
Next Generation Black-Box Web Application Vulnerability

Analysis Framework

by

Tejas Sunil Khairnar

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2017 by the
Graduate Supervisory Committee:

Adam Doupé, Chair
Gail-Joon Ahn
Ziming Zhao

ARIZONA STATE UNIVERSITY

May 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ASU Digital Repository

https://core.ac.uk/display/97833494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Web applications are an incredibly important aspect of our modern lives. Orga-

nizations and developers use automated vulnerability analysis tools, also known as

scanners, to automatically find vulnerabilities in their web applications during devel-

opment. Scanners have traditionally fallen into two types of approaches: black-box

and white-box. In the black-box approaches the scanner does not have access to the

source code of the web application whereas a white-box approach has access to the

source code. Today’s state-of-the-art black-box vulnerability scanners employ vari-

ous methods to fuzz and detect vulnerabilities in a web application. However, these

scanners attempt to fuzz the web application with a number of known payloads and

to try to trigger a vulnerability. This technique is simple but does not understand

the web application that it is testing. This thesis, presents a new approach to vulner-

ability analysis. The vulnerability analysis module presented uses a novel approach

of Inductive Reverse Engineering (IRE) to understand and model the web applica-

tion. IRE first attempts to understand the behavior of the web application by giving

certain number of input/output pairs to the web application. Then, the IRE module

hypothesizes a set of programs (in a limited language specific to web applications,

called AWL) that satisfy the input/output pairs. These hypotheses takes the form of

a directed acyclic graph (DAG). AWL vulnerability analysis module can then attempt

to detect vulnerabilities in this DAG. Further, it generates the payload based on the

DAG, and therefore this payload will be a precise payload to trigger the potential vul-

nerability (based on our understanding of the program). It then tests this potential

vulnerability using the generated payload on the actual web application, and creates

a verification procedure to see if the potential vulnerability is actually vulnerable,

based on the web application’s response.

i

ACKNOWLEDGEMENTS

When I started researching for this project I thought this technique is not going to

work. But slowly when I started to understand the research direction I became very

clear about how this technique is going to work and how am I going to make it work.

Now I believe that "Nothing is Impossible".

Not a part in this thesis would have been possible without the help and guidance of

my thesis advisor, the best professor at ASU and committee chair - Dr. Adam Doupé.

This project was entirely his idea and recently he received the NSF CAREER award

for this project. Congratulations Adam. I would like to thank Adam for teaching me

everything during my entire coursework of Masters.

I would like to thank Dr. Gail-Joon Ahn, for being part of the committee, for all his

help and valuable inputs.

I would also like to thanks Dr. Ziming Zhao for being part of my committee and

helping me complete my thesis with his suggestions and feedback.

Apart from this I would like to thank my dear friend Kevin Liao, who worked on

this project with me. He was always available for any kind of help I required to

understand the AWL language. He also help me in completing this document with

his valuable inputs.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 Introduction. 1

2 Background . 3

2.1 Inductive Reverse Engineering . 3

2.2 Cross Site Scripting . 5

2.3 Static Program Analysis . 5

2.4 Constraint Solvers . 6

3 System Design. 7

3.1 System Architecture . 7

3.2 System Components . 8

3.2.1 IRE Module . 8

3.2.2 Check Vulnerability . 9

3.2.3 Boolean Constraints . 13

3.2.4 Constraint Solver . 13

3.2.5 PoC & Payload Generator . 14

4 Abstracted Web Language . 15

4.1 Syntax of Language for describing AWL Programs 15

4.2 Semantics of Language for describing sets of AWL Programs 16

5 Implementation . 17

5.1 System Configuration . 17

5.2 Platforms and Software . 17

5.3 Languages. 18

iii

CHAPTER Page

5.4 OWASP Broken Application . 18

5.5 Problems Faced. 19

6 Evaluation . 21

6.1 Results . 21

6.2 Experiments on Vulnerable application . 21

6.3 Implementation Output Results . 22

7 Case Study. 24

7.1 Test Application . 24

7.2 IRE Module . 24

7.3 Result of Vulnerability Analysis . 27

8 Discussion . 29

8.1 Lessons Learned . 29

8.2 Vulnerable Applications . 29

8.3 Limitations . 31

9 Related Work . 32

10 Future Work . 34

11 Conclusion . 35

REFERENCES . 36

iv

LIST OF TABLES

Table Page

5.1 Platforms and Software . 18

5.2 Python Libraries . 18

5.3 Vulnerable Web Applications . 19

6.1 Experiment Results . 21

v

LIST OF FIGURES

Figure Page

2.1 Version Space Represented as a Graph for All Possible Programs that

Output "foo" Given the Input of "foo". 4

3.1 System Design . 8

3.2 System Architecture . 9

6.1 Screen Capture of our Tool in action - 1 . 22

6.2 Screen Capture of our Tool in action - 2 . 23

6.3 Screen Capture of our Tool in action - 3 . 23

7.1 Boolean Constraints . 27

7.2 Version Space Graphs for Sample PHP Application 7.1. 28

7.3 Version Space Graphs for Sample PHP Application Generated by AWLSA

module. 28

vi

Chapter 1

INTRODUCTION

Web applications form the most important part of the security ecosystem. Today,

almost every business has web application as their first face to the world. Thus,

security of these web application is of paramount importance. To secure their web

application, most companies hire security professionals (white-hat hackers) to pene-

tration test their web applications to identify vulnerabilities to patch them accord-

ingly. While this process is effective at finding vulnerabilities in web applications, it

is incredibly costly, and, more fundamentally, it does not scale: For instance, these

manual tests cannot be performed every time the code changes, thus leaving a window

for attackers to find and exploit vulnerabilities.

Black-box vulnerability scanners are tools which attempt to automate the pene-

tration testing process. By treating the web application as a black-box (no knowledge

of the source code of the application), these tools automatically discover previously

unknown vulnerabilities. In essence, these tools aim to empower the average developer

with little to no security expertise to discover vulnerabilities in her web application

before an attacker, thus improving the entire security ecosystem.

Our research aims to create a novel black-box vulnerability analysis framework,

called Next Generation Black-Box Vulnerability Analysis Framework, that is able to

find previously unknown vulnerabilities in a web application. We use a recently pro-

posed novel technique called Inductive Reverse Engineering (IRE) [34], which lever-

ages recent advances in program synthesis and inductive programming communities to

reverse engineer a model of the web application’s functionality in a black-box manner.

This model of the web application can be thought of as abstracted source code.

