure 4.6 displays the

measurements from all the noisy images compared against their respective original

images. The correlation coefficient between noisy and original tapering measure-

ments was r > 0.98 on all values of λ .

For the tapering measurement, Figure 4.6 displays the measurements from all

the noisy images compared against their respective original images. The correlation

coefficient between noisy and original tapering measurements was r > 0.98 on all

values of λ . For the repeatability dose images, there were negligible differences in

the tapering measurement on images generated using the same value of λ .

I analysed the tapering difference between the original images and simulated

images. I interpret the mean and standard deviation of the error difference as the

bias and uncertainty respectively. Figure 4.7, shows an overestimation bias with an

increase in noise and a positive correlation between uncertainty and dose.
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Figure 4.7: Mean (LEFT) and standard deviation (RIGHT) of the difference in tapering
between original images minus the simulated lower dose.

4.5.2 Voxel Size

I analysed the computed spline and tapering for all the scaled images. I used the

arclength of the spline as the metric for comparison for the computed spline. Figure

4.8 compares the arclengths computed from the scaled splines with the respective

originals. On all scales σ the correlation coefficients between measurements was

r > 0.98. Furthermore, I analysed the error difference in arclength. On Figure 4.9,

the mean difference shows a weak correlation coefficient with r = 0.55 with scale σ .

The mean difference shows both an overestimation and underestimation bias with

the arclength measurement. Figure 4.9, shows a weak correlation between standard

deviation and scale with r = 0.51.

In terms of the tapering measurement, Figure 4.10 compares the tapering val-

ues from the scaled images with the respective originals. The correlation coeffi-

cients between the scaled and original tapering values was r > 0.97 on all scales

σ . In addition, I examined the error difference of the original minus the scaled

tapering. Figure 4.11, shows a negative correlation with both overestimation and

scale with r = −0.98. Furthermore, Figure 4.11, shows a positive correlation with

uncertainty and scale with r = 0.94.
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Figure 4.9: Mean (LEFT) and standard deviation (RIGHT) of the difference in arclength
between original images minus the scaled images. The correlation coefficient
of the mean and standard deviation against scale are r = 0.55 and r = 0.51
respectively.

4.5.3 CT Reconstruction

I analysed the difference in cross sectional area and tapering measurement between

reconstruction kernel. Figure 4.12, compares the difference in area measurements.

On all patients, the correlation coefficient between the two measurements was r >

0.99. The largest 95% confidence was in patient bx515 with ±1.98 mm2 from the

mean. Figure 4.13, compares the differences in tapering measurement. I collected

n = 44 tapering measurement from 4 patients. The correlation coefficient was r =

0.99 between the reconstruction kernels.

4.5.4 Bifurcations

I compared tapering measurements with and without points corresponding to bi-

furcations. On the first dataset, the tapering measurements were computed using

all area measurements. The second dataset has tapering measurements computed

without area measurements from the bifurcating regions as described in Figure

4.14. I compared the measurements on Figure 4.15, the correlation coefficient was

r = 0.99.

The uncertainty of each tapering measurement were computed using the stan-
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Figure 4.11: Mean (LEFT) and standard deviation (RIGHT) of the difference in tapering
between original images minus the scaled images. The correlation coefficient
of the mean and standard deviation against scale are r = −0.98 and r = 0.94
respectively.
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Figure 4.12: Bland-Altman [1] graphs comparing the cross-sectional area between the
Lung and Body reconstruction kernels. On all four images the correlation
coefficient was r > 0.99
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Figure 4.13: Bland-Altman [1] graph comparing tapering measurements (n = 44) between
Lung and Body reconstruction kernels, r = 0.99.

dard error of estimate s, defined as [126]:

s =

√
∑

N
i=1(Yi− yi)2

N
(4.1)

where xi,yi is the computed area and arclength respectively, Yi is the estimate from

the linear regression from each xi and N is the number of points in the profile. Figure

4.14 compares the uncertainty between the two populations. There was a statistical

difference between the populations, on a Wilcoxon Rank Sum Test, p = 7.1×10−7.

4.6 Discussion
In this Chapter, I quantified the behaviour of the reproducibility of my proposed ta-

pering measurement against CT parameters and regions of bifurcation. Experiments

included in silico image simulation of differing dose and voxel sizes. For the dose

experiment, I related the image noise with the radiation dose through segmenting
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Figure 4.14: TOP LEFT: A signal of area measurement with bifurcation regions (red) and
tubular regions (blue). TOP RIGHT: The same signal with tubular regions
(blue) only. On both graphs, the black line is the linear regression of the re-
spective data. The gradient of the line is the proposed tapering measurement.
BOTTOM: The reconstructed bronchiectatic airway of the same profile. The
blue-shaded and red-shaded regions corresponds to the tubular and bifurcating
airways respectively. A reconstructed healthy airway have been discussed in
Quan et al. [2] Similar reconstructed cross sectional images of vessels have
been discussed in Oguma et al. [3], Kumar et al. [4] and in the supplementary
materials of Alverez et al. [5].

the trachea and computed the standard deviation of the mask.

In this chapter, I analyse the reproducibility of all computerized components

of the tapering algorithm. The chapter does not address reproducibility of manual

labelling of the airways. It is noted in the literature that semi-manual labelling of

small airways can take hours [127]. Future work is required to analyse the repro-

ducibility of manual segmentation of the airways. I hypothesise, that the segmented

healthy peripheral airways consist of a small number of voxels, therefore any er-

rors in voxel labelling will be considerable smaller then a dilated peripheral airway

affected by bronchiectasis.

In this work, I simulated low dose scans through performing Radon transforms
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Figure 4.15: LEFT: Bland-Altman [1] graph showing the relationship of the taper rates
(n = 19) with and without bifurcations, r = 0.99. RIGHT: Comparison of
the standard error from linear regression between airways with and without
bifurcations. On a Wilcoxon Rank Sum Test between the two populations,
p = 7.1×10−7.

on existing CT images, adding Gaussian noise on the sinogram and using backpro-

jection to reconstruct noisy CT images. There are proposed methods to simulate a

low dose scans by adding a combination of tailored Gaussian and Poisson noise on

the sinogram [21]. These methods assume the original high dose sinogram are avail-

able for simulation, however it has been acknowledged that sinograms are generally

not available in the medical imaging community [128, 129]. Thus, various groups

have proposed low dose simulations using reconstructed CT images. The methods

involve adding Gaussian [129, 128] or a combination of Gaussian and Poisson noise

[130] on the sinogram of the forward projection of the CT image. Whilst there has

been limited validation of the appearance of lung nodules against simulated low

dose simulation [131], there has been no validation on the efficacy of these methods

on the appearance of airways. I believe that our low dose simulation is sufficient

because the measured standard deviation of the trachea mask Tn is similar to results

taken from low dose scans from Reeves et al. [22] and Sui et al. [123]

Similarly, with voxel size simulation, ideally one would reconstruct the images

from the original sinogram, for example in Achenbach et al [25]. However, as the

sinograms were unavailable, we simulated the voxel size through interpolation of

the original CT images similar to Robins et al [132]. We believe the simulation

is sufficient as it shows the robustness and precision of the centreline, recentring
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and cross-sectional plane algorithms in the pipeline. Changes in voxel sizes will

change the combinatorics or arrangement of the binary image. By showing steps in

the pipeline like centreline computation, are repeatable across voxel sizes, we avoid

resampling the image to isotropic lengths. Thus, potentially avoiding a computa-

tionally expensive [24] pre-processing step. In the same experiment, I downsampled

the binary image using nearest neighbour interpolation [111]. The original binary

airway segmentation consists of sparse labelling and vessel structures. From Juste-

sen and Forchhammer [133], nearest neighbour method creates a bias towards black

voxels and maintains the topology of the object. Thus, making the method superior

to linear interpolation.

