8 research outputs found

    Learning a Static Analyzer from Data

    Full text link
    To be practically useful, modern static analyzers must precisely model the effect of both, statements in the programming language as well as frameworks used by the program under analysis. While important, manually addressing these challenges is difficult for at least two reasons: (i) the effects on the overall analysis can be non-trivial, and (ii) as the size and complexity of modern libraries increase, so is the number of cases the analysis must handle. In this paper we present a new, automated approach for creating static analyzers: instead of manually providing the various inference rules of the analyzer, the key idea is to learn these rules from a dataset of programs. Our method consists of two ingredients: (i) a synthesis algorithm capable of learning a candidate analyzer from a given dataset, and (ii) a counter-example guided learning procedure which generates new programs beyond those in the initial dataset, critical for discovering corner cases and ensuring the learned analysis generalizes to unseen programs. We implemented and instantiated our approach to the task of learning JavaScript static analysis rules for a subset of points-to analysis and for allocation sites analysis. These are challenging yet important problems that have received significant research attention. We show that our approach is effective: our system automatically discovered practical and useful inference rules for many cases that are tricky to manually identify and are missed by state-of-the-art, manually tuned analyzers

    Next Generation Black-Box Web Application Vulnerability Analysis Framework

    Get PDF
    abstract: Web applications are an incredibly important aspect of our modern lives. Organizations and developers use automated vulnerability analysis tools, also known as scanners, to automatically find vulnerabilities in their web applications during development. Scanners have traditionally fallen into two types of approaches: black-box and white-box. In the black-box approaches, the scanner does not have access to the source code of the web application whereas a white-box approach has access to the source code. Today’s state-of-the-art black-box vulnerability scanners employ various methods to fuzz and detect vulnerabilities in a web application. However, these scanners attempt to fuzz the web application with a number of known payloads and to try to trigger a vulnerability. This technique is simple but does not understand the web application that it is testing. This thesis, presents a new approach to vulnerability analysis. The vulnerability analysis module presented uses a novel approach of Inductive Reverse Engineering (IRE) to understand and model the web application. IRE first attempts to understand the behavior of the web application by giving certain number of input/output pairs to the web application. Then, the IRE module hypothesizes a set of programs (in a limited language specific to web applications, called AWL) that satisfy the input/output pairs. These hypotheses takes the form of a directed acyclic graph (DAG). AWL vulnerability analysis module can then attempt to detect vulnerabilities in this DAG. Further, it generates the payload based on the DAG, and therefore this payload will be a precise payload to trigger the potential vulnerability (based on our understanding of the program). It then tests this potential vulnerability using the generated payload on the actual web application, and creates a verification procedure to see if the potential vulnerability is actually vulnerable, based on the web application’s response.Dissertation/ThesisMasters Thesis Computer Science 201

    Cross-language program analysis for dynamic web applications

    Get PDF
    Web applications have become one of the most important and prevalent types of software. In modern web applications, the display of any web page is usually an interplay of multiple languages and involves code execution at different locations (the server side, the database side, and the client side). These characteristics make it hard to write and maintain web applications. Much of the existing research and tool support often deals with one single language and therefore is still limited in addressing those challenges. To fill in this gap, this dissertation is aimed at developing an infrastructure for cross-language program analysis for dynamic web applications to support creating reliable and robust web applications with higher quality and lower costs. To reach that goal, we have developed the following research components. First, to understand the client-side code that is embedded in the server-side code, we develop an output-oriented symbolic execution engine that approximates all possible outputs of a server-side program. Second, we use variability-aware parsing, a technique recently developed for parsing conditional code in software product lines, to parse those outputs into a compact tree representation (called VarDOM) that represents all possible DOM variants of a web application. Third, we leverage the VarDOM to extract semantic information from the server-side code. Specifically, we develop novel concepts, techniques, and tools (1) to build call graphs for embedded client code in different languages, (2) to compute cross-language program slices, and (3) to compute a novel test coverage criterion called output coverage that aids testers in creating effective test suites for detecting output-related bugs. The results have been demonstrated in a wide range of applications for web programs such as IDE services, fault localization, bug detection, and testing