1

This thesis work presents a framework to automatically identify potential XSS

vulnerabilities in the abstracted source code using static program analysis techniques.

Once a potential vulnerability is identified in the abstracted source code, we verify the

existence of the vulnerability on the real web application. In this way we are able to

automatically find XSS vulnerability in web applications using IRE.

In summary, this thesis make the following contributions:

• A novel approach of using static program analysis and constraint solving tech-

niques to identify and verify vulnerabilities in Inductive Reverse Engineered

programs (abstracted source code).

• We implement a prototype of next generation black box vulnerability analysis

tool to detect XSS vulnerability in web applications.

• We demo the feasibility of our approach evaluating our prototype on broken

web applications available publicly.

2

Chapter 2

BACKGROUND

This chapter talks about the background of the problem. It describes the novel

concept of Inductive Reverse Engineering, a brief history about Cross-Site Scripting

vulnerability, static program analysis techniques to find this vulnerability in abstracted

source code and constraint solvers.

2.1 Inductive Reverse Engineering

The basic idea of Inductive Programming is simple and was explained in Am-

eral’s original paper on the topic [2]: Given a set of required input/output pairs,

create a program that generates the correct output given the input. This prob-

lem is not as easy as it sounds. Even if you have an if statement that maps each

given input to the output, it does not fulfill the true goal of having a minimal pro-

gram do it. One solution to this is enumerate through all possible programs, in

an order from least complicated to most complicated, and the first program that

solves the input/output constraints is the correct program. This idea of Induc-

tive Programming was further developed in a project started by Gulwani [19, 20]

which became a feature first introduced in Excel 2013 called Flash Fill, which de-

tects when a user is manually performing a data transformation on the previous

columns’ data. Using only a single input/output example, Flash Fill can automat-

ically discover a program that satisfies the input/output example, and then show

this transformation applied to the rest of the data. The user can then choose

to either accept the transformation or enter more input/output examples, so that

the transformation can be refined. This work has been extended to support table

3

lookups [22] and semantic string transformations [53]. In our work, this approach

has been used to Inductively reverse engineer the source code of a web application

using the input/output pairs. This limits the universe of possible programs to learn.

0

1

{'f',input[0][{-3,0}:{-2,1}]}

2

{'fo',input[0][{-3,0}:{2,-1}]}

3

{'foo',input[0][{-3,0}:{0,3}]}{input[0][{-2,1}:{2,-1}],input[0][{2,-1}:{0,3}],'o'}

{input[0][{-2,1}:{0,3}],'oo'}

{input[0][{-2,1}:{2,-1}],input[0][{2,-1}:{0,3}],'o'}

Figure 2.1: Version Space Represented as a Graph for

All Possible Programs that Output "foo" Given the

Input of "foo".

The way these techniques

of Inductive Programming

work is by defining a

domain-specific language

of programs which we de-

scribe in Chapter 4 of this

thesis. Next we use ver-

sion space algebra [42, 33]

to use a data structure to

represent the set of all pos-

sible programs that can

generate a given output from a given input. Further this technique gives us a graph of

each input/output pair. Then we partition the graphs so that they apply to only the

inputs in a given partition and no other partitions. These boolean formulas are also

part of the language, and their expressiveness describes the possible set of boolean

conditions. The final result is a series of boolean conditions and a version space

for each boolean condition that corresponds to the given input/output set. Using

these techniques on web application, from the input/ouput pairs and the boolean

conditions dervied from that we are able to generate an abstracted source code of the

web application which satisfies the input/output pairs and is in our domain-specific

language.

4

2.2 Cross Site Scripting

Cross Site Scripting (XSS) is a vulnerability in which an attacker is able control

the JavaScript that her victim executes, in the context of a web application. Specifi-

cally, a XSS vulnerability allows an attacker to circumvent the browser’s Same-Origin

Policy, and an XSS exploit allows an attacker to steal the user’s cookies, phish the

user’s credentials, or perform actions on the web application on behalf of the victim.

The Open Web Application Security Project (OWASP) ranks XSS as the third most

important vulnerability on the web today [47]. Server-side means that the XSS vul-

nerability occurs because of a vulnerability in the server-side code. There are two

types of XSS attackes defined:

1. Reflected XSS — in this type of XSS attack the injected script, by the attacker,

is reflected from the web server, such as in an error message, search results, or

any other response that includes some or all of the user input sent to server as

part of request.

2. Stored XSS — in this type of XSS attack the injected script, by the attacker, is

stored on the server permanently, such as in the database. This injected script

is executed the next time any user navigates to the page.

Ww have targeted to detect reflected XSS vulnerability in web applications using our

AWL Vulnerability Analysis module. To find stored XSS vulnerability we have to

consider the state of the web application to understand the application’s behavior.

This is part of our future work.

2.3 Static Program Analysis

As the name goes, static program analysis analyzes the program without executing

it. These techniques are generally used to find bugs or to analyze a program for syntax

5

issues, one example is a compiler. However, there are various other areas where these

techniques can be used efficiently such as finding security vulnerabilities. Leveraging

to the large body of work done on static program analysis techniques [5, 39, 26, 36,

24, 12, 64, 58, 63, 61, 45, 50, 35, 57] we proceed to build our vulnerability analysis

framework. These techniques build a control flow graph of the program which explains

how the program flows through various functions for different inputs. Further, much

research [28, 9, 37] has already been done in using these control flow graphs, to find

vulnerabilities in web applications.

2.4 Constraint Solvers

Constraint solving plays an important role in program analysis for the purpose of

test generation for coverage [51], bug finding [4, 65], and vulnerability detection [9,

30]. The reason for this is solver-based analysis tools enable more precise analysis

with the ability to generate bug-revealing inputs. Z3str2 [66] is a constraint solver

for the quantifier-free theory of string equations, the regular-expression membership

predicates, and linear arithmetic over the length functions. Z3str2 is implemented as

a string theory plug-in of the powerful Z3 SMT solver [13]. Thus, ad-hoc sanitization

routines (which will manifest themselves as either string transformations or boolean

constraints) can be analyzed.

In our work, we are using Z3-str2 [66], to check if XSS exploits can reach a sensitive

output given specific boolean constraints. The constraint solver also helps us to

generate more precise payloads depending upon the substring conditions in the output

for any given input.

6

Chapter 3

SYSTEM DESIGN

In this chapter we explain the System Design of our tool. Our tool mainly consists

of three modules.