In addition, I used a subset of airways to analyse the reproducibility of the

tapering measurement under different CT reconstruction kernels. The limited sam-

ples were due to CT reconstructions being restricted to commercial vendors [134].

The experiment is sufficient as a proof of principle study in reproducibility as I have

assessed robustness of cross-sectional area measurements between different recon-

structions. Changes in CT kernels will cause subtle changes in the intensity profiles

on the edge of the airways [135].

4.7 Conclusion

Previously in Chapter 2, I showed a statistical difference in tapering between healthy

airways and those affected by bronchiectasis as judged by an experienced radiolo-

gist. From Figure 2.4, the difference between the mean and median of the two popu-

lations was 0.011mm−1 and 0.006mm−1 respectively. In simulated low dose scans,

the tapering measurement retained a 95% confidence interval of ±0.005mm−1 up

to λ = 3.5. In simulations assessing different voxel sizes, the tapering measure-

ment retained a 95% confidence between ±0.005mm−1 up to σ = 1.5. The taper-

ing measurement retains the same 95% confidence, ±0.005mm−1 interval against

variations in CT reconstruction kernels and, importantly, over time in evaluating

sequential scans in normal airways. Furthermore, in our previous work (Chapter

3), the measurements are accurate to sub voxel level. This suggests airway tapering
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can be used to assist clinical trials provided phantom calibration is performed on

the scanner.

For the bifurcation experiment, I show the tapering values retains the 95%

confidence, ±0.005mm−1 against variations of bifurcations. Since there is a small

change in tapering values between airway tracks with and without bifurcations. I

show it may be unnecessary to segment and remove bifurcation regions of the air-

ways. It has been shown in the literature that segmenting bifurcation is a non-trivial

task [136].

I analysed the reproducibility of the components that constitute the tapering

measurements. The reproducibility of area measurements was analysed in relation

to simulated radiation dose and CT reconstruction kernels. For simulated dose,

I found the 95% confidence interval remains at ±1.5mm2 in noisy images under

λ = 3. Note on Figure 4.5, there is a bias towards overestimating larger lumen sizes

at lower doses. As the centreline length remains constant and bias on the smaller lu-

men remain stable, the overestimation results in an increase in taper magnitude. For

reconstruction kernel, I found the largest 95% confidence interval was ±1.9mm2.

The reproducibly of arclength was tested against voxel sizes and showed that ar-

clengths have a 95% confidence interval of up to±5.0mm for scales under σ = 1.5.

The increase in the standard deviation of arclength and area against voxel size and

dose respectively correlate with uncertainty in tapering. The results show that my

tapering measurement is suitable to be used on a population of airways containing

scans with a range of doses. However, further investigation is required to show if

the current pipeline described in Section 2.4, can be applied on airways solely from

low dose scans. I hypothesise two possible approaches to improve the validity of

my tapering measurement in low dose scans. First, replace the current lumen mea-

suring algorithm in Section 2.4.5 to a method designed for low dose scans such as

from Yang et al. [104]. Second, using deep learning methods such as Yang et al.

[26] to modified the CT scan to reduce artefacts or to infer features from high dose

scans. A major disadvantage of these deep learning methods is it has been shown

that some algorithms can hallucinate features [137].
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This chapter provides useful information for clinical practice and clinical tri-

als. An accurate prediction of the noise amplitude in a particular CT scan and its

distribution is a function of the limited radiation dose of the scan, scanner geom-

etry, reconstructed voxel size, other sources of noise, the reconstruction algorithm

and any pre- and post-processing used. Many of these factors are proprietary in-

formation of the CT manufacturer and hence not available to users [138, 139]. We

have undertaken an experiment to assess the dependence of our measurements on a

simulated noise field added to the CT scan data and have presented the results. This

gives an indication of the dependence on radiation dose assuming all other factors

remain the same. We recommend that the accuracy experiment presented in this

paper be repeated for the particular reconstruction, scan protocol and scanner type

used to make the measurements.

Bronchiectasis is often described as an orphan disease and has suffered a lack

of interest and funding [140, 38]. I have shown the reproducibility of airway taper-

ing can assist in the diagnosis and management of bronchiectasis. In addition, we

show it is feasible to use our tapering measurement in large scale clinical studies of

the disease provided careful phantom calibration is taken.

In the next chapter, I will be analysing specific points of dilatation of the air-

ways track. I combine my proposed pipeline with Bayesian changepoint detection

to find regions of diseased airways. I show the clinical utility by using my proposed

algorithm by finding volume change on airways affected by idiopathic pulmonary

fibrosis (IPF).



Chapter 5

Locating Changes along the Airway

Track

The following chapter is a joint collaboration with Ryutaro Tanno (RT) and Michael

Duong (MD). In terms of contributions, MD developed and implemented Bayesian

changepoint formulation and Reversible Jump Metropois Hasting. RT contributed

as an advisor role on presentation and interpretation of results and data analysis.

5.1 Abstract
Numerous lung diseases, such as idiopathic pulmonary fibrosis (IPF), are mani-

fested as dilation of the airways. In order to quantify the progression of such dis-

eases, prior analyses have introduced a variety of computational methods for mea-

suring the airway cross-sectional area from CT images. However, the combination

of image noise and anatomical fluctuations causes high variability in the measure-

ments of cross-sectional areas, rendering the identification of affected regions very

difficult. In this work, I introduce a noise-robust method for automatically detect-

ing the location of progressive airway dilatation given two measurements of the

same airway acquired at different time points. To this end, I propose a probabilistic

model of abrupt relative variations between two measurements of cross-sectional

areas and perform inference via Reversible Jump Markov Chain Monte Carlo sam-

pling. I demonstrate the efficacy of the proposed method on two datasets; (i) images

of healthy airways with simulated dilatation; (ii) pairs of real images of IPF-affected
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airways acquired at 1 year intervals. Results on simulated data show that our model

is able to detect the starting location of airway dilatation within the accuracy of

2.5mm, while the experiments on the IPF dataset display reasonable agreement with

radiologists. In addition, I demonstrate that by estimating the location of dilatation

I can compute a relative change in airway volume which is useful for quantification

of IPF disease progression.

5.2 Publication
The contents if this chapter has been accepted in the following:

• K Quan, R Tanno, M Duong, A Nair, R Shipley, M Jones, C Brereton, J

Hurst, D Hawkes, J Jacob, “Modelling Airway Geometry as Stock Market

Data using Bayesian Changepoint Detection”, In 10th International Work-

shop on Machine Learning in Medical Imaging, 2019.

5.3 Introduction & Motivation
In fibrosing lung disease, contraction of the lung interstitium pulls on airway walls,

and this dilatation is termed traction bronchiectasis. Airway dilatation calculated

using crude lobar-level visual scores have been shown to be powerful predictors of

outcome in idiopathic pulmonary fibrosis (IPF) [141]. More precise and automated

measures that can identify and quantify airway dilatation over time on serial com-

puted tomography (CT) imaging would be valuable as potential endpoints for IPF

drug trials as a more sensitive measure of disease progression.

Conventional methods evaluating airways as a measure of disease progression

are restricted to comparing cross-sectional area measurements at a given genera-

tion between baseline and follow up scans [142]. The measurements are taken at

sparse intervals and thus it is not possible to compute measures such as airway vol-

ume nor locate the precise spatial arrangement of airway damage in the lungs. To

our knowledge, no work has analysed disease progression in terms of a series of

cross-sectional area measurements along the airway track at contiguous intervals. I

considered an airway track as a path along the airway centreline from the start of
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the carina to the most distal point of an airway visible on a CT image. However one

would have to distinguish a dilatation from various sources of noise including: (i)

Biases and precision from computing CSA such as from centreline generation [73]

and lumen identification [96]. (ii) Artefactual measurements such as in bifurcation

regions [2]. (iii) Normal biological variations [143].

