156 research outputs found

    Micro-nano structured electro-optic devices in LiNbO3 for communication and sensing

    Get PDF
    A material that is enabling integrated optics is the ferroelectric crystal Lithium Niobate (LiNbO3), which has excellent electro-optical, acousto-optical and nonlinear optical properties. Moreover, it can be doped with laser-active ions and allows for simple fabrication of low-loss optical waveguides. The broad aim of this work is to develop and introduce advanced micro- and nano-fabrication techniques for LiNbO3 and a new class of integrated based telecommunication and sensing devices. The techniques developed include precise micro-domain inversion, etching, bonding and thin film fabrication. From a device point of view, domain inversion is used to improve the electro-optic response of LiNbO3 waveguide modulators in terms of bandwidth and driving voltage. With respect to standard single-domain structures, larger bandwidths and lower driving voltages can be obtained, thus achieving figure of merits for the electro-optic response that are up to 50% larger. As a demonstration, a chirp-free modulator, having ~2V switching voltage and bandwidth of 15 GHz, was fabricated by placing the waveguide arms of a Mach-Zehnder interferometer in opposite do- main oriented regions. The modulator could be driven in a single-drive configuration with inexpensive low-voltage drivers, e.g. a SiGe based RF amplifier, typically used for electro-absorption devices. A further aspect of this work focuses on the development of devices for the precise measurement of strong electric fields, which are typically generated in power stations and transmission lines. Therefore, two new integrated electric field sensors are proposed, each of which exploits the aforementioned micro-fabrication techniques. The first device is based on a proton-exchange waveguide at cut-off, centered on a few microns wide domain-inverted region in a z-cut LiNbO3 substrate. The sensor’s performance is demonstrated by detecting DC fields up to 2.6 MV/m and high-frequency (1.1 GHz) fields ranging from 19 V/m to 23 kV/m. The second proposed device is fabricated by direct bonding a z-cut LiNbO3 substrate on top of a cut-off proton-exchanged waveguide centered on the domain-inverted region. It is possible to detect electric fields as high as 2 MV/m at low frequency with improved sensitivity compared to the previous device. These features make the devices suitable for use in high electric field and harsh conditions without endangering the operator. The conclusions section of the Thesis presents possible future developments which will contribute to increase the impact of the work in the optical telecommunication and sensing industries. After a brief introduction, the second chapter describes the basic properties of the material used in the thesis work: Lithium Niobate (LiNbO3). This includes the properties related to its ferroelectric crystal structure and the subsequent applications. Chapter three presents the micro-fabrication techniques, over 3 inch LiNbO3 wafers, developed at ICFO during this work. The chapter begins with a description of waveguides fabrication by Annealed Proton Exchange (APE). The mid-part of the chapter outlines the fabrication procedure for domain inversion using electric field poling technique and liquid electrodes while the last part describes the bonding technique to permanently join LiNbO3 with different substrates, namely Si, SiO2 and another LiNbO3. Moreover, lapping and polishing techniques for thin plate fabrication are presented. The forth chapter firstly introduces the fundamentals and main characteristics of travelling-wave LiNbO3 Mach-Zehnder modulators. Secondly, a new modulator design is proposed. It is based on domain inverted LiNbO3, with improved performance with respect to existing devices. The modulator characterization and the results obtained from the new design are presented. The chapter five begins with a literature review about DC and low frequency electric field optical sensors. Afterwards, two novel all-optical electric field sensors are presented. Both devices are based on a proton-exchange, domain inversion and bonding techniques. The sensors characterization, including the test set-up and the performance results are discussed. Finally, in chapter six, several conclusions on the thesis work and possible future work directions are presented.Uno de los materiales que permite el avance de