1. Crawler

2. Inductive Reverse Engineering Module

3. Abstracted Web Language Static Analysis Module

The design of these modules is represented in the Figure 3.1. The Crawler module

crawls the web application with various input-output pairs. The IRE module utilizes

the technique of Inductive Reverse Engineering to generate the abstracted source code

of the web application. The AWL module further uses this abstracted web language

program generated from the IRE module [34] to perform vulnerability analysis.

3.1 System Architecture

This section discusses the architecture of the Abstracted Web Language(AWL)

vulnerability analysis module of the Black-Box tool. The AWL vulnerability analy-

sis module is the second major part of the Next Generation Automated Black-Box

Vulnerability Analysis Framework after the IRE module. This module is responsible

to find vulnerabilities in the abstracted source code of web application generated by

the IRE module. The vulnerability analysis architecture Figure 3.2 shows various

modules responsible for vulnerability identification in the reverse engineered source

code.

7

Figure 3.1: System Design

3.2 System Components

This section explains each system component of the prototype’s system architec-

ture.

3.2.1 IRE Module

The IRE module is the one which has the logic for reverse engineering the source

code of web application. The logic of the IRE module is based on the concept of

Inductive Programming, where you try to generate all possible programs for a given

input/output pair. This module works by fuzzing the web application with input/out-

8

Figure 3.2: System architecture

put pairs and try to generate all possible programs that can represent that particular

application. These input/output pairs are stored in the form of directed acyclic

graph’s by the IRE module. As part of the fuzzer the input strings are randomly gen-

erated of small letters[a-z], capital letters[A-Z], Digits[0-9] and special characters.

The fuzzer in the IRE module plays an important role because, the more number

of string variants we use, the more we can learn about the application and reverse

engineer its functionality.

3.2.2 Check Vulnerability

This module takes the directed acyclic graph’s generated by the IRE module as

input and finds vulnerability over the same. Our algorithm 1 traverses over all the

DAG’s generated by the IRE module. This module flags any theory as vulnerable if it

is of the type Sub String of the input given by the user. It does not flag theories which

contains constant string in it. This is because we believe that the output generated

by the inputs does not vary in the HTML or CSS content of the response.

9

Algorithm 1 Check vulnerable
function check_vulnerable(b, η̃, ηs, ηt)

while ηs 6= ηt do

if theory == ConstStr() : then return False

if theory == SubStr() : then

vuln_theory = theory

end_indicies = theory.indicies

payload = generate_payload(b, end_indices)

if payload == None then return False

if payload 6= None then

b̂ = PoC_generator(payload)

PoC_validator(b,b̂)

The input to our vulnerability module is the Abstracted Web Language synthe-

sized code generated by the IRE module. This input is the DAG we refer to in Figure

7.2. Because we have to find vulnerabilities over these dags, we take these DAGs one

at a time as input to our algorithm. Now, we traverse over this graph completely

to check if there are any theories along the edges which might be vulnerable. If the

user is entering any input and that input is somehow reflected in any HTML input

tag in the response then we call it as substring theory. Now, to make our scanner

to find as many vulnerabilities as it can we assume each SubStr theory as vulnerable

and try to generate XSS payload for any such theory. The next step in our algorithm

is to find if there is an PHP SubStr manipulation done on the server side of user

input. This means, we are trying to see if the server is chopping of the user input and

then displaying it or adding some random characters in the start. These cases are

correctly captured by our IRE module and presented on the edges of the DAG. All

10

Algorithm 2 Payload Generation
function generate_payload(B, end_indices)

if end_indices == None then

z3_solver(B,None)

if end_indices < 0 then

string = gen_z3Constraint(end_indices)

z3_solver(B, string)

if end_indices > 0 then

string = gen_z3Constraint(end_indices)

z3_solver(B, string)

function gen_z3Constraint(end_indices)

generate z3_constraint according to value of end_indices

return newConstraint

function z3_solver(z3_string, newConstraint)

solve(z3_string, newConstraint)

if SAT then

return Precise Payload String

if UNSAT then

return Payload cannot be generated

11

Algorithm 3 Proof-of-Concept generator
function PoC_generator(payload)

Fuzz the application with the payload to generate DAG return b̂

function PoC_validator(b,b̂)

dag3 = b.intersect(b̂)

if dag3 == None then return Cannot generate PoC.

if dag3 6= None then return Vulnerable. PoC generated.

these DAG’s we know are partitioned using boolean classifiers which we mentioned

earlier. We use these boolean classifiers to generate Z3 constraints. In other words,

we convert these boolean classifier into various strings which can be given as input to

Z3 Constraint Solver. Z3 is a very powerful SMT solver which can solve constraints

and also generate strings which Satisfy those constraints. Our XSS payload which

satisfies all the boolean classifiers is generated by Z3. This payload generated by Z3

will be precise according to the boolean constraints. Hence we are sure at this point of

algorithm that this payload will satisfy all the required input conditions, that the IRE

module inferred from, of the web application. Now we again fuzz the web application

to generate input/output pairs for input payload. These steps are done in order to

generate proof-of-concept that the precise payload given by Z3 will actually trigger a

XSS vulnerability in the web application. The poc_generator function fuzzes the web

application with input as payload and generated the required DAG. The poc_checker

function will now take the complete DAG learnt by the IRE module and the DAG

generate by poc_generator function and will try to intersect them. If an intersection

is found then we check if the same theory is present on the intersected DAG as we

observed in the vulnerable DAG. If that is the case then our scanner outputs that the

XSS payload will definitely trigger vulnerability in the web application.

12

3.2.3 Boolean Constraints

The IRE module in our prototype generates the abstracted source code on the

basis of the domain specific language designed by the IRE module. IRE module

uses various boolean classifiers in order to reverse engineer the source code. These

boolean classifiers are dependent on our language and currently consists of various

regular expressions defined in our language. The AWL vulnerability analysis module

further uses these boolean classifier to generate Z3-constraints.

3.2.4 Constraint Solver

The idea behind using Z3-str2 constraint solver is to generate a precise payload

that can satisfy as input to the web application. Using the IRE module we already

know the behavior of the web application. This behavior reflects exactly if the web

application is reflecting the same input string to the user as is, performing any sub-

string operation like chopping of certain number of characters at the start of user

input or chopping of certain number of characters at the end of user input. Due to

this behavior it is very important to generate precise payload which will get executed

as reflected XSS payload on the web browser. Even a single character mismatch, for

instance ’t>’ of the XSS payload ’<script>alert(’XSS’)</script>’, gets chopped off

by the server side logic then our payload may not get executed and would flag as not

vulnerable. Therefore, in this case we use Z3 to solve this constraint too for us. It

generates precise string of the required length which will satisfy all these constraints.