5.3.1 Contribution

My contribution is to introduce a Bayesian Change Point Detection model to track

the progression of pulmonary disease along the airway using contiguous airway lu-

men measurements. Bayesian Change Point Detection is a machine learning method

used to locate abnormal or sudden changes in a given signal or time series. The

method looks not only the absolute change in signal but also change in the under-

lying distribution of measurements. For our work, I have applied the method to a

series of cross-sectional area changes between baseline (first) and follow up (sec-

ond) CT scans. The purpose is to automatically find the point at which the airway

has dilated due to parenchymal disease.

Bayesian Change Point Detection has been mainly applied to DNA sequencing

[144] and stock market data [145]. The main challenge in implementing our pro-

posed algorithm, that there are no analytical solutions when I input non-conjugate

distributions. Thus, I will implement a Reversible-jump Markov Chain Monte Carlo

(RJMCMC) framework [146, 147] to find an approximation to the solution.

To demonstrate clinical utility, for this paper I applied our Bayesian Change

Point Detection model on airways affected by IPF. Whist there are methods to

quantify disease progression in IPF, none have utilised automated measures of air-

way volume, despite crude visual lobar measures of traction bronchiectasis having

been shown to strongly predict mortality in IPF. Proposed automated measures of

parenchymal damage such as CALIPER and QLF consider imaging features se-

lected by the radiologist [148]. Our methods uniquely, solely depend on changes to

the geometry of the airways.
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5.4 Method
In this section, I introduce a method for quantifying progression of IPF on patients

with serial CT scans performed one year apart. The method proceeds as follows.

Firstly, I fit a tubular shape model to airways in both baseline and follow-up CT

scans, and acquire estimates of the cross-sectional areas along them (Sec. 5.4.1). I

then treat the difference in the cross-sectional areas as a time series, and employ

the proposed Bayesian change point model to estimate the posterior distribution

over locations of abrupt airway dilatation (Sec. 5.4.2). Lastly, I post-process this

posterior distribution to determine the region of dilatation (Sec. 5.4.3).

5.4.1 Airway Pre-processing

In this work, I assume that each diseased airway is scanned at two different time

points, which I refer to as the “baseline” and “follow-up” scan. For each airway

track, I acquire a series of cross-sectional area measurements using the method in

Section 2.4 and summarised in on Figure 5.1. Following a manual segmentation of

the airway, as described in Section 2.4, the method computes the airway centreline

and the corresponding normal planes at contiguous intervals, each of which is then

used to estimate the cross-sectional area. The final output is a 1D function of cross

sectional area along the arc length of the airways for baseline fBase(x) and follow

up fFoU p(x) scans.

(a) Airway Segmentation (b) Centreline Computation (c) Reconstruct planes on the centreline spline (d) Lumen identification via 

ray casting (e) Lumen area along the airway

Figure 5.1: Summary of the pipeline developed Section 2.4. I have implemented the
method as part of the pre-processing stage to model the geometry as a 1D sig-
nal.

The next task was to align the signals on both baseline fBase(x) and follow up

fFoU p(x) scan. To this end, I resample the signal to 1mm using cubic interpolation. I

considered the first 50 points on both signals gBase,gFoU p from the start of the carina.
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To register the two airways together, I apply the transformation fFoU p(x−a) where

a = argmina∈[−5,5]

∣∣∣∣∣∣∣∣log
(

gBase(x)
gFoU p(x−a)

)∣∣∣∣∣∣∣∣
2
. (5.1)

The longest of the two signal were truncated from the right hand side such that

both signals were of the same length. For the rest of the methodology, I will only

consider the series difference defined as

y = log( fFoU p)− log( fBase). (5.2)

5.4.2 Bayesian Changepoint Model

5.4.2.1 Changepoint Definition

The progression of fibrosing lung disease can manifest as traction bronchiectasis,

resulting in dilatation of the airways. Thus I hypothesise at the start of dilatation,

the series y will begin to abnormally increase thus producing a change point. To

detect the change point, I introduce a probabilistic model. More formally, given

signal:

y = (y1, . . . ,yn) (5.3)

of length n, I define a change-point τ as the location where there exists a change

in parameters θ in the underlying distribution F . In other words, at change point

1 < τ < n, the observations y can be separated at τ such that:

y =

(y1, . . . ,yτ)∼ F(θ1)

(yτ+1, . . . ,yn)∼ F(θ2)

, (5.4)

where θ1 6= θ2. This definition can be naturally extended to the scenario with M

change points; I denote the changepoint location vector by τ = (τ1, . . . ,τk), with

parameters θ = (θ1, . . . ,θk+1) for each respective segment. For ease of notation, I

also denote τ0 = 1 and τk+1 = n.

In terms of time series, a changepoint is interpreted as the point yτ where the
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A: Time Series

(𝑦1, … , 𝑦𝜏) (𝑦𝜏+1, … , 𝑦𝑛)

𝑦𝜏

𝐹(𝜃1) 𝐹(𝜃2)

B: Histogram

0
0

1

1

Figure 5.2: A schematic diagram describing a changepoint. Using the same notation in
Equation 5.4, consider the time series in A. There is a changepoint τ at yτ , if
I select the points on the left-hand side; highlighted in red and construct a his-
togram from these points. The histogram would approximate into a Gaussian
distribution F those parameters θ1 = (µ1,σ

2
1 ) which includes a mean, µ1 = 0.

By performing the same analysis on the points on the right-hand side high-
lighted in blue. The resulting histogram would be a Gaussian distribution F
those parameters θ2 =(µ2,σ

2
2 ) with µ2 = 1. Thus θ1 6= θ2 resulting in a change-

point yτ between the segments.

time series changes in behaviour. I qualified the behaviour as the points being sam-

pled from the probability distribution function F with the parameters θ . An example

is described in Figure 5.2.

5.4.2.2 Model Assumption

Assuming statistical independence between segments, the likelihood factorises as:

p(y|τ,θ ,M) =
k+1

∏
l=1

F(yτl−1:τl |θl) (5.5)

where yτl−1:τl = (yτl−1, . . . ,yτl). I also specify prior distributions on the the number

of change points p(M;δ ), the locations of the changepoints p(τ|M;γ), and the pa-

rameters of the corresponding segments p(θ |M;β ) where β , γ and δ represent the

hyper-parameters.

Given the likelihood and the prior distributions above, I would like to estimate

the posterior distributions over the locations of change points p(τ|y). Commonly in
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Bayesian change point analysis, likelihoods with a conjugate prior are chosen to al-

low calculation of analytical posteriors for change points and parameters, enabling

faster convergence and better accuracy [149]. However, in our work, I wish to relax

this conjugacy assumption in order to allow flexibility in the choices of prior and

likelihoods. In this paper, F was defined as the Student t distribution with parame-

ters θl = (νl,µl,σl) with degrees of freedom νl , mean µl and standard deviation σl .

I chose t-distribution for its robustness to outliers [150] caused by noise from the

area measurements.

Posterior inference with our model possesses two challenges. Firstly, with-

out the conjugacy assumption, computing the posterior distributions is intractable.

Secondly, the dimensionality of the posterior distribution over the changepoints τ

is given by M and varies during inference. To combat the first problem, I use the

Metropolis-Hasting (MH) algorithm [151], a variant of Markov Chain Monte Carlo

(MCMC) methods that can sample from the posterior, with or without conjugacy.

Given that the number of changepoints M is known, MH can be used to sample

from the posterior distributions over the changepoints τ and segment parameters θ .

To address the second problem of varying posterior dimensionality M, I extend the

above sampling scheme to the Reversible Jump MCMC framework [147]. Taken

all together, the method is capable of traversing the full posterior distributions for

M,τ,θ and I refer to this as Reversible Jump Metropolis Hasting (RJMH) algo-

rithm. A detailed implementation is discussed in Appendix A.

5.4.3 Locating Change in Airway Dilatation

For airways affected by IPF, dilatation starts at the distal point and progresses in the

proximal direction [54]. Therefore, I topologically can assume that each affected

airway undergoes a single changepoint from which dilatation starts. To locate such

unique changepoint, I consider the posterior probability of the changepoint p(τ|y),

and perform the following post-processing steps.

