276 research outputs found

    Modeling and Analysis of Noise and Interconnects for On-Chip Communication Link Design

    Get PDF
    This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.Siirretty Doriast

    Worst case crosstalk noise for nonswitching victims in high-speed buses

    Full text link

    Modelling and analysis of crosstalk in scaled CMOS interconnects

    Get PDF
    The development of a general coupled RLC interconnect model for simulating scaled bus structures m VLSI is presented. Several different methods for extracting submicron resistance, inductance and capacitance parameters are documented. Realistic scaling dimensions for deep submicron design rules are derived and used within the model. Deep submicron HSPICE device models are derived through the use of constant-voltage scaling theory on existing 0.75µm and 1.0µm models to create accurate interconnect bus drivers. This complete model is then used to analyse crosstalk noise and delay effects on multiple scaling levels to determine the dependence of crosstalk on scaling level. Using this data, layout techniques and processing methods are suggested to reduce crosstalk in system

    Electromagnetic Interference (EMI) of System-on-Package (SOP)

    Get PDF
    Electromagnetic interference (EMI) issues are expected to be crucial for next-generation system-on-package (SOP) integrated high-performance digital LSIs and for radio frequency (RF) and analog circuits. Ordinarily in SOPs, high-performance digital LSIs are sources of EMI, while RF and analog circuits are affected by EMI (victims). This paper describes the following aspects of EMI in SOPs: 1) die/package-level EMI; 2) substrate-level EMI; 3) electromagnetic modeling and simulation; and 4) near electromagnetic field measurement. First, LSI designs are discussed with regard to radiated emission. The signal-return path loop and switching current in the power/ground line are inherent sources of EMI. The EMI of substrate, which work as coupling paths or unwanted antennas, is described. Maintaining the return current path is an important aspect of substrate design for suppressing EMI and for maintaining signal integrity (SI). In addition, isolating and suppressing the resonance of the DC power bus in a substrate is another important design aspect for EMI and for power integrity (PI). Various electromagnetic simulation methodologies are introduced as indispensable design tools for achieving high-performance SOPs without EMI problems. Measurement techniques for near electric and magnetic fields are explained, as they are necessary to confirm the appropriateness of designs and to investigate the causes of EMI problems. This paper is expected to be useful in the design and development of SOPs that take EMI into consideration

    Signaling in 3-D integrated circuits, benefits and challenges

    Get PDF
    Three-dimensional (3-D) or vertical integration is a design and packaging paradigm that can mitigate many of the increasing challenges related to the design of modern integrated systems. 3-D circuits have recently been at the spotlight, since these circuits provide a potent approach to enhance the performance and integrate diverse functions within amulti-plane stack. Clock networks consume a great portion of the power dissipated in a circuit. Therefore, designing a low-power clock network in synchronous circuits is an important task. This requirement is stricter for 3-D circuits due to the increased power densities. Synchronization issues can be more challenging for 3-D circuits since a clock path can spread across several planes with different physical and electrical characteristics. Consequently, designing low power clock networks for 3-D circuits is an important issue. Resonant clock networks are considered efficient low-power alternatives to conventional clock distribution schemes. These networks utilize additional inductive circuits to reduce power while delivering a full swing clock signal to the sink nodes. In this research, a design method to apply resonant clocking to synthesized clock trees is proposed. Manufacturing processes for 3-D circuits include some additional steps as compared to standard CMOS processes which makes 3-D circuits more susceptible to manufacturing defects and lowers the overall yield of the bonded 3-D stack. Testing is another complicated task for 3-D ICs, where pre-bond test is a prerequisite. Pre-bond testability, in turn, presents new challenges to 3-D clock network design primarily due to the incomplete clock distribution networks prior to the bonding of the planes. A design methodology of resonant 3-D clock networks that support wireless pre-bond testing is introduced. To efficiently address this issue, inductive links are exploited to wirelessly transmit the clock signal to the disjoint resonant clock networks. The inductors comprising the LC tanks are used as the receiver circuit for the links, essentially eliminating the need for additional circuits and/or interconnect resources during pre-bond test. Recent FPGAs are quite complex circuits which provide reconfigurablity at the cost of lower performance and higher power consumption as compared to ASIC circuits. Exploiting a large number of programmable switches, routing structures are mainly responsible for performance degradation in FPAGs. Employing 3-D technology can providemore efficient switches which drastically improve the performance and reduce the power consumption of the FPGA. RRAM switches are one of the most promising candidates to improve the FPGA routing architecture thanks to their low on-resistance and non-volatility. Along with the configurable switches, buffers are the other important element of the FPGAs routing structure. Different characteristics of RRAM switches change the properties of signal paths in RRAM-based FPGAs. The on resistance of RRAMswitches is considerably lower than CMOS pass gate switches which results in lower RC delay for RRAM-based routing paths. This different nature in critical path and signal delay in turn affect the need for intermediate buffers. Thus the buffer allocation should be reconsidered. In the last part of this research, the effect of intermediate buffers on signal propagation delay is studied and a modified buffer allocation scheme for RRAM-based FPGA routing path is proposed

    Design and modelling of variability tolerant on-chip communication structures for future high performance system on chip designs