This example, explains very clearly why we make use of Z3 constraint solver in our

tool. Algorithm 2 describes how we convert the boolean constraints into Z3-str2

constraints.

13

3.2.5 PoC & Payload Generator

The payload generator module generates various XSS payload strings which are

to be tested with the constraint solver. These XSS payloads are taken from the

OWASP XSS cheat sheet [48]. The algorithm to generate the payload is described in

Algorithm 2. Section 10 of this thesis document explains how this payload generation

module can be extended to fuzz of all different types of XSS payload out there in the

wild. The PoC generator module generates a proof-of-concept which is satisfying the

constraints and is actually triggering the XSS vulnerability in the application and also

test the payload against the web application to see if it is actually vulnerable. This

module again uses the IRE module to generate the graph of input output pairs for the

web application while the difference is this time it uses XSS payload string as input.

Further, this module confirms the vulnerability by intersecting the generated graph

with the previously generated graph from random input/output pairs. According

to our theories if this intersection happens, then the XSS payload should trigger the

vulnerability in the application. If we can see the same string in both the graph being

reflected we can be sure that the web application is vulnerable and the payload used

can trigger the vulnerability. The PoC checker checks if the same string is present

as the longest string on the intersected graph as well as the graph generated during

initial crawling. The Algorithm 3 describes the way we generate proof-of-concept for

the precise payload generated.

14

Chapter 4

ABSTRACTED WEB LANGUAGE

This chapter introduces you to the Abstracted web language. The goal of AWL is to

be a domain-specific language for web applications. This is the most important part

of our research. Our input-output analysis depends on this language. The assertion

we claim that, using the input-output pairs we can generate all possible programs

which can generate you the same input-output pairs, depends on this language. The

more expressive we make our language the more behavior we would learn of the web

application. The concept, syntax and semantics of AWL was inherited from IRE

module developed by Liao [34].

4.1 Syntax of Language for describing AWL Programs

In this section we explain the syntax of abstracted web language. This language is

defined by us in order to understand the behavior of the web application. According

to the syntax of AWL language we can represent all the programs which can generate

the input-output pair. These programs can be represented as a big switch statement

of programs to generate the given input-output pair. We represent all the boolean

conditions by b1 and x̃1, ... x̃n represents all the directed acyclic graphs generate for

given input-output pair. These together represent a big set of synthesized programs

in AWL. Now, the DAG is a concatenation of all the html output. Thus output

can further described as made up of HTML start tag concatenated with HTML data

concatenated with HTML end tag and HTML self-closing tags. We also represent

HTML attributes by in our syntax of AWL language. Each DAG is made up of nodes,

start node, end node, edges and W, the web application itself which takes in the path,

15

method, and query parameters. These atomic expression are the main language we

have defined. It consists of

• SubStr of input and position of strings

• ConstStr which represent string which is constant for all the given inputs

• TwoInputMath which perform Math operations on given input

• ConstMath which performs Math operations on given input and a constant

4.2 Semantics of Language for describing sets of AWL Programs

In this section we describe the semantics of our AWL language for describing sets

of AWL programs. We explain them as below:

T represents all the HTML token in the output we get for the given input. Data

is the HTML data which is inside the generic HTML tags. For example a <form>

tag with input type and value. EndTag are the ending tags in every HTML, for

instance />. In the recent developments in HTML5, we observe self-closing tags. For

instance in the closing tag />, the / is completely optional in HTML5. Hence in our

language semantics we consider that too. (Ã1, ẽ1) represent the HTML attributes.

For example, this set would contain all the attributes in a form tag.

16

Chapter 5

IMPLEMENTATION

In this chapter we explain how we implemented the prototype in Python programming

language. To implement the scanner we had a system setup as follows:

5.1 System Configuration

We used one machine to implement the tool. The details about this machine are

as follows:

• MacBook Pro

CPU: Intel Core i7 @ 3.1GHz

Cache Size: 4M

No. of Cores: 2

Total Memory: 8GB

Disk Space: 256GB

5.2 Platforms and Software

Our scanner is built to run on any machine which has Python and certain packages

installed on it. To perform the experiments we ran our scanner on test-applications

as well as published vulnerable applications. These applications were hosted on our

own machine to complete the experiments. The platforms and softwares used to build

this tool are enumerated in Table 5.1:

17

Operating system macOS Sierra

Web Server Apache - 2.4.23

Constraint-Solver Z3-str2

Table 5.1: Platforms and software used for our tool.

5.3 Languages

We used Python 2 to build the system. The reasons for choosing this language

are: it has numerous libraries for fuzzing an application and it is easy to use the

data structures in this language. The major libraries which were used for our tool

are listed in Table 5.2:

Library Functionality

Requests HTTP Request Generation

Beautiful Soup HTML Parsing

Subprocess Spawn new process

Table 5.2: Libraries that we used and their functions.

5.4 OWASP Broken Application

In order to test our scanner we had to find some publicly available web applications

which are designed to be vulnerable. The best resource to find such applications is

the OWASP website. There are certain limitations to our vulnerability scanner which

are discussed in the section8.3. Considering those we reversed engineered the web ap-

plications to serve our needs viz., stateless web application. Table 5.3 enumerates the

web applications we used in order to test our tool. We choose these web applications

because they are released as broken web application on OWASP web site [47]. This

18

Sr No Web Application Source URL

1 test-vul https://github.com/tejas619/tejas-test-vul

2 WackoPicko https://github.com/adamdoupe/WackoPicko

3 xvwa https://github.com/s4n7h0/xvwa

4 btslab https://github.com/CSPF-Founder/btslab

Table 5.3: Web applications used for our experiments

helps us in proving our results because the payload used to exploit these websites are

also released by the authors of these broken web application.

5.5 Problems Faced

This section describes some issues we faced while implementing the design and

idea of our tool.

• Support of Regular expressions in Z3

After going through the documentation of Z3-SMT solver, we found that it

would support only limited use of regular expressions in constraint solving. We

were not able to generate regular expression defined in our language using Z3.

Hence, we decided to look for any supporting library built on top of Z3 which

would help us defining and solving regular expressions in our language. After a

good amount of research we found that there is certain amount work done over

supporting regular expressions in constraint solving. Amongst the related tools

were

– Hampi [30] - solver for string constraints

– STP [17] - constraint solver for theory of quantifier-free-bit-vectors

19

– Z3-str2 [66] - constraint solver for the quantifier-free theory of string equa-

tions, the regular-expression membership predicates, and linear arithmetic

over the length functions

Looking at our requirements and the work done in above tools, we decided to

use Z3-str2.