On each airway track, the proximal region is surrounded by cartilage [9]. As

the airway track loses cartilage support, the geometry of the airway changes and

results in a changepoint. Since such biological changepoint is independent of the
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disease state and occurs prior to dilatation, I eliminate it by discounting the most

proximal peak in the posterior distribution p(τ|y). I then selected highest peak

on the modified posterior p(τ|y) as the final estimation for the starting point of

dilatation.

5.5 Evaluation & Results
I evaluated our proposed method with two experiments. Firstly, I used a set of

healthy airways, in which I had simulated dilatation to quantify the accuracy of

our method and compared the results with conventional changepoint methodolo-

gies. Secondly, I assessed the clinical utility of our method on a dataset of airways

affected by IPF. I compared our labels with those from two experienced thoracic

radiologists. The properties of the images used in both experiments are displayed

on Table 5.1.

5.5.1 Disease Simulation

To quantitatively assess accuracy, a ground truth is required. To this end, I applied

our point detection algorithm on augmented healthy airway series to simulate the

airway dilatation caused by IPF. After obtaining written informed consent from 3

patients, a trained radiologist (R1) selected 14 pairs of healthy airways in both base-

line and follow-up scans. The image properties are displayed on Table 5.1. They

were acquired from different scanners and used different reconstruction kernels.

The airways were pre-processed as described in Sec. 5.4.1 to produce a function

of area change along the length of the airway. I interpret this output signal as the

overall noise caused from normal biological changes and acquisition.

I modelled the change in dilatation with a logistic function:

l =
M

1+ e−k(x−α)
. (5.6)

I interpreted M as the magnitude of dilatation and α as the point of dilatation. The

parameters α are set such that the dilatation starts 10-40mm from the distal point

in increments of 5mm. In addition, I set M to range from 0.3-3 in increments of
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0.25. Finally I set k = 0.5mm−1, in order to create an abnormal increase in cross

sectional area. To simulate the dilatation on the airway; the logistic function was

added to the area change of the healthy airway, as shown on Figure 5.3. I applied

every permutation of M and α on each of the 14 healthy airways. After the signal

augmentation, I applied our proposed Bayesian changepoint detection algorithm.

The proposed method was compared against two conventional methods. First,

I use a basic thresholding method. For a given signal, I applied a 5mm moving

mean average and thresholded the point at which the signal reached above the up-

per quartile from the right hand side. Secondly, I implemented the method based

on Lavielle [6], in summary I consider K changepoint and these changepoints yi,

minimize the function:

J(K) =
K−1

∑
r=0

kr+1−1

∑
i=kr

∆(yi,ykr:kr+1−1)+βK, (5.7)

where β is modified such that the function finds less than K changepoints. For our

paper, different ∆(yi,ykr:kr−1−1) were evaluated and I found

∆(yi,ykr:kr−1−1) = yi−mean(ykr:kr+1−1) (5.8)

gives the most accurate results. To replicate the post processing of our proposed

method, I consider K = 2 possible changepoints. This takes into account the change-

point caused by the support cartilage. Finally, I set a minimum distance of 20mm.

Once I acquired the changepoints, the most peripheral point was chosen as the point

of dilatation. The implementation was performed through Matlab inbuilt function;

findchangepts1.

Figure 5.4 shows the accuracy for each individual method as a heatmap. The

metric used to quantify accuracy was the displacement between the ground truth

and the changepoint given by the proposed method. A positive displacement (mm)

corresponds to an overestimation of the ground truth towards the distal point. Each

1https://www.mathworks.com/help/signal/ref/findchangepts.html last
accessed on May 4, 2021.

https://www.mathworks.com/help/signal/ref/findchangepts.html
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entry on the heatmap corresponds to the median average of all displacements over

14 airway pairs.

When the magnitude of dilation is larger than M > 0.75, our proposed method

achieves consistently higher accuracy than Lavielle [6]. I note that the accuracy

gain in the peripheral regions of the airways at α = 10-30mm from the distal point

are the most clinically relevant in IPF as lung parenchymal damage begins in the

lung periphery and progresses proximally [54]. Furthermore on the same peripheral

regions α = 10-30mm, the baseline method showed systematic bias in accuracy to-

wards the central airways. This was due to the baseline method being influenced by

outliers from the longer expanses of normal airway regions. The proposed method

uses the t-distribution as the likelihood thus making it robust to possible outliers

within the data [150]. On the other hand, the proposed method suffers from poor

accuracy below magnitudes of dilatation M = 0.75. However, in physical terms a

dilatation of M = 0.75 corresponds to a percentage increase in cross sectional area

of e0.75− 1 ≈ 112%. This is within the range of normal biological change of the

airways [143].

5.5.2 Application to Airways Affected by IPF

I applied our method to airways affected by IPF. The purpose was to compare our

measurement to the labels provided by a radiologist and compute the volume change

of the identified diseased airway regions. For our dataset, I acquired 4 airway pairs

from 2 patients after obtained a waiver for consent from the local Research Ethics

Committee. All airways were judged by the radiologist R1 to be dilated as a con-

sequence of IPF on baseline and to have visually worsened on follow-up imaging.

Image properties are displayed in Table 5.1.

I compared the performance of our method against two trained thoracic sub-

specialist radiologists. Two radiologists R1, R2 identified the point of at which

a given airway was seen to demonstrate increased dilatation on the follow-up CT

scan. To assessed the reproducibility of manual labeling, each radiologist labelled

the same airway twice through two different protocols. In the first method, the radi-

ologists interrogated axial CT images. Using 2 separate workstations and the airway
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Figure 5.5: Example views of images in two measurement protocols employed by radiolo-
gists to locate starting points of dilatation. (Left). Protocol 1 based on the axial
slice. (Right). Protocol 2 based on the reconstructed cross sectional planes.

Arc Length: 62mm Arc Length: 63mm Arc Length: 64mm

Figure 5.6: A row of three consecutive reconstructed slices in Airway 2 located on the
arc length of 62-64mm. Each slice shows the airway lumen at baseline (left)
and follow-up (right). The boundary delineation (red) from the baseline are
superimposed on the follow-up scan. The blue arrows indicate pixels from the
lumen outside the boundary.

centreline, the radiologists identified the point on the centreline (on the follow-up

scan) where the airway demonstrated definitive worsened dilatation. For the second

method, the radiologist compared the aligned reconstructed cross-sectional planes

on baseline and follow-up scans. The radiologist then selected the slice where the

airway had worsened when evaluated against the baseline scan. An example of both

protocols are displayed on Figure 5.5.

Figure 5.7 compares the predictions of our method with the labels from radiol-

ogists obtained in two different protocols. The results indicate that the predictions

for Airway 1, 3 and 4 are within the range of the radiologists’ labels. In the case

of Airway 2, although our method based on the maximum peak overestimates with

respect to the radiologists’ predictions, the posterior distribution contains another

equally probable peak that underestimates the radiologists’ labels (see the second

highest peak at 70mm), potentially indicating a more proximal point of dilatation.
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Airway PVC of Vc→d PVC of Vt→d PVC of Vc→t
1 2.6 % 32.9% 1.1%
2 3.2 % 129.7% 2.2%
3 2.6 % 47.4 % -0.3%
4 7.4 % 48.4 % 7.1%

Table 5.2: The percentage volume change (PVC %) for each region of the airway.

To test this, I delineated the boundary of the lumen on the reconstructed cross sec-

tional slices at baseline in the neighbouhood of this peak, and Figure 5.6 shows the

initial few slices (62-64mm). I observed that, when the delineated boundary from

baseline was superimposed on the follow-up scan, the boundary is contained inside

of the follow-up lumen with several lumen pixels are consistently outside from the

boundary. Thus, this result indicates that the starting point of dilatation is more

proximal than the labels from the radiologists.