la tecnología de dispositivos ópticos integrados es el niobato de litio (LiNbO3). Se trata de un cristal ferro-eléctrico, con excelentes propiedades electro-ópticas, acusto-ópticas y no lineales. Además, es posible fabricar guías de onda de bajas pérdidas mediante las técnicas de intercambio protónico (PE) y difusión de titanio. El objetivo principal de este trabajo es el desarrollo y la introducción tanto de las técnicas avanzadas de micro-nano fabricación para el niobato de litio como de nuevos dispositivos ópticos integrados para las comunicaciones ópticas y la detección de campo eléctricos de alto voltaje. La técnicas de fabricación desarrolladas incluyen inversión de dominios mediante la técnica de poling de alto voltaje, grabado, bonding y capas delgadas. Desde el punto de vista de los dispositivos, la inversión de dominios ha sido utilizada para mejorar la respuesta electro-óptica de los moduladores en LiNbO3 en términos de ancho de banda (BW) y voltaje de control (Vπ). En comparación con los moduladores comerciales actuales de un único dominio, con esta técnica es posible obtener mayores anchos de banda y menores voltajes de control resultando en un aumento del 50% del producto BW·Vπ. Para demonstrar la eficacia de la técnica desarrollada, se ha fabricado un modulador Mach-Zehnder chirp-free poniendo los brazos del interferómetro en dos regiones de dominios opuestos. De las mediciones efectuadas se han obtenidos valores de voltaje de control de 2V y ancho de banda de 15 GHz. Estos resultados muestran que los dispositivos desarrollados pueden reducir el coste total de funcionamiento, ya que permiten el uso de controladores económicos de Si-Ge que operan en el rango de los 2V. Otro aspecto de este trabajo se enfoca en el desarrollo de dispositivos para medir, de forma exacta, altos campos eléctricos, que normalmente son generados en las centrales eléctricas y en las líneas de transmisión. Por este motivo, se han desarrollado dos sensores de campo eléctrico mediante las técnicas de micro-fabricación anteriormente mencionadas. El primer dispositivo está basado en una guía fabricada mediante intercambio protónico en LiNbO3 z-cut, diseñada a la frecuencia de corte y centrada en una región de dominio invertido de 10 micras de ancho y 10mm de largo. El rendimiento del dispositivo se ha demostrado detectando campos a baja frecuencia con amplitudes de hasta 2.6MV/m y campos a la frecuencia de 1.1GHz con amplitudes desde 19V/m hasta 23kV/m. El segundo dispositivo se ha fabricado mediante bonding directo de un sustrato de LiNbO3 encima de una guía PE diseñada a la frecuencia de corte y centrada en una región de dominio invertido de 10 micras de ancho y 10mm de largo. El dispositivo se ha caracterizado a baja frecuencia y ha sido posible medir campos eléctricos de hasta 2MV/m con un aumento de sensibilidad comparado con el primer dispositivo fabricado sin la técnica del bonding. Estos resultados muestran que los dispositivos desarrollados pueden ser utilizados para mediciones de campos eléctricos intensos en condiciones peligrosas sin ningún riesgo para el operador. Después de una breve introducción en el Capítulo 1 de esta Tesis, las propiedades del LiNbO3 se discuten en el Capítulo 2, prestando especial atención a sus características ópticas y electro-ópticas. El Capítulo 3 presenta las técnicas de micro fabricación desarrolladas durante este trabajo sobre sustratos de 3 pulgadas. En particular, se presentan las técnicas de fabricación de guías mediante intercambio protónico, de inversión de dominios mediante poling de alto voltaje, de bonding de LiNbO3 con diferentes sustratos (LiNbO3 , SiO2, Si) y la fabricación de capas delgadas. El Capítulo 4 ofrece una introducción sobre los moduladores interferométricos Mach-Zehnder de onda propagada, presentando sus principales características. Además se presenta una nueva estructura de modulador basada sobre inversión de dominios y los resultados obtenidos. El Capítulo 5 empieza con una introducción sobre los sensores de campo eléctrico y después se presentan dos nuevos sensores de campo eléctrico completamente ópticos fabricados en LiNbO3 z-cut. Los dispositivos están basados en las técnicas de intercambio protónico, inversión de dominios y bonding directo. Finalmente, en el Capítulo 6 se presentan las conclusiones y posibles desarrollos futuros que pueden contribuir al aumento del impacto de este trabajo en las industrias de comunicaciones ópticas y de detección