• Detect False Positives

Automated vulnerability analysis tool are a creation of a human who has knowl-

edge of penetration testing a web application. Hence these tools can be intel-

ligent only to a certain extent due to which often times they generate false

positives. In our case we had to find a way in which we can detect false posi-

tives given by our tool. Hence we decided to implement the PoC checker module

which actually checks if the XSS payload give by payload generator triggers the

vulnerability in the web application.

20

Chapter 6

EVALUATION

This chapter describes our evaluation of the system, with the experiments conducted,

results and screen captures of the output of our scanner.

6.1 Results

This section discusses our results after running our scanner on various test appli-

cations mentioned in the Section 5.4.

6.2 Experiments on Vulnerable application

We conducted our experiments on the latest versions of 3 open source PHP vulner-

able applications: xvwa, btslab and wackopicko. Table 6.1 summarizes our findings

for these 3 applications. The table shows that we were successfully able to generate

precise payload, generate proof of concept and flag the application vulnerable to re-

flected XSS attack. We further explain our results for WackoPicko application, for

which our application was not able to generate results, in the Section 7.

Sr No Web Application Precise Payload Proof of Concept Vulnerable

1 test-vul X X X

2 WackoPicko × × ×

3 xvwa X X X

4 btslab X X X

Table 6.1: Experiment results

21

6.3 Implementation Output Results

These are some of the screenshots showing how our scanner asks the user for web

application URL as input to scan, perform fuzzing operation and output results to the

user. Figure 6.1 shows how our scanner accepts the URL of the web application to be

scanned as input parameter. Once given in the right format the Crawler component

of the tool fetches the parameters on the page and gives you a list of query parameters

which it is going to fuzz for outputs.

Figure 6.1: Screen Capture of our Tool in action - 1

Figure 6.2 shows the boolean classifiers generated by the IRE module for the

given web application. This screenshot output is for the test-vul application we

describe about in the running example chapter. In the Figure we can also see Z3-str3

constraints generated for the boolean classifier. These are further fed to Z3-str2 which

generates the precise payload.

First line of Figure 6.3 tells you how the AWLSA module confirms using constraint

solver that the payload generated satisfies the boolean constraints. Further, we can

see our AWLSA module again fuzzes the web application with payload as input and

22

Figure 6.2: Screen Capture of our Tool in action - 2

generates required input-output pairs. Then it moves to the Proof of concept logic

and outputs whether proof of concept was successfully generated or not.

Figure 6.3: Screen Capture of our Tool in action - 3

23

Chapter 7

CASE STUDY

In this section we describe a case study of our scanner over our test application. To

explain the functioning in depth we have to first dive into the test application which

we have built. We call this test application as test-vul.

7.1 Test Application

Our test application is built in PHP and is one of the most simplest web applica-

tions. This application is a stateless application, which means it does not maintain

any kind of user state in it. It just asks the user for input and prints the input as

output in the HTML page.

In the Listing 7.1 we can see that this simple web application only echo’s the

input of the user as a substring stripping of the last two characters from the end. The

application checks whether the second text box is not empty. So if the user submits

the form with random strings in both the input text boxes, the page-2 of the web

application will be the response from the application.

7.2 IRE Module

The IRE module when ran on this web application will fuzz both the user inputs

with strings which fall in our abstracted web language. This gives the IRE module an

idea about how to generate the synthesized PHP code using the input/output pairs.

Considering our language in mind our fuzzer generates the following strings at the

input text boxes:

24

1 <html>

2 <head>

3 <t i t l e >Login page</ t i t l e >

4 </head>

5 <body>

6 <h1>Simple Login Page</h1>

7 <form act i on="page2 . php" method="POST">

8 Username<input type=" text " name=" us e r i d ">

9 Password<input type="password" name="password">

10 <input type="submit" value="Login">

11 </form>

12 </body>

13 </html>

Listing 7.1: Example Simple PHP Web Application - Page 1

1 <html>

2 <body>

3 <?php

4 i f (! empty ($_POST["password"])) {

5 $ r e s = subs t r ($_POST[' us e r i d '] , 0 , −2) ;

6 echo 'Welcome ' . $ r e s . "
" ;

7 echo ' This i s your Welcome page ! ' ;

8 } e l s e {

9 echo ' Sorry 404 not found ' ;

10 }

11 ?>

12 </body>

13 </html>

Listing 7.2: Example Simple PHP Web Application - Page 2

25

1 "$ \ '@!" , "/(](−\& `) \"=" , "−^(\&", " lunch " , " concede " , " automobi les " , "

exu l ted " , "Afghanistan "

The IRE module then stores all the input/output pairs in the form of a Directed

Acyclic Graph, we call it a DAG. The structure of this DAG is similar to a normal

graph with nodes and edges. The edges in these DAG’s are our theories which we

define in our language. These theories are:

• ConstStr - Strings like plain HTML, CSS which are generic to every server

response.

• SubStr - Substring of the user input which can be represented in different ways

and change according to the applications code.

• TwoInputMath - output is the result of a math operation on two inputs.

• ConstMath - output is the result of math operation with an input and a con-

stant.

Now, our IRE module classifies the input-output pairs based on various boolean con-

straints defined in our language. These boolean constraints are part of our language

which decides whether particular input/output pair should fall into which category.

For instance, we have a boolean constraint "/̂[a-zA-Z0-9]+$/ = input[0]" which states

that the input[0] entered by the fuzzer matches the regular expression which captures

all letters and digits. This tells the IRE module to generate separate DAG’s for each

boolean classifier accordingly. The boolean constraints generated according to our

language of the test-vul application are shown in Figure 7.1. These boolean classi-

fiers are a set of Or boolean conditions.

26

Or

And

NotMatch

And

NullMatch

And

NotMatch

And

NullMatch

Figure 7.1: Boolean Constraints

For the sample PHP application the complete DAG’s generated by the IRE module

can be represented as in Figure 7.2.

7.3 Result of Vulnerability Analysis

Here we show how exactly the intersected graph generated by the poc_checker

module exactly looks like. This graph is the intersection of all the edges in the

complete version space graph generated by the IRE module and the version space

graph generated by the vulnerability module with XSS payload as input. We can see

that there is an edge present with the same theory on the intersected graph as there

is on the complete version space graph. This proves our theory of graph intersection

and also creates a proof of concept about the payload we used to attack on the web

application.