To demonstrate the clinical utility of locating the starting point of airway di-

latation, I compared longitudinal airway volume changes in diseased and healthy

regions of each of the airway tracks. To find the volume of the airway, I considered

the aligned signals, fBase, fFoU p as defined in Section 5.4.1. These signals are mea-

surements of area against the airway arc length. Thus volume can be computed via

the area under the curve. For our work, I used the trapezium rule to find the volume.

Three volumetric regions were considered:

1. The entire airway Vc→d i.e. from the carina, c to the distal point, d.

2. The carina to the dilatation point t, denoted as Vc→t .

3. The dilatation point to the distal point, denoted by Vt→d .

Note that Vc→d = Vc→t ∪Vt→d and Vc→t does not overlap with Vt→d . Table 5.2,

shows the results of the percentage volume change. The volume change in Vt→d

had greater sensitivity for selecting progressive airway dilatation in IPF than the

volume change in the entire airway Vc→d .
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5.6 Discussion
In this paper, I modelled changes in area along airway tracks as a time series with the

purpose of detecting abnormal dilatation caused by IPF using Bayesian changepoint

detection. Experiments on simulated data show that our model is able to detect

the starting location of airway dilatation with superior accuracy than the relevant

baseline methods. The results on the IPF longitudinal dataset display reasonable

agreement with radiologists, while in one case indicating a more plausible location

of dilatation, potentially missed by the experts.

I aligned the transformed planar airways on follow up and baseline solely us-

ing the main bronchus and the area measurements. Various proposed methods in the

literature used bifurcation points [152] or orientation of the airways [153]. How-

ever, these methods are not possible under incomplete segmentations or airways that

are under a planar transformation. In terms of registration accuracy, my alignment

method allowed radiologists to compare the planar reconstructed airway in Section

5.5.2, examples of aligned airways are shown in Figure 5.6.

5.6.1 Limitation

In this experiment, the airways with traction bronchiectasis were chosen on an ad

hoc basis. The airways were chosen based on qualitative visual inspection by a

trained radiologist. From our knowledge, there is no detailed clinically accepted

quantification of the severity of traction bronchiectasis. Current studies use crude

visual inspection to quantified the severity and progression of traction bronchiecta-

sis [58].

5.7 Conclusion
Identifying changepoints and thereby calculating a change in airway dilatation over

time could become a sensitive measure of IPF aggravation. This would form an

important secondary endpoint in drug trials, where our measurements could indicate

whether a new drug ameliorates disease progression better than existing medications

[47]. In the future, I hope to evaluate such utility of our proposed method on a larger

cohort of IPF subjects. Furthermore, our method is applicable to other lung airway
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diseases, characterised by dilatation (such as cystic fibrosis) or other geometrical

deformations, and such extensions remain valuable future work.
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Chapter 6

Epilogue

6.1 Introduction
In this chapter, I summaries my contributions and propose future work. In this

thesis, I showed the following contributions: (i) A proposed tapering measurement

of the airway track with validation of accuracy and precision. (ii) An application

of airway modelling using Bayesian Changepoint Analysis to determine the wors-

ening of airway dilatation. The motivation is to provide computerized and robust

measurements on airways affected by bronchiectasis or IPF. The chapter is organ-

ised as follows: (i) Summary of my contributions (Sec. 6.2). (ii) Clinical impact

of my work (Sec. 6.3). (iii) Future work (Sec. 6.4). (iv) My closing remarks (Sec.

6.5).

6.2 Technical & Engineering Contributions
In this section, I present my technical and experimental contributions. They con-

cern the following: (i) Assessing the accuracy of my image processing pipeline

(Sec. 6.2.1). (ii) A tapering measuring and analysing its reproducibility against var-

ious acquisition parameters (Sec. 6.2.2). (iii) A novel application of the Bayesian

Changepoint analysis to monitor progression of traction bronchiectasis (Sec. 6.2.3).

6.2.1 Accuracy of Pipeline

In this thesis, I proposed a pipeline to measure the cross-sectional areas along the

airway track. Given an airway segmentation and labelled distal points, the pipeline
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outputs a function of contiguous cross-sectional areas against the arclength of the

airway. My contribution is a detailed validation of the accuracy of area measure-

ments at contiguous intervals on phantoms on a clinical scanner.

In the experiment, I present two novelties for assessing the accuracy of airway

lumen quantification: First, measuring the area at contiguous intervals along the 3D

printed tubes. Second, I assessed the pipeline on phantoms with changes in diameter

along the vessel. Previous experiments in the literature consist of measuring the

phantom lumen at single or sparse intervals or on tubes with fixed diameters [117,

118].

My results showed the pipeline can measure to sub-voxel accuracy. In addition,

the pipeline can detect changes in area along the airway lumen. The results can

be used to infer the accuracy during post processing of measurements, such as to

generate a tapering measure.

6.2.2 Tapering Measurement

I proposed a novel tapering measure to quantify the change in area along the airway

track. The measurement is defined as the gradient of the linear regression between

logarithmic area and arclength. The proposed measurement considers the entire air-

ways track thus encapsulating all abnormal airway morphologies. My contribution

is to show the tapering measurement gives a statistical difference between a set of

healthy and bronchiectatic airways. Furthermore, I show the relationship between

the precision of my proposed measurement and imaging parameters such as dose,

voxel size and CT reconstruction. My results provide important calibration infor-

mation for future clinical trials using my measurements.

6.2.3 Locating Abnormal Tapering

My contribution is introducing a novel application of Bayesian changepoint detec-

tion to identify the progression of dilatation along an airway track. The technical

novelty involves modelling the change in cross-sectional area as a 1D signal and in-

terpreting a progressive dilatation as a changepoint. Finally, we compute the volume

change in the identified dilatated region – this is a novel interpretation of progres-
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sion of traction bronchiectasis.

In terms of experimentation, I implemented a proof of principle validation us-

ing simulated and clinical data. The results showed an accuracy of locating dilata-

tion to 2.5mm. Furthermore, on clinical data, the start of dilatation were in range or

more proximal than the radiologists label. The method is technologically advance

than the state of the art of monitoring IPF progression via visual inspection [154].

6.3 Clinical Impact
In this section, I discuss the possible impacts of my work on two airway diseases:

bronchiectasis (Sec. 6.3.1) and IPF (Sec. 6.3.2).

6.3.1 Bronchiectasis

Bronchiectasis is a heterogeneous disease, the spatial location and magnitude of

dilatation can vary between patients. Current severity and longitudinal analysis of

bronchiectasis in CT images such as in McDonnell et al. [41] involves the use

a variation of the Bhalla score [37]. The scoring system does not consider the

dilatation of individual airways. Thus, possibly failing to detect subtle localised

changes caused by the disease.

My work provides a computerized method to monitor airway dilatation caused

by bronchiectasis for clinical research. Features that are included in the Bhalla

score such as airway wall thickening, or mucus may not appear on every patient.

By measuring explicitly the tapering of the airways, I can potentially relate the

physical dilatation of the airway with frequency of exacerbation or mortality.

6.3.2 IPF

A principle feature in patients with IPF is traction bronchiectasis; the dilatation of

the airways caused by contraction of fibrosing connective tissue. To my knowledge,

there are no medical image computing methods that quantifies solely the progres-

sion of traction bronchiectasis across longitudinal scans. For my work, we quan-

tified progression of IPF by the volume change of the diseased region. A possible

impact is informing researchers of any anatomical processes in the dilatation of the
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airways, possibly leading to improved understanding of the mechanisms of thera-

peutic agents. For example, the drug Nintedanib has proven effective at slowing

progression of IPF. However, the drug was originally developed for cancer [155].

6.4 Future Work
In this section, I discuss possible future experiments from ideas proposed in this

thesis. In Section 6.4.1 & 6.4.2, I discuss improvements and modifications to my

proposed image analysis algorithms. In Section 6.4.3 & 6.4.4 I discuss possible

future work combining my imaging measurement with other clinical data.