    Advanced Optical Modulator Based on Integrated Mach-Zehnder Interferometer

    Get PDF
    早大学位記番号:新7526早稲田大

    Integrated widely tunable laser systems at 1300 and 1550 nm as swept sources for optical coherence tomography

    Get PDF

    Integrated widely tunable laser systems at 1300 and 1550 nm as swept sources for optical coherence tomography

    Get PDF

    Electro-optically Tunable Microring Resonators for Non-Linear Frequency Modulated Waveform Generation

    Get PDF
    Microring resonators are a fundamental building block for integrated optical filters, and have both modulation and waveform generation applications. A hybrid chalcogenide (As2S3) on titanium diffused (Ti:LiNbO3) waveguide platform has been developed to realize tunable microring resonators on a lithium niobate (LiNbO3) substrate. The use of a LiNbO3 substrate allows for electro-optic tuning, which is demonstrated for the first time on an As2S3 guided optical mode. While optical modes confined in diffused waveguides are commonly electro-optically tuned, the use of a rib waveguide external to the substrate poses new design challenges. Simulation work to determine the optimum electrode design was carried out, while also taking into account the limitations of working with a low melting temperature chalcogenide material. The tuning of this hybrid As2S3 on Ti:LiNbO3 device structure is demonstrated with fabricated Mach-Zehnder interferometers and ring resonators. Electro-optic tuning of the TM polarization utilizing the r13 LiNbO3 tuning coefficient is shown, yielding results that show an improvement over previous tunable LiNbO3 microring resonators. Simulations are also carried out to show the waveform generating capabilities of this hybrid device platform

    Optical code-division multiple access system and optical signal processing

    Get PDF
    This thesis presents our recent researches on the development of coding devices, the investigation of security and the design of systems in the optical cod-division multiple access (OCDMA) systems. Besides, the techniques of nonlinear signal processing used in the OCDMA systems fire our imagination, thus some researches on all-optical signal processing are carried out and also summarized in this thesis. Two fiber Bragg grating (FBG) based coding devices are proposed. The first coding device is a superstructured FBG (SSFBG) using ±π/2-phase shifts instead of conventional 0/π-phase shifts. The ±π/2-phase-shifted SSFBG en/decoders can not only conceal optical codes well in the encoded signals but also realize the reutilization of available codes by hybrid use with conventional 0/π-phase-shifted SSFBG en/decoders. The second FBG based coding device is synthesized by layer-peeling method, which can be used for simultaneous optical code recognition and chromatic dispersion compensation. Then, two eavesdropping schemes, one-bit delay interference detection and differential detection, are demonstrated to reveal the security vulnerability of differential phase-shift keying (DPSK) and code-shift keying (CSK) OCDMA systems. To address the security issue as well as increase the transmission capacity, an orthogonal modulation format based on DPSK and CSK is introduced into the OCDMA systems. A 2 bit/symbol 10 Gsymbol/s transmission system using the orthogonal modulation format is achieved. The security of the system can be partially guaranteed. Furthermore, a fully-asynchronous gigabit-symmetric OCDMA passive optical network (PON) is proposed, in which a self-clocked time gate is employed for signal regeneration. A remodulation scheme is used in the PON, which let downstream and upstream share the same optical carrier, allowing optical network units source-free. An error-free 4-user 10 Gbit/s/user duplex transmission over 50 km distance is reazlied. A versatile waveform generation scheme is then studied. A theoretical model is established and a waveform prediction algorithm is summarized. In the demonstration, various waveforms are generated including short pulse, trapezoidal, triangular and sawtooth waveforms and doublet pulse. ii In addition, an all-optical simultaneous half-addition and half-subtraction scheme is achieved at an operating rate of 10 GHz by using only two semiconductor optical amplifiers (SOA) without any assist light. Lastly, two modulation format conversion schemes are demonstrated. The first conversion is from NRZ-OOK to PSK-Manchester coding format using a SOA based Mach-Zehnder interferometer. The second conversion is from RZ-DQPSK to RZ-OOK by employing a supercontinuum based optical thresholder

    Techniques for nonlinear distortion suppression in radio over fiber communication systems