27

IF input[1] is null

0

1

<html>
 <head>

 <title>Login page</title>
 </head>
 <body>

 <h1>Simple Login Page</h1>
 <form action="page2.php" method="POST">

 Username<input type="text" name="userid">
 Password<input type="password" name="password">

 <input type="submit" value="Login">
 </form>
 </body>

</html>

IF !(input[1] is null)

0

1

<html>
<body>

Welcome

2

input[1][:1]

3

input[1][:-3]

4

input[1][:-2]

input[1][1:-2] input[1][-3:-2]

5

This is your Welcome page!</body>
</html>

Figure 7.2: Version Space Graphs for Sample PHP Application 7.1.

IF True

(((((((0, 0), (0, 0)), ((0, 0), (0, 0))), (((0, 0), (0, 0)), ((0, 0), (0, 0)))), ((((0, 0), (0, 0)), ((0, 0), (0, 0))), (((0, 0), (0, 0)), ((0, 0), (0, 0))))), (((((0, 0), (0, 0)), ((0, 0), (0, 0))), (((0, 0), (0, 0)), ((0, 0), (0, 0)))), ((((0, 0), (0, 0)), ((0, 0), (0, 0))), (((0, 0), (0, 0)), ((0, 0), (0, 0)))))), 0)

(((((((76, 71), (70, 76)), ((77, 71), (73, 70))), (((77, 73), (76, 77)), ((77, 70), (70, 77)))), ((((70, 73), (76, 77)), ((77, 70), (71, 77))), (((73, 76), (70, 70)), ((77, 73), (77, 73))))), (((((70, 76), (71, 70)), ((71, 73), (71, 70))), (((70, 70), (77, 77)), ((77, 73), (73, 70)))), ((((70, 71), (77, 76)), ((71, 73), (70, 73))), (((73, 73), (73, 76)), ((73, 77), (77, 73)))))), 96)

(((((((22, 22), (22, 22)), ((22, 22), (22, 22))), (((22, 22), (22, 22)), ((22, 22), (22, 22)))), ((((22, 22), (22, 22)), ((22, 22), (22, 22))), (((22, 22), (22, 22)), ((22, 22), (22, 22))))), (((((22, 22), (22, 22)), ((22, 22), (22, 22))), (((22, 22), (22, 22)), ((22, 22), (22, 22)))), ((((22, 22), (22, 22)), ((22, 22), (22, 22))), (((22, 22), (22, 22)), ((22, 22), (22, 22)))))), 22)

<html>
<body>

Welcome

(((((((29, 24), (23, 29)), ((30, 24), (26, 23))), (((30, 26), (29, 30)), ((30, 23), (23, 30)))), ((((23, 26), (29, 30)), ((30, 23), (24, 30))), (((26, 29), (23, 23)), ((30, 26), (30, 26))))), (((((23, 29), (24, 23)), ((24, 26), (24, 23))), (((23, 23), (30, 30)), ((30, 26), (26, 23)))), ((((23, 24), (30, 29)), ((24, 26), (23, 26))), (((26, 26), (26, 29)), ((26, 30), (30, 26)))))), 49)

(((((((30, 25), (24, 30)), ((31, 25), (27, 24))), (((31, 27), (30, 31)), ((31, 24), (24, 31)))), ((((24, 27), (30, 31)), ((31, 24), (25, 31))), (((27, 30), (24, 24)), ((31, 27), (31, 27))))), (((((24, 30), (25, 24)), ((25, 27), (25, 24))), (((24, 24), (31, 31)), ((31, 27), (27, 24)))), ((((24, 25), (31, 30)), ((25, 27), (24, 27))), (((27, 27), (27, 30)), ((27, 31), (31, 27)))))), 50)

input[1][-3:-2]

input[1][:-3]

input[1][:-2] (((((((23, 23), (23, 23)), ((23, 23), (23, 23))), (((23, 23), (23, 23)), ((23, 23), (23, 23)))), ((((23, 23), (23, 23)), ((23, 23), (23, 23))), (((23, 23), (23, 23)), ((23, 23), (23, 23))))), (((((23, 23), (23, 23)), ((23, 23), (23, 23))), (((23, 23), (23, 23)), ((23, 23), (23, 23)))), ((((23, 23), (23, 23)), ((23, 23), (23, 23))), (((23, 23), (23, 23)), ((23, 23), (23, 23)))))), 23)

input[1][:1]

This is your Welcome page!</body>
</html>

input[1][1:-2]

Figure 7.3: Version Space Graphs for Sample PHP Application Generated by

AWLSA module.

28

Chapter 8

DISCUSSION

In this section we dig into the results of the scanner and discuss how these results

were obtained and what are the certain limitations of our scanner.

8.1 Lessons Learned

Our results show that we can definitely scale Inductive Reverse Engineering tech-

nique for reversing source code of web applications. The more we extend our AWL

language, the more we learn about the web applications. Static program analysis

technique has been already been used in the security community for vulnerability

analysis. Using this already proven technique we moved ahead with fusing this with

lesser used constraint solving technique.

This was an implementation challenge for us because using constraint solvers to gen-

erate precise payloads required us to convert our boolean constraints into constraints

which Z3-str2 will understand. Hence we converted all the boolean constraints gen-

erated by IRE module into Z3-str2 constraints and then solved them.

Z3 constraint solver does not support for regular expression and hence finding work

done above Z3 which supports regular expressions was also a lesson learned. There

were several other similar SMT solvers, but we chose Z3-str2 because of its efficiency.

8.2 Vulnerable Applications

test-vul is a stateless web application is created for testing purposes. This appli-

cation is a simple PHP login form with two input boxes and a submit button. The

source code of this PHP application on the server side does not have any kind of

29

input sanitization routines in place. The application simply ’echo’s’ the user input

with some static HTML content. Because this application did not contain any kind

of input sanitization or any kind of string matching checks at the server side, it was

very easy for our scanner to generate the synthesized PHP code and fuzz the input

with the right XSS payload.

WackoPicko [16] is a website developed by Dr. Adam Doupe that contains known

vulnerabilities. Our scanner being in prototype mode for IRE technique, only works

on stateless applications. Hence we run our scanner only on the page in WackoPicko

which is vulnerable to reflected XSS. This page contains only one search box, where

user can search for pictures uploaded by other users of the application. This search

box has no input sanitization and uses the query parameter directly to search for

the input string. However, this application uses HTML encoding techniques, and

performs HTML encoding for the & character. It converts this character into its

HTML encoded form,which is &. Our scanner fails this case becuase we fuzz

the inputs with special character regular expression which contains & in it. Hence

when the application generates the output for these inputs, our IRE theory treats the

‘amp;‘ after the & as a constant string and creates new edges in the directed acyclic

graph for the application. Due to this we are still not able to understand the web

application completely. But, we intend to modify our scanner to an extent where it

will be having HTML encoding as inputs to the fuzzer.

xvwa is a badly coded web application in PHP/MySQL and is listed on the

OWASP broken web application list. The page in this application is vulnerable to

reflected XSS contains a form with submit button which asks user to enter a message.