    Configurable and Sound Static Analysis of JavaScript: Techniques and Applications

    Get PDF
    JavaScript is widespread. Web developers use JavaScript to enrich user experience via dynamic content ranging from scripts to enhance a web page's appearance, to full-blown web applications, to extending the functionality of web browsers in the form of browser addons. Desktop developers use JavaScript, e.g., for OS applications in Windows 8. JavaScript's growing prominence means that secure, correct, and fast JavaScript code is becoming ever more critical. Static analysis traditionally plays a large role in providing these characteristics: it can be used for security auditing, error-checking, debugging, optimization, and program refactoring, among other uses. Thus, a sound, precise static analysis platform for JavaScript can be of enormous advantage.In this thesis, we present our work on creating a sound, precise, configurable and fast static analysis for JavaScript called JSAI that we have made openly available to the research community. JSAI is both a practical tool for JavaScript static analysis and also a research platform for experimenting with static analysis techniques. JSAI showcases a number of novel techniques to soundly compute a combination of type inference, pointer analysis, control-flow analysis, string analysis, and integer and boolean constant propagation for JavaScript programs. It also provides a unique method for modularly configuring analysis precision that is based on fundamental new insights into the theory of static analysis. We describe precision-increasing techniques for the analysis using type refinement; and performance-increasing techniques for the analysis based on parallelization of JSAI. As an example use-case for JSAI, we discuss a novel security analysis for JavaScript-based browser addon vetting