6.4.1 Applying Bayesian Changepoint Detection to Bronchiectatic

Airway

From the review by Cantin et al. [101], the appearance of bronchiectasis can be

classified as cylindric, varicose and cystic. The appearance can be distinguished by

changes in cross sectional area along the centreline of the airways. For example,

varicose bronchiectasis is characterised as a string of pearls appearance, cylindric

bronchiectasis is characterised as a lack of tapering. Finally, cystic bronchiectasis

is characterised as isotropic expansion of the airways.

In Chapter 5, I proposed a machine learning algorithm called Bayesian

Changepoint Detection to determine changes in distribution of cross-sectional areas.

The proposed method was applied to airways affected by IPF. I believe the methods

can be applied to airways with bronchiectasis. I hypothesise that the appearance of

cylindric, varicose and cystic bronchiectasis will display distinct changes of cross

section areas along the arc length of the airway. Thus, the number and location

of changepoints can be clustered to a particular appearance of bronchiectasis. The

impact will be to quantify phenotypes of bronchiectasis.

In addition, Bayesian Changepoints Detection can locate possible dilatation

along the airway. Thus, enabling topological analysis of bronchiectasis for example

where the abnormal dilatation are at the proximal region of the lungs. The topol-

ogy and location of bronchiectasis is clinical relevant for example the presentation

of fungal lung disease; aspergillosis is characterise by proximal airway dilatation
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[156]. Thus, topological information of bronchiectasis could be used a phenotype

of the disease.

6.4.2 Applicability of Tapering Measurement to Clinical Studies

Patients with bronchiectasis in a clinical setting may have other pulmonary abnor-

malities such mucus plugging and collapsed lung [38]. These features can perturb

the intensity of the CT image leading to image processing algorithms outputting

spurious results. Thus, for any proposed image analysis algorithm to be applicable

for clinical studies, one would have to consider the robustness of the algorithms to

a wide range of anatomical abnormalities.

In Chapter 2, I proposed an airway tapering measurement to quantify

bronchiectasis. My tapering measurement were taken from airway lumen with-

out mucus. Thus, my tapering measurement can only be applied to ideal cases of

bronchiectasis, making the measurement unsuitable for clinical studies. A possible

future work would adapt the pipeline to measure airway lumen with mucus. Thus,

the tapering measurement can be used on a wider range of patients.

Another obstacle for applicability of my tapering measurement is the use of

manual segmentation of the airways thus, restricting evaluations to a small sample

size. The state of art deep learning algorithms can only consistently segment air-

ways to the fourth generation [102]. However, there is clinical interest in analysing

proximal bronchiectasis [156]. Thus an approach to make my tapering measure-

ment clinically viable would be to modify the tapering measurement to consider a

shorter arc length.

6.4.3 The Efficacy of Partitioned Volume Change for IPF Pro-

gression

It has been shown that two drugs; Nintedanib and Pirfenidone are proven to be

effective at slowing progression of IPF compared to placebo [50, 49]. However,

there has been no head to head study to compare the comparative efficacy [47]. The

clinical metrics used to quantify IPF progression in drug trials are lung function,

walking distance and mortality [50, 49]. However, no imaging information has
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been used for quantification of IPF progression. My proposed future work would

apply the Bayesian changepoint on longitudinal scans for a head to head drug trials.

The hypothesis being volume changes in the dilated regions are a more sensitive

measure of progression. Thus, providing an alternative clinical end point.

6.4.4 Linking Frequency of Bronchiectatic Exacerbation with

Tapering

It has been acknowledged that the number of exacerbations per year can predict the

future risk of mortality [100]. The suggested work combines the tapering measure-

ment with the history of the exacerbations. To proceed, I assume the availability of

a dataset of bronchiectatic CT images with an associated number of exacerbations

within a year. By exhaustively collecting the entire tapering values in the lungs, I

can represent dilatations in an airway tree as a distribution of tapering values. Pa-

rameters in the distribution such as mean and standard deviation can be related to

the frequency of exacerbation. My hypothesis is there is a relationship between

the frequency of exacerbations and both in the number of enlarged airways and the

magnitude of dilatation. Thus, there will be a difference in distribution parameters

in patients that suffer frequent exacerbations compared to controls. The impact is

the possibility of informing clinicians the likelihood if patient is at risk of an exac-

erbation based on CT images.

6.5 Conclusions
In this thesis, I developed methods to quantify and locate dilatation of airways in the

lungs on CT. The motivation is to assist clinicians on assessing two diseases. First,

to quantify airways affected by bronchiectasis. Second, to assess the progression of

IPF by quantifying the change in traction bronchiectasis. I have used state of the art

algorithms to measure the area of the airway lumen at contiguous intervals. In terms

of experiments, I performed detailed validation of the repeatability and accuracy of

my image processing pipeline. In addition, I show a proof of principle assessment

of the accuracy and clinical utility of locating the point of increased dilatation on

airways with IPF.



Appendix A

Reversible Jump Metropolis Hasting

(RJMH)

A.1 Contribution
The entire contents of this chapter were developed and implemented by M Duong.

A.2 Introduction
As mentioned in Section 5.4.3, I am required to find a solutions to the following

posterior distribution; p(τ|y). Where y = (y1, . . . ,yn) is the ordered area measure-

ment, τ = (τ1, . . . ,τn) is the changepoint location, M is the number of changepoints,

θ = (θ1, . . . ,θn) are the segment parameters and for each θi = (νl,µl,σl) are the

Student t distribution parameters.

A.3 Method Overview
The Reversible Jump Metropolis Hasting (RJMH) proceeds by randomly executing

one of four possible moves, denoted as gi at each iteration:

1. Resample parameters θ , gθ .

2. Move an existing changepoint, gτ .

3. Add a new changepoint, gM→M+1.

4. Delete an existing changepoint, gM+1→M.
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I also define the maximum number of changepoints kmax and at the boundary

cases for k, I impose restrictions such that gM→M+1,gM+1→M are skipped for k =

0,kmax respectively. Each move updates the appropriate subset of parameters θ ,τ

by sampling from the corresponding distributions q(θnew|θold) and q(τnew|τold), and

is only executed if it passes the associated acceptance criteria α .

A.3.1 Metropolis Hasting Steps

For gθ , I set q(θnew|θold)= (µold,σ
2
old,νold)+N(0,ε). This step resamples parame-

ters of each segment by proposing Gaussian perturbations around the current values

of parameters for all segments.

For gτ , I set q(τnew|τold) = τold +(−1)bPoi(λ ) where b ∼Binary[0,1]. This

step selects a changepoint τ at random and shifts it with a Poisson perturbation. The

segments neighbouring this new changepoint location have parameters θ resampled

as in move gθ using the current segment parameters.

A.3.2 Reversible Jump Steps

For gM→M+1, I proposed random new changepoints over our data, τnew ∼U[1,n−

1]. The proposed τnew split an existing segment into a new left segment θl =

(µl,σ
2
l ,νl) and new right segment θr = (µr,σ

2
r ,νr). Our proposal for µi,σ

2
i are

defined by a Gaussian perturbation on empirical values of the respective i = l,r

segments (Fig. A.1). The proposal for νi, is Gaussian perturbation of the previous

update νold . Due to dependence of the νi proposal, a Jacobian term is introduced

|JM→M+1|= 2.

For gM+1→M, I remove a changepoint τnew. As before, proposals for µnew,σ
2
new

are defined using empirical values of the segments and Gaussian perturbation (Fig.

A.1). The proposal for νnew is the mean of the previous νl,νr. The move introduces

Jacobian term |JM+1→M|= 0.5.