    Get PDF
    Radio over fiber (RoF) is a promising technology that will indisputably compete as a viable solution for future wireless, cellular and broadband networks. RoF, when combined with dense wavelength division multiplexing (DWDM), such as SONET/SDH, it can become a complete flexible and cost effective solution to the global telecommunication network, where asynchronous and synchronous communications may be efficiently supported. Subcarrier modulation (SCM) is utilized to modulate a RF signal on light, which in turn will be transmitted by fiber. Unfortunately, the transmission in most cases may become corrupted by nonlinear distortion that is induced by the nonlinear response of the optical transmitter, optical receiver and chromatic dispersion of the single mode fiber (SMF). The nonlinear distortion degrades the receiver sensitivity, which leads to a poor bit error rate (BER) and spurious free dynamic range (SFDR). Ultimately, this will increase RoF system costs and render it impractical. The objective of this thesis is to develop linearization methods that reduce the nonlinear distortion, increase receiver sensitivity and increase SFDR. The designs should also address the entire RoF system by combating the optical power fading issue that will be discussed in Chapter 2 without significantly adding great expense and complexity to the RoF system. Four optical linearization methods are proposed and shown through extensive simulation and/or experimentation to outperform similar existing linearization systems described in literature. The proposed single wavelength balanced system is shown to improve the suppression of 2nd order distortion over the dual wavelength balanced system, thereby leading to greater improvement in receiver sensitivity and BER. Furthermore, the design also suppresses relative intensity noise (RIN). The proposed tunable fiber Bragg grating (FBG) balanced system is capable of suppressing both 2 nd and 3 rd order distortions despite which RF carrier that is used. Furthermore, it was shown to outperform the conventional RoF system in terms of receiver sensitivity and BER. The proposed asymmetric Mach-Zehnder modulator (MZM) has been shown to generate optical single sideband (OSSB) transmissions and outperform the dual-parallel modulator, by improving 3rd order intermodulation distortion (3IMD) suppression and increasing SFDR. The final proposed linearization method is the mixed-polarization MZM, where OSSB is also generated and outperforms the conventional OSSB RoF system in terms of 3IMD suppression and SFDR. Furthermore, close form expressions for SFDR are developed for the final two designs, which is crucial in study of their stability and performance

    Design and characterization of InP based Mach-Zehnder modulators at 2μm wavelength

    Get PDF
    The Mach-Zehnder modulators (MZMs) based on InP are the key building blocks of photonic integrated circuits (PICs) due to low drive voltage and higher electro-optic (EO) bandwidth. They are the most suitable candidates to replace the widely deployed large footprint Lithium Niobate (LiNbO3) based MZMs. This thesis is focused on the design and development of travelling wave InP MZMs operating in the conventional optical C-band and also at 2000 nm which is one of the newly proposed possible alternatives for optical transmission to avoid highly anticipated ‘Capacity Crunch‘in the currently deployed standard single mode fiber (SSMF) in the next decade. InP MZMs working around the 1550 nm wavelength range were developed and characterised under DC and high frequency in order to validate the optimal electrode design. The highlight of presented work is the development of the first InP MZMs for operation around 2000 nm wavelengths for used in future optical transmission systems. To make the operation feasible around 2000 nm wavelength, compressively strained InGaAs QWs are used in the optical waveguide. The developed modulators exhibit a 3-dB EO bandwidth of 9 GHz with switching voltage as low as 3.2 V for a 3 mm long electrode. It is also shown that maximizing the electro-optical overlap by increasing the number of quantum wells can significantly reduce the Vπ, hence the modulator driving conditions for higher order modulation formats, without sacrificing the modulation bandwidth and device dimensions. Further, the devices are packaged using specially designed RF interposer to be used in an efficient, high-capacity WDM transmitter for communication over 1.15 km hollow-core photonic bandgap fiber (HC-PBGF) at 2 μm wavelength. A WDM capacity of 40 Gb/s is accomplished by using four 10 Gb/s NRZ-OOK externally modulated channels for the first time and transmission performance is evaluated using a direct detection receiver

    Contra-directional couplers as optical filters on the silicon on insulator platform