    Reverse-Engineering and Analysis of Access Control Models in Web Applications

    Get PDF
    RÉSUMÉ De nos jours, les applications Web sont omniprésentes et gèrent des quantités toujours plus importantes de données confidentielles. Afin de protéger ces données contre les attaques d'usagers mal intentionnés, des mécanismes de sécurité doivent être mis en place. Toutefois, sécuriser un logiciel est une tâche extrêmement ardue puisqu'une seule brèche est souvent suffisante pour compromettre la sécurité d'un système tout entier. Il n'est donc pas surprenant de constater que jour après jour les nouvelles font état de cyber attaques et de fuites de données confidentielles dans les systèmes informatiques. Afin de donner au lecteur une vague idée de l'ampleur du problème, considérons que différents organismes spécialisés en sécurité informatique rapportent qu'entre 85% et 98% des sites Web contiennent au moins une vulnérabilité sérieuse. Dans le cadre de cette thèse, nous nous concentrerons sur un aspect particulier de la sécurité logicielle, à savoir les modèles de contrôle d'accès. Les modèles de contrôle d'accès définissent les actions qu'un usager peut et ne peut pas faire dans un système. Malheureusement, années après années, les failles dans les modèles de contrôle d'accès trônent au sommet des palmarès des failles les plus communes et les plus critiques dans les applications Web. Toutefois, contrairement à d'autres types de faille de sécurité comme les injections SQL (SQLi) et le cross-site scripting (XSS), les failles de contrôle d'accès ont comparativement reçu peu d'attention de la communauté de recherche scientifique. Par ce travail de recherche, nous espérons renverser cette tendance. Bien que la sécurité des applications et les modèles de contrôle d'accès constituent les principaux thèmes sous-jacents de cette thèse, notre travail de recherche est aussi fortement teinté par le génie logiciel. Vous observerez en effet que notre travail s'applique toujours à des applications réelles et que les approches que nous développons sont toujours construites de manière à minimiser le fardeau de travail supplémentaire pour les développeurs. En d'autres mots, cette thèse porte sur la sécurité des applications en pratique. Dans le contexte de cette thèse, nous aborderons l'imposant défi d'investiguer des modèles de contrôle d'accès non spécifiés et souvent non documentés, tels que rencontrés dans les applications Web en code ouvert. En effet, les failles de contrôle d'accès se manifestent lorsqu'un usager est en mesure de faire des actions qu'il ne devrait pas pouvoir faire ou d'accéder à des données auxquelles il ne devrait pas avoir accès. En absence de spécifications de sécurité, déterminer qui devrait avoir les autorisations pour effectuer certaines actions ou accéder à certaines données n'est pas simple. Afin de surmonter ce défi, nous avons d'abord développé une nouvelle approche, appelée analyse de Traversement de Patrons de Sécurité (TPS), afin de faire la rétro-ingénierie de modèles de contrôle d'accès à partir du code source d'applications Web et ce, d'une manière rapide, précise et évolutive. Les résultats de l'analyse TPS donnent un portrait du modèle de contrôle d'accès tel qu'implémenté dans une application et servent de point de départ à des analyses plus poussées. Par exemple, les applications Web réelles comprennent souvent des centaines de privilèges qui protègent plusieurs centaines de fonctions et modules différents. En conséquence, les modèles de contrôle d'accès, tel qu'extraits par l'analyse TPS, peuvent être difficiles à interpréter du point de vue du développeur, principalement à cause de leurs taille. Afin de surmonter cette limitation, nous avons exploré comment l'analyse formelle de concepts peut faciliter la compréhension des modèles extraits en fournissant un support visuel ainsi qu'un cadre formel de raisonnement. Les résultats ont en effet démontrés que l'analyse formelle de concepts permet de mettre en lumière plusieurs propriétés des modèles de contrôle d'accès qui sont enfouies profondément dans le code des applications, qui sont invisibles aux administrateurs et aux développeurs, et qui peuvent causer des incompréhensions et des failles de sécurité. Au fil de nos investigations et de nos observations de plusieurs modèles de contrôle d'accès, nous avons aussi identifié des patrons récurrents, problématiques et indépendants des applications qui mènent à des failles de contrôle d'accès. La seconde partie de cette thèse présente les approches que nous avons développées afin de tirer profit des résultats de l'analyse TPS pour identifier automatiquement plusieurs types de failles de contrôle d'accès communes comme les vulnérabilités de navigation forcée, les erreurs sémantiques et les failles basées sur les clones à protection incohérentes. Chacune de ces approches interprète en effet les résultats de l'analyse TPS sous des angles différents afin d'identifier différents types de vulnérabilités dans les modèles de contrôle d'accès. Les vulnérabilités de navigation forcée se produisent lorsque des ressources sensibles ne sont pas adéquatement protégées contre les accès direct à leur URL. En utilisant les résultats de l'analyse TPS, nous avons montré comment nous sommes en mesure de détecter ces vulnérabilités de manière précise et très rapide (jusqu'à 890 fois plus rapidement que l'état de l'art). Les erreurs sémantiques se produisent quand des ressources sensibles sont protégées par des privilèges qui sont sémantiquement incorrects. Afin d'illustrer notre propos, dans le contexte d'une application Web, protéger l'accès à des ressources administratives avec un privilège destiné à restreindre le téléversement de fichiers est un exemple d'erreur sémantique. À notre connaissance, nous avons été les premiers à nous attaquer à ce problème et à identifier avec succès des erreurs sémantiques dans des modèles de contrôle d'accès. Nous avons obtenu de tels résultats en interprétant les résultats de l'analyse TPS à la lumière d'une technique de traitement de la langue naturelle appelée Latent Dirichlet Allocation. Finalement, en investiguant les résultats de l'analyse TPS à la lumière des informations fournies par une analyse de clones logiciels, nous avons été en mesure d'identifier davantage de nouvelles failles de contrôle d'accès. En résumé, nous avons exploré l'intuition selon laquelle il est attendu que les clones logiciels, qui sont des blocs de code syntaxiquement similaires, effectuent des opérations similaires dans un système et, conséquemment, qu'ils soient protégés de manière similaire. En investiguant les clones qui ne sont pas protégés de manière similaire, nous avons effectivement été en mesure de détecter et rapporter plusieurs nouvelles failles de sécurité dans les systèmes étudiés. En dépit des progrès significatifs que nous avons accomplis dans cette thèse, la recherche sur les modèles de contrôle d'accès et les failles de contrôle d'accès, spécialement d'un point de vue pratique n'en est encore qu'à ses débuts. D'un point de vue de génie logiciel, il reste encore beaucoup de travail à accomplir en ce qui concerne l'extraction, la modélisation, la compréhension et les tests de modèles de contrôle d'accès. Tout au long de cette thèse, nous discuterons comment les travaux présentés peuvent soutenir ces activités et suggérerons plusieurs avenues de recherche à explorer.