A.3.3 Parameters Choice & Implementation

With the algorithm now defined in detail, I close out this methodology with the

choice of priors used. The prior for the given data set (simulated and airway) is

given as follows: µ ∼ N(0,1), σ2 ∼ Scaled-Inv-χ2(5,0.42), ν ∼ U[2,100] and
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τi τi+1 τi τnew τi+1

gM→M+1

q(µl|µold) = yl + N(0, ε2)

q(σ2l |σ
2
old) = s2l + N(0, ε2)

q(νl|νold) = νold + u

q(µr|µold) = yr + N(0, ε2)

q(σ2r |σ
2
old) = s2r + N(0, ε2)

q(νr|νold) = νold − u

gM+1→M

τnew

q(µnew|µl, µr) = yl∪r+N(0, ε2)

q(σ2new|σ
2
l , σ

2
r) = s2l∪r+N(0, ε2)

q(νnew|νl, νr) = (νl + νr)/2

Figure A.1: A schematic diagram describing the proposals moves gM→M+1,gM+1→M.
Note that u ∼ N(0,ε2) and yi,s2

i are the mean and variance respectively of
data within the coloured segment.

M ∼ Bin(n− 1, 0.5
n−1). The hyper-parameters for µ,σ2,ν were chosen to be non-

informative and within plausible ranges. In order to reduce the number of change

points I could detect (in the case of acquisition noise), I set the expectation for M to

be sufficiently low.

With the model defined, I address some common implementation techniques.

I follow a standard procedure of setting a burn-in for the number of iterations to

ignore any potential issues with intialisation at approximately 25% of the total iter-

ation count. To remove any chance of auto-correlation, I thin the number of samples

by only storing the 5th iteration, after the burn-in period.
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Algorithm 4 RJMH Changepoint Detection [147].
Data: Single airway time series data, y = (y1, . . . ,yn)
Model Parameters: M = # changepoints, θ = segment parameters, τ= changepoint location
RJMCMC Parameters: N = iterations, B = burn-in, T = Thinning
Initialisation: Set s = (M,θ ,τ)
Initialise set s with no changepoints and empirical segment parameters
for N iterations do

Sample gi ∼ Uniform{gθ ,gτ ,gM→M+1,gM+1→M}
if gi =gθ then

MH-step (1): Resample Segment Parameters
Resample θnew ∼ q(θnew|θ) for each segment

Compute acceptance ratio: α = min

{
1, p(y|τ,θnew,M)

p(y|τ,θ ,M)
p(θnew)

p(θ)
q(θ |θnew)
q(θnew|θ)

}
Generate β ∼ Uniform[0,1]
if β ≥ α then

Accept new state
s = (M,θnew,τ)

end if
else if gi =gτ then

MH-step (2): Move changepoint
Move a changepoint τnew ∼ q(τnew|τ) and propose new segment parameters θnew ∼ q(θnew|θ)

Compute acceptance ratio: α = min

{
1, p(y|τnew,θnew,M)

p(y|τ,θ ,M)
p(θnew)

p(θ)
q(τ|τnew)
q(τnew|τ)

q(θ |θnew)
q(θnew|θ)

}
Generate β ∼ Uniform[0,1]
if β ≥ α then

Accept new state
s = (M,θnew,τnew)

end if
else if gi =gM→M+1 then

RJ-step (3): Add changepoint
Propose new changepoint Mnew as τnew and propose new segment parameters θnew
Compute acceptance ratio

α = min

{
1,

p(y|τnew,θnew,Mnew)

p(y|τ,θ ,M)

p(τnew)p(θnew)p(Mnew)

p(τ)p(θ)p(M)

q(τ|τnew)

q(τnew|τ)
q(θ |θnew)

q(θnew|θ)
q(M|Mnew)

q(Mnew|M)
|JM→M+1|

}

where |JM→M+1|= 2 and q(Mnew|M) is symmetrical to q(M|Mnew).
Generate v∼ Uniform[0,1]
if v≥ α then

Accept new state
s = (Mnew,θnew,τnew)

end if
else if gi =gM+1→M then

RJ-step (4): Delete changepoint
Delete a changepoint Mnew as τnew and propose new segment parameters θnew
Compute acceptance ratio

α = min

{
1,

p(y|τnew,θnew,Mnew)

p(y|τ,θ ,M)

p(τnew)p(θnew)p(Mnew)

p(τ)p(θ)p(M)

q(τ|τnew)

q(τnew|τ)
q(θ |θnew)

q(θnew|θ)
q(M|Mnew)

q(Mnew|M)
|JM+1→M |

}

where |JM+1→M |= 1
2 and q(Mnew|M) is symmetrical to q(M|Mnew).

Generate v∼ Uniform[0,1]
if v≥ α then

Accept new state
s = (Mnew,θnew,τnew)

end if
end if

end for
Remove first B samples and keep every T th sample
Return: {s}T

t=1
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Summary of Publications

B.1 Journal Paper

• K Quan, R Tanno, R J Shipley, J S Brown, J Jacob, J R Hurst, D J Hawkes

“Reproducibility of an airway tapering measurement in computed tomogra-

phy with application to bronchiectasis” In Journal of Medical Imaging, 2019.

Abstract: We propose a pipeline to acquire a scalar tapering measurement

from the carina to the most distal point of an individual airway visible on

computed tomography (CT). We show the applicability of using tapering

measurements on clinically acquired data by quantifying the reproducibil-

ity of the tapering measure. We generate a spline from the centerline of an

airway to measure the area and arclength at contiguous intervals. The ta-

pering measurement is the gradient of the linear regression between area in

log space and arclength. The reproducibility of the measure is assessed by

analyzing different radiation doses, voxel sizes, and reconstruction kernel on

single timepoint and longitudinal CT scans and by evaluating the effect of

airway bifurcations. Using 74 airways from 10 CT scans, we show a sta-

tistical difference, p = 3.4×10−4 in tapering between healthy airways (n =

35) and those affects by bronchiectasis (n = 39). The difference between the

mean of the two populations is 0.011mm−1, and the difference between the

medians of the two populations is 0.006mm−1. The tapering measurement
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retains a 95% confidence interval of ±0.005mm−1 in a simulated 25mAs

scan and retains a 95% confidence of ±0.005mm−1 on simulated CTs up to

1.5 times the original voxel size. We have established an estimate of the pre-

cision of the tapering measurement and estimated the effect on precision of

the simulated voxel size and CT scan dose. We recommend that the scanner

calibration be undertaken with the phantoms as described, on the specific CT

scanner, radiation dose, and reconstruction algorithm that are to be used in

any quantitative studies.

B.2 Conference Proceedings

• K Quan, R J Shipley, R Tanno, G McPhillips, V Vavourakis, D Edwards, J

Jacob, J R Hurst, D J Hawkes, “Tapering analysis of airways with bronchiec-

tasis.” In Proceedings of SPIE, 2018.

Abstract: Bronchiectasis is the permanent dilation of airways. Patients with

the disease can suffer recurrent exacerbations, reducing their quality of life.

The gold standard to diagnose and monitor bronchiectasis is accomplished

by inspection of chest computed tomography (CT) scans. A clinician exam-

ines the broncho-arterial ratio to determine if an airway is brochiectatic. The

visual analysis assumes the blood vessel diameter remains constant, although

this assumption is disputed in the literature. We propose a simple measure-

ment of tapering along the airways to diagnose and monitor bronchiectasis.

To this end, we constructed a pipeline to measure the cross-sectional area

along the airways at contiguous intervals, starting from the carina to the most

distal point observable. Using a phantom with calibrated 3D printed struc-

tures, the precision and accuracy of our algorithm extends to the sub voxel

level. The tapering measurement is robust to bifurcations along the airway

and was applied to chest CT images acquired in clinical practice. The result

is a statistical difference in tapering rate between airways with bronchiectasis

and controls.
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• K Quan, R Tanno, M Duong, A Nair, R Shipley, M Jones, C Brereton, J

Hurst, D Hawkes, J Jacob, “Modelling Airway Geometry as Stock Market

Data using Bayesian Changepoint Detection”, In 10th International Work-

shop on Machine Learning in Medical Imaging, 2019.