The code on the server side uses the GET method to receive the message. Our scanner

fuzzes this vulnerable parameter with precise XSS payload and performs the PoC

generation too.

30

btslab is another badly coded web applicaton listed on OWASP broken applica-

tion list. This application is vulnerable to various vulnerabilities starting from SQL

injection to file upload vulnerability. This application has a lot of HTML content

and many hyperlinks. Due to this fact our IRE module takes a little bit longer to

generate all the possible DAG’s and perform intersection of them. Again our vulner-

ability finder module, fuzzes the search parameter with XSS payload and generates

DAG’s for that input/output pair. Even though our approaches do not scale to a good

amount for this application, we were able to detect this application as vulnerable.

8.3 Limitations

Our IRE module was able to scale the inductive programming techinques to real

web applications, the type of web application we are able to reverse engineer and size

of the applications are the areas for improvement. Our scanner right now only works

on stateless web application. In our theories we plan to consider state of the web

application too. Once, we consider the state then the vulnerability module can be

extended to find vulnerabilities like SQL Injection and stored XSS. Our IRE module

fuzzes the web application in order to learn its behaviors with certain number of

randomly generated strings. The more we increase this number the more we can

learn about the behaviour of the web application. Finding a technique which will

fuzz the web application with minimum number of inputs and learning most of it is

another direction for research.

31

Chapter 9

RELATED WORK

Number of previous efforts in the area of static program analysis focus on finding

vulnerabilities in PHP, JAVA applications, including tools such as Pixy [28], NoTam-

per [9], WAPTECH [10]. Pixy [28] employed static analysis with taint propagation

to identify SQL injection and XSS vulnerabilities. Saner [6] also uses static analysis

techniques to detect flaws in the input sanitization routines. WebSSARI [25] also

utilizes static analysis techniques for detecting SQL injection vulnerabilities but it

also proposes a techniques to insert proper input sanitization routine during runtime.

These tools constructively use static program analysis to analyze program flows and

find sink points where the vulnerability lie. These techniques can be further extended

to find vulnerabilities over abstracted web language programs. The concept of gen-

erating abstracted web language program using the technique of Inductive Reverse

Engineering is very novel and hence till now no work is done on the same. Even

though, there are some approaches [14] that perform static analysis on the code to

create UML diagrams of the application. Bisht et al. [9], propose an approach for au-

tomatically finding parameter tampering vulnerabilities using the idea of constraint

solving. This approach automatically identifies various constraints on the server side

for a web application and solve these constraints to trigger parameter tampering vul-

nerability. They use HAMPI [30], a solver for string constraints in order to solve

the boolean constraints their tool generate. Our work uses a combination of these

two profound techniques, static program analysis and constraint solving, in order to

find vulnerabilities in abstracted web language programs. Also, there are numerous

tools which target on finding XSS vulnerability in web application. There are mainly

32

tow approaches in order to do so. One is the Black-Box approach and other is the

White-Box approach. Various tools like Enemy of the state [15], Secubat [29] describe

their black-box approach in order to understand the state of the web application and

finding vulnerabilities in the web application. Enemy of the state [15], infers the state

of the web application from the outside, by observing differences in the output and

generating state of the web application using the same. Our tool currently is not

considering the state of the web application and hence this research can help us in

inculcating the state in our tool. To our knowledge, no other research has been con-

ducted in finding vulnerabilities over abstracted web language programs. Combining

our study from above research we present a novel approach built on the baseline of

static program analysis and constraint solving to automatically find XSS vulnerability

over this AWL programs.

33

Chapter 10

FUTURE WORK

Our work is currently very precise and scales over only stateless web applications built

in PHP language. In the future we plan to consider the state of the web application

as an input in our IRE module. This will enable us to understand when the web

application changes its behavior according to the input-output pairs summited to

it. Once we have the state as one of our theories, we can extend our vulnerability

analysis module to finding SQL injection vulnerabilities in web applications. The

constraint solving technique is also widely used previously by researchers in order to

detect parameter tampering attacks. Our scanner will also be able to cover those

vulnerabilities once the milestone of considering state is achieved. Because we are

working on this novel approach of Reverse Engineering the source code of the web

application, there are many paths we can take in the future to refine our scanner.

34

Chapter 11

CONCLUSION

In this thesis we present a technique to perform vulnerability analysis over abstracted

web language programs which are generated by a novel approach of Inductive Reverse

Engineering. We show that how we can successfully find vulnerabilities over these

programs and make our vulnerability scanner more intelligent and precise as compared

to other Black-Box vulnerability scanner which fuzz the web application without

knowing the server side code. We believe our approach of fusing static program

analysis and constraint solving to detect vulnerabilities in abstracted web language

programs is valid. Further, these techniques can be adopted by other black-box

scanners to generate precise payloads.

35

REFERENCES

[1] Akers, S. B., “Binary Decision Diagrams”, IEEE Transactions on computers
(1978).

[2] Amarel, S., “On the automatic formation of a computer program which represents
a theory”, in “Self-Organizing Systems”, (1962).

[3] Amarel, S., “Representations and Modeling in Problems of Program Formation”,
in “Machiene Intelligence 6”, (1972).

[4] Artzi, S., A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar and M. D. Ernst,
“Finding bugs in web applications using dynamic test generation and explicit-
state model checking”, IEEE Transactions on Software Engineering 36, 4, 474–
494 (2010).

[5] Balzarotti, D., M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel
and G. Vigna, “Saner: Composing Static and Dynamic Analysis to Validate
Sanitization in Web Applications”, (2008).

[6] Balzarotti, D., M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel and
G. Vigna, “Saner: Composing static and dynamic analysis to validate sanitization
in web applications”, in “Security and Privacy, 2008. SP 2008. IEEE Symposium
on”, pp. 387–401 (IEEE, 2008).

[7] Biermann, A., “On the Inference of Turing Machines from Sample Computa-
tions”, Artificial Intelligence 3 (1972).