----------ABSTRACT Nowadays, Web applications are ubiquitous and deal with increasingly large amounts of confidential data. In order to protect these data from malicious users, security mechanisms must be put in place. Securing software, however, is an extremely difficult task since a single breach is often sufficient to compromise the security of a system. Therefore, it is not surprising that day after day, we hear about cyberattacks and confidential data leaks in the news. To give the reader an idea, various reports suggest that between 85% and 98% of websites contain at least one serious vulnerability. In this thesis, we focus on one particular aspect of software security that is access control models. Access control models are critical security components that define the actions a user can and cannot do in a system. Year after year, several security organizations report access control flaws among the most prevalent and critical flaws in Web applications. However, contrary to other types of security flaws such as SQL injection (SQLi) and cross-site scripting (XSS), access control flaws comparatively received little attention from the research community. This research work attempts to reverse this trend. While application security and access control models are the main underlying themes of this thesis, our research work is also strongly anchored in software engineering. You will observe that our work is always based on real-world Web applications and that the approaches we developed are always built in such a way as to minimize the amount of work on that is required from developers. In other words, this thesis is about practical software security. In the context of this thesis, we tackle the highly challenging problem of investigating unspecified and often undocumented access control models in open source Web applications. Indeed, access control flaws occur when some user is able to perform operations he should not be able to do or access data he should be denied access to. In the absence of security specifications, determining who should have the authorization to perform specific operations or access specific data is not straightforward. In order to overcome this challenge, we first developed a novel approach, called the Security Pattern Traversal (SPT) analysis, to reverse-engineer access control models from the source code of applications in a fast, precise and scalable manner. Results from SPT analysis give a portrait of the access control model as implemented in an application and serve as a baseline for further analyzes. For example, real-world Web application, often define several hundred privileges that protect hundreds of different functions and modules. As a consequence, access control models, as reverse-engineered by SPT analysis, can be difficult to interpret from a developer point of view, due to their size. In order to provide better support to developers, we explored how Formal Concept Analysis (FCA) could facilitate comprehension by providing visual support as well as automated reasoning about the extracted access control models. Results indeed revealed how FCA could highlight properties about implemented access control models that are buried deep into the source code of applications, that are invisible to administrators and developers, and that can cause misunderstandings and vulnerabilities. Through investigation and observation of several Web applications, we also identified recurring and cross-application error-prone patterns in access control models. The second half of this thesis presents the approaches we developed to leverage SPT results to automatically capture these patterns that lead to access control flaws such as forced browsing vulnerabilities, semantic errors and security-discordant clone based errors. Each of these approaches interpret SPT analysis results from different angles to identify different kinds of access control flaws in Web applications. Forced browsing vulnerabilities occur when security-sensitive resources are not protected against direct access to their URL. Using results from SPT, we showed how we can detect such vulnerabilities in a precise and very fast (up to 890 times faster than state of the art) way. Semantic errors occur when security-sensitive resources are protected by semantically wrong privileges. To give the reader an idea, in the context of a Web application, protecting access to administrative resources with a privilege that is designed to restrict file uploads is an example of semantic error. To our knowledge, we were the first to tackle this problem and to successfully detect semantic errors in access control models. We achieved such results by interpreting results from SPT in the light of a natural language processing technique called Latent Dirichlet Allocation. Finally, by investigating SPT results in the light of software clones, we were able to detect yet other novel access control flaws. Simply put, we explored the intuition that code clones, that are blocks of code that are syntactically similar, are expected to perform similar operations in a system and, consequently, be protected by similar privileges. By investigating clones that are protected in different ways, called security-discordant clones, we were able to report several novel access control flaws in the investigated systems. Despite the significant advancements that were made through this thesis, research on access control models and access control flaws, especially from a practical, application-centric point of view, is still in the early stages. From a software engineering perspective, a lot of work remains to be done from the extraction, modelling, understanding and testing perspectives. Throughout this thesis we discuss how the presented work can help in these perspectives and suggest further lines of research
    corecore