    Get PDF
    The incessant technology scaling has enabled the integration of functionally complex System-on-Chip (SoC) designs with a large number of heterogeneous systems on a single chip. The processing elements on these chips are integrated through on-chip communication structures which provide the infrastructure necessary for the exchange of data and control signals, while meeting the strenuous physical and design constraints. The use of vast amounts of on chip communications will be central to future designs where variability is an inherent characteristic. For this reason, in this thesis we investigate the performance and variability tolerance of typical on-chip communication structures. Understanding of the relationship between variability and communication is paramount for the designers; i.e. to devise new methods and techniques for designing performance and power efficient communication circuits in the forefront of challenges presented by deep sub-micron (DSM) technologies. The initial part of this work investigates the impact of device variability due to Random Dopant Fluctuations (RDF) on the timing characteristics of basic communication elements. The characterization data so obtained can be used to estimate the performance and failure probability of simple links through the methodology proposed in this work. For the Statistical Static Timing Analysis (SSTA) of larger circuits, a method for accurate estimation of the probability density functions of different circuit parameters is proposed. Moreover, its significance on pipelined circuits is highlighted. Power and area are one of the most important design metrics for any integrated circuit (IC) design. This thesis emphasises the consideration of communication reliability while optimizing for power and area. A methodology has been proposed for the simultaneous optimization of performance, area, power and delay variability for a repeater inserted interconnect. Similarly for multi-bit parallel links, bandwidth driven optimizations have also been performed. Power and area efficient semi-serial links, less vulnerable to delay variations than the corresponding fully parallel links are introduced. Furthermore, due to technology scaling, the coupling noise between the link lines has become an important issue. With ever decreasing supply voltages, and the corresponding reduction in noise margins, severe challenges are introduced for performing timing verification in the presence of variability. For this reason an accurate model for crosstalk noise in an interconnection as a function of time and skew is introduced in this work. This model can be used for the identification of skew condition that gives maximum delay noise, and also for efficient design verification

    Register-transfer-level power profiling for system-on-chip power distribution network design and signoff

    Get PDF
    Abstract. This thesis is a study of how register-transfer-level (RTL) power profiling can help the design and signoff of power distribution network in digital integrated circuits. RTL power profiling is a method which collects RTL power estimation results to a single power profile which then can be analysed in order to find interesting time windows for specifying power distribution network design and signoff. The thesis starts with theory part. Complementary metal-oxide semiconductor (CMOS) inverter power dissipation is studied at first. Next, power distribution network structure and voltage drop problems are introduced. Voltage drop is demonstrated by using power distribution network impedance figures. Common on-chip power distribution network structure is introduced, and power distribution network design flow is outlined. Finally, decoupling capacitors function and impact on power distribution network impedance are thoroughly explained. The practical part of the thesis contains RTL power profiling flow details and power profiling flow results for one simulation case in one design block. Also, some methods of improving RTL power estimation accuracy are discussed and calibration with extracted parasitic is then used to get new set of power profiling time windows. After the results are presented, overall RTL power estimation accuracy is analysed and resulted time windows are compared to reference gate-level time windows. RTL power profiling result analysis shows that resulted time windows match the theory and RTL power profiling seems to be a promising method for finding time windows for power distribution network design and signoff.Rekisterisiirtotason tehoprofilointi järjestelmäpiirin tehonsiirtoverkon suunnittelussa ja verifioinnissa. Tiivistelmä. Tässä työssä tutkitaan, miten rekisterisiirtotason (RTL) tehoprofilointi voi auttaa digitaalisten integroitujen piirien tehonsiirtoverkon suunnittelussa ja verifioinnissa. RTL-tehoprofilointi on menetelmä, joka analysoi RTL-tehoestimoinnista saadusta tehokäyrästä hyödyllisiä aikaikkunoita tehonsiirtoverkon suunnitteluun ja verifiointiin. Työ alkaa teoriaosuudella, jonka aluksi selitetään, miten CMOS-invertteri kuluttaa tehoa. Seuravaksi esitellään tehonsiirtoverkon rakenne ja pahimmat tehonsiirtoverkon jännitehäviön aiheuttajat. Jännitehäviötä havainnollistetaan myös piirikaavioiden ja impedanssikäyrien avustuksella. Lisäksi integroidun piirin tehonsiirtoverkon suunnitteluvuo ja yleisin rakenne on esitelty. Lopuksi teoriaosuus käsittelee yksityiskohtaisesti ohituskondensaattoreiden toiminnan ja vaikutuksen tehonsiirtoverkon kokonaisimpedanssiin. Työn kokeellisessa osuudessa esitellään ensin tehoprofiloinnin vuo ja sen jälkeen vuon tulokset yhdelle esimerkkilohkolle yhdessä simulaatioajossa. Lisäksi tässä osiossa käsitellään RTL-tehoestimoinnin tarkkuutta ja tehdään RTL-tehoprofilointi loisimpedansseilla kalibroidulle RTL-mallille. Lopuksi RTL-tehoestimoinnin tuloksia ja saatuja RTL-tehoprofiloinnin aikaikkunoita analysoidaan ja verrataan porttitason mallin tuloksiin. RTL-tehoprofiloinnin tulosten analysointi osoittaa, että saatavat aikaikkunat vastaavat teoriaa ja että RTL-tehoprofilointi näyttää lupaavalta menetelmältä tehosiirtoverkon analysoinnin ja verifioinnin aikaikkunoiden löytämiseen
    corecore