    Get PDF
    Ce mémoire vise à étudier la conception, la fabrication et la caractérisation de filtres à base de coupleurs contra-directionels en silicium. Ceux-ci sont un type de filtre optique encore peu connu, semblable à des réseaux de Bragg, mais réfléchissant dans un autre guide d'onde. Afin de comprendre pourquoi les filtres optiques sont importants à améliorer, ce mémoire commence en expliquant la base des communications optiques. Sont ensuite expliqués les principes de la photonique sur silicium, et comment arriver à manipuler la lumière à l'aide des matériaux utilisés en électronique. Les différents dispositifs existants en silicium sont énumérés, avec une attention particuliére portée aux filtres optiques. Le principe de fonctionnement des coupleurs contra-directionels est expliqué en détail au chapitre 2. Celui-ci reformule les principes de base connus, en rajoutant des détails sur la simulation de l'apodization et du bruit de phase. La recherche originale en laboratoire à ce sujet est exposée dans les chapitres 3 et 4. Le premier article démontre qu'il est possible de fabriquer des coupleurs contra-directionels avec un processus de photolithographie malgré la précision requise. Le deuxième utilise des coupleurs contra-directionels pour créer un filtre accordable ayant la plus grande plage d'accordabilité mesurée sur silicium. Tester ces dispositifs fut une part importante du travail et de l'apprentissage. Ainsi, le dernier chapitre est consacré à la caractérisation des dispositifs sur silicium à l'aide d'un montage automatisé. Ce chapitre a pour but d'expliquer en détail toutes les étapes du design, de l'alignement et des tests afin de documenter la procédure pour les nouveaux étudiants. Au final, ce travail démontre que les coupleurs contra-directionels en silicium sont une solution envisageable pour plusieurs applications nécessitant des filtres optiques, tel que les réseaux reconfigurables et les canaux de communication large bande.This memoir aims to study the design, fabrication and characterization of filters based on contra-directional couplers on silicon. These are a type of filter still little known, similar to Bragg gratings, but reflecting the light in an other waveguide. To understand why optical filters are important to improve, this memoir starts by introducing the basis of optical communications. The principles of silicon photonics are then explained, to understand how to manipulate light using micro-electronics materials. The devices available on silicon are enumerated, with a special attention given to optical filters. Contra-directional couplers are explained in detail in chapter 2. This chapter explains the known principles, adapting them to be able to simulate apodization and phase noise in these devices. The original laboratory research is shown in chapters 3 and 3. The first article demonstrates that it is possible to fabricate contra-directional couplers using photolithography despite the small features required. The second one uses contra-directional couplers to create a tunable filter displaying the greatest tunable bandwidth range measured in silicon filters. Testing these devices has been an important part of the work. The last chapter is about the characterization of silicon devices using an automated setup. This chapter aims to explain all the details of the design, alignment and test to document the procedure for future students. In sum, this work shows that silicon contra-directional couplers are an appealing solution for many applications which require optical filters such as reconfigurable networks and broadband channels

    High-speed and Robust Integrated Silicon Nanophotonics for On-Chip Interconnects

    Get PDF
    Optical interconnects offer advantages over electrical interconnects such as higher bandwidth, low power, reduced interconnects delay, and immunity to electro-magnetic interference and signal crosstalk. However, in order for optical interconnects to be widely adopted, the technology must be made cost effective and must be simple to implement with CMOS electronics. Silicon photonics offers a great promise due to its inexpensive material and its compatibility with the current CMOS fabrication technology. Moreover, Silicon as a platform has the ability to integrate with different types of the optical components such as photodetector, modulator, light source, and waveguide to form a photonics integrated circuit. The goal of this work is to develop and fabricate devices that utilize a hybrid electronic-photonic integration to enable high performance optoelectronic computing and communication systems that overcome the barriers of electronics and dramatically enhance the performance of circuits and systems. We experimentally demonstrate a novel broadband optical time division multiplexer (OTDM) on a silicon chip. The system has a footprint× 700 micrometer and is inherently broadband with a bandwidth of over 100nm making it suitable for high-speed optical networks on chip. Also, we propose and fabricate a novel design to demultiplex the high bit rates of OTDM data using two differentially operated 5Gb/s modulators. Moreover, we propose a high-speed hybrid optical-time-division-multiplexing (OTDM) and wavelength-division-multiplexing (WDM) system that seamlessly generates high bit-rate data (\u3e200Gbit/s) from a low speed (5Gbit/s) quantum-dot mode locked laser pulse source. By utilizing time and wavelength domains, the proposed design is a promising solution for high-speed, compact and low-power consumption optical networks on chip. And finally, we experimentally demonstrate a robust, low insertion loss, compact Silicon ring resonator electro-optic modulator for Binary Phase Shift Key (BPSK) coding/decoding that encodes data in the phase of light. Our design improves significantly over recently demonstrated PSK modulator designs in terms of insertion loss and stability
    corecore