[8] Biermann, A., R. Baum and F. Petry, “Speeding up the Synthesis of Programs
from Traces”, IEEE Transactions on Computers (1975).

[9] Bisht, P., T. Hinrichs, N. Skrupsky, R. Bobrowicz and V. Venkatakrishnan, “No-
tamper: automatic blackbox detection of parameter tampering opportunities in
web applications”, in “Proceedings of the 17th ACM conference on Computer
and communications security”, pp. 607–618 (ACM, 2010).

[10] Bisht, P., T. Hinrichs, N. Skrupsky and V. Venkatakrishnan, “Waptec: whitebox
analysis of web applications for parameter tampering exploit construction”, in
“Proceedings of the 18th ACM conference on Computer and communications
security”, pp. 575–586 (ACM, 2011).

[11] Bisht, P. and V. Venkatakrishnan, “XSS-GUARD: Precise Dynamic Prevention
of Cross-Site Scripting Attacks”, (2008).

[12] Chaudhuri, A. and J. Foster, “Symbolic Security Analysis of Ruby-on-Rails Web
Applications”, (2010).

[13] De Moura, L. and N. Bjørner, “Z3: An efficient smt solver”, in “International con-
ference on Tools and Algorithms for the Construction and Analysis of Systems”,
pp. 337–340 (Springer, 2008).

36

[14] Di Lucca, G. A., A. R. Fasolino, F. Pace, P. Tramontana and U. De Carlini,
“Ware: A tool for the reverse engineering of web applications”, in “Software
Maintenance and Reengineering, 2002. Proceedings. Sixth European Conference
on”, pp. 241–250 (IEEE, 2002).

[15] Doupé, A., L. Cavedon, C. Kruegel and G. Vigna, “Enemy of the state: A state-
aware black-box web vulnerability scanner.”, in “USENIX Security Symposium”,
vol. 14 (2012).

[16] Doupé, A., M. Cova and G. Vigna, “Why Johnny Can’t Pentest: An Analysis of
Black-box Web Vulnerability Scanners”, (2010).

[17] Ganesh, V., “Stp constraint solver”, URL https://stp.github.io/ (2017).

[18] Green, C. and D. Barstow, “On program synthesis knowledge”, Artificial Intelli-
gence (1978).

[19] Gulwani, S., “Automating string processing in spreadsheets using input-output
examples”, (2011).

[20] Gulwani, S., W. R. Harris and R. Singh, “Spreadsheet Data Manipulation Using
Examples”, Communications of the ACM 55, 8, 97–105 (2012).

[21] Gulwani, S., J. Hernandez-Orallo, E. Kitzelmann, S. H. Muggleton, U. Schmid
and B. Zorn, “Inductive programming meets the real world”, Communications of
the ACM 58, 11, 90–99 (2015).

[22] Harris, W. R. and S. Gulwani, “Spreadsheet table transformations from exam-
ples”, in “ACM SIGPLAN Notices”, vol. 46, pp. 317–328 (ACM, 2011).

[23] Hooimeijer, P., B. Livshits, D. Molnar, P. Saxena and M. Veanes, “Fast and
Precise Sanitizer Analysis with Bek”, (2011).

[24] hoon An, J., A. Chaudhuri and J. Foster, “Static Typing for Ruby on Rails”,
(2009).

[25] Huang, Y.-W., F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee and S.-Y. Kuo, “Securing
web application code by static analysis and runtime protection”, in “Proceedings
of the 13th international conference on World Wide Web”, pp. 40–52 (ACM,
2004).

[26] Jensen, S. H., A. Møller and P. Thiemann, “Interprocedural Analysis with Lazy
Propagation”, (2011).

[27] Jim, T., N. Swamy and M. Hicks, “Defeating Script Injection Attacks with
Browser-Enforced Embedded Policies”, (2007).

[28] Jovanovic, N., C. Kruegel and E. Kirda, “Pixy: A static analysis tool for detecting
web application vulnerabilities”, in “Security and Privacy, 2006 IEEE Symposium
on”, pp. 6–pp (IEEE, 2006).

37

https://stp.github.io/

[29] Kals, S., E. Kirda, C. Kruegel and N. Jovanovic, “Secubat: a web vulnerability
scanner”, in “Proceedings of the 15th international conference on World Wide
Web”, pp. 247–256 (ACM, 2006).

[30] Kiezun, A., V. Ganesh, P. J. Guo, P. Hooimeijer and M. D. Ernst, “Hampi:
a solver for string constraints”, in “Proceedings of the eighteenth international
symposium on Software testing and analysis”, pp. 105–116 (ACM, 2009).

[31] Kitzelmann, E., “Analytical inductive functional programming”, in “International
Symposium on Logic-Based Program Synthesis and Transformation”, pp. 87–102
(Springer, 2008).

[32] Kitzelmann, E., “Inductive programming: A survey of program synthesis tech-
niques”, in “Approaches and Applications of Inductive Programming”, pp. 50–73
(Springer, 2010).

[33] Lau, T., S. A. Wolfman, P. Domingos and D. S. Weld, “Programming by demon-
stration using version space algebra”, Machine Learning 53, 1-2, 111–156 (2003).

[34] Liao, K., “Toward Inductive Reverse Engineering of Web Applications”, in
“Kevin’s Thesis”, (2017).

[35] Livshits, B. and S. Chong, “Towards Fully Automatic Placement of Security
Sanitizers and Declassifiers”, (2013).

[36] Livshits, V. B. and M. S. Lam, “Finding Security Vulnerabilities in Java Appli-
cations with Static Analysis”, (2005).

[37] Livshits, V. B. and M. S. Lam, “Finding security vulnerabilities in java applica-
tions with static analysis.”, vol. 2013 (2005).

[38] Louw, M. T. and V. Venkatakrishnan, “Blueprint: Robust Prevention of Cross-
site Scripting Attacks for Existing Browsers”, (2009).

[39] Madsen, M., B. Livshits and M. Fanning, “Practical Static Analysis of Javascript
Applications in the Presence of Frameworks and Libraries”, (2013).

[40] Manna, Z. and R. Waldinger, “A deductive approach to program synthesis”, ACM
Transactions on Programming Languages and Systems (TOPLAS) (1980).

[41] Manna, Z. and R. J. Waldinger, “Toward automatic program synthesis”, Com-
munications of the ACM (1971).

[42] Mitchell, T. M., “Generalization as search”, Artificial intelligence 18, 2, 203–226
(1982).

[43] Muggleton, S. and L. De Raedt, “Inductive logic programming: Theory and
methods”, The Journal of Logic Programming (1994).