Abstract: Numerous lung diseases, such as idiopathic pulmonary fibrosis

(IPF), exhibit dilation of the airways. Accurate measurement of dilatation

enables assessment of the progression of disease. Unfortunately the com-

bination of image noise and airway bifurcations causes high variability in

the profiles of cross-sectional areas, rendering the identification of affected

regions very difficult. Here we introduce a noise-robust method for auto-

matically detecting the location of progressive airway dilatation given two

profiles of the same airway acquired at different time points. We propose a

probabilistic model of abrupt relative variations between profiles and perform

inference via Reversible Jump Markov Chain Monte Carlo sampling. We

demonstrate the efficacy of the proposed method on two datasets; (i) images

of healthy airways with simulated dilatation; (ii) pairs of real images of IPF-

affected airways acquired at 1 year intervals. Our model is able to detect the

starting location of airway dilatation with an accuracy of 2.5mm on simulated

data. The experiments on the IPF dataset display reasonable agreement with

radiologists. We can compute a relative change in airway volume that may be

useful for quantifying IPF disease progression.

B.3 Conference Abstract

• K Quan, J Jacob, R J Shipley, D J Hawkes, J R Hurst, “Airway tapering

in bronchiectatic and healthy airways.” European Respiratory Journal, 52:

Suppl. 62, OA3793, 2018.

Abstract:

Introduction: Bronchiectasis is the permanent dilatation of airways. The
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gold standard for diagnosing bronchiectasis is increased broncho-arterial

diameter ratio on CT. Increase in ratio assumes that the pulmonary artery

remains constant. This assumption is disputed (Diaz, A.A. et al. Chest 2017

Jun, 151(6):1255-1262).

Aim: We show a statistical difference in the tapering measurement between

a radiologically healthy airway and a bronchiectatic airway. The tapering

measurement is independent of blood vessel and lobar location.

Methods: A pipeline was constructed to measure the cross-sectional lu-

men at contiguous intervals along the centreline from the carina to the most

distal point visible on CT. The output is a scalar value describing the expo-

nential decay of area as a function of distance along the airway. We applied

the pipeline to a group of 35 healthy and 39 bronchiectatic airways identified

by an expert radiologist. We then applied the pipeline to 14 pairs of healthy

airways from paired longitudinal scans taken at least 5 months apart.

Results: The first experiment showed bronchiectatic airways have a reduc-

tion in taper rate (mean 3.17×10−2 vs. 2.11×10−2/mm, p = 7.1×10−7). The

second experiment shows a good agreement with ICC > 0.99 between the

two sets and standard deviation of the tapering difference is 1.45×10−3/mm.

Conclusions: We present a proof of principle study that tapering rate in

a bronchiectatic airway is different to healthy airways and that healthy air-

ways do not differ over time. Our technique provides the potential for use

in the diagnosis of bronchiectasis, and the assessment of progression of

bronchiectasis over time.
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rence Le Maulf, Mannaı̈g Girard, Susanne Stowasser, Rozsa Schlenker-

Herceg, Bernd Disse, and Harold R. Collard. Efficacy and safety of

nintedanib in advanced idiopathic pulmonary fibrosis. New England Jour-

nal of Medicine, 370(22):2071–2082, 2014.

[50] Talmadge E. King, Williamson Z. Bradford, Socorro Castro-Bernardini,

Elizabeth A. Fagan, Ian Glaspole, Marilyn K. Glassberg, Eduard Gorina,

Peter M. Hopkins, David Kardatzke, Lisa Lancaster, David J. Lederer,

Steven D. Nathan, Carlos A. Pereira, Steven A. Sahn, Robert Sussman, Jef-

frey J. Swigris, and Paul W. Noble. A Phase 3 Trial of Pirfenidone in Patients

with Idiopathic Pulmonary Fibrosis. New England Journal of Medicine,

370(22):2083–2092, 2014.

[51] Kathleen O. Lindell, Zhan Liang, Leslie A. Hoffman, Margaret Q. Rosen-

zweig, Melissa I. Saul, Joseph M. Pilewski, Kevin F. Gibson, and Naftali

Kaminski. Palliative care and location of death in decedents with idiopathic

pulmonary fibrosis. Chest, 147(2):423–429, 2015.

[52] Christopher S. King and Steven D. Nathan. POINT: Should All Patients

With Idiopathic Pulmonary Fibrosis, Even Those With More Than Moder-

ate Impairment, Be Treated With Nintedanib or Pirfenidone? Yes. Chest,

150(2):273–275, 2016.

[53] D A Lynch, N Sverzellati, W D Travis, K K Brown, T V Colby, J R Galvin,

J G Goldin, D M Hansell, Y Inoue, T Johkoh, A G Nicholson, S L Knight,

S Raoof, L Richeldi, C J Ryerson, J R Ryu, and A U Wells. Diagnostic Cri-

teria for Idiopathic Pulmonary Fibrosis: A Fleischner Society White Paper.

The Lancet Respiratory, 6:138–153, 2018.



BIBLIOGRAPHY 124

[54] Joseph Jacob and David M. Hansell. HRCT of fibrosing lung disease.

Respirology, 20(6):859–872, 2015.

[55] David A. Lynch, J. David Godwin, Sharon Safrin, Karen M. Starko, Phil

Hormel, Kevin K. Brown, Ganesh Raghu, Talmadge E. King, Williamson Z.

Bradford, David A. Schwartz, and W. Richard Webb. High-resolution

computed tomography in idiopathic pulmonary fibrosis: Diagnosis and

prognosis. American Journal of Respiratory and Critical Care Medicine,

172(4):488–493, 2005.

[56] Joseph Jacob, Brian J. Bartholmai, Ryoko Egashira, Anne Laure Brun, Srini-

vasan Rajagopalan, Ronald Karwoski, Maria Kokosi, David M. Hansell, and

Athol U. Wells. Chronic hypersensitivity pneumonitis: Identification of key

prognostic determinants using automated CT analysis. BMC Pulmonary

Medicine, 17(1):1–12, 2017.

[57] Fabien Maldonado, Teng Moua, Srinivasan Rajagopalan, Ronald A Kar-

woski, Sushravya Raghunath, Paul A Decker, Thomas E Hartman, Brian J

Bartholmai, Richard A Robb, and Jay H Ryu. Automated quantification of

radiological patterns predicts survival in idiopathic pulmonary fibrosis. Eu-

ropean Respiratory Journal, pages 204–212, 2014.

[58] Joseph Jacob, Brian J. Bartholmai, Srinivasan Rajagopalan, Maria Kokosi,

Ryoko Egashira, Anne Laure Brun, Arjun Nair, Simon L.F. Walsh, Ronald

Karwoski, and Athol U. Wells. Serial automated quantitative CT analysis in

idiopathic pulmonary fibrosis: functional correlations and comparison with

changes in visual CT scores. European Radiology, 28(3):1318–1327, 2018.

[59] Joseph Jacob, Brian J. Bartholmai, Srinivasan Rajagopalan, Maria Kokosi,

Arjun Nair, Ronald Karwoski, Sushravya M. Raghunath, Simon L. Walsh,

Athol U. Wells, and David M. Hansell. Automated quantitative computed

tomography versus visual computed tomography scoring in idiopathic pul-



BIBLIOGRAPHY 125

monary fibrosis validation against pulmonary function. Journal of Thoracic

Imaging, 31(5):304–311, 2016.

[60] Daniel Y. Chong, Pechin Lo, Stefano Young, Michael F. McNitt-Gray, Fer-

eidoun Abtin, Jonathan G. Goldin, Matthew S. Brown, and Hyun J. Kim.

Robustness-Driven Feature Selection in Classification of Fibrotic Interstitial

Lung Disease Patterns in Computed Tomography Using 3D Texture Features.

IEEE Transactions on Medical Imaging, 35(1):144–157, 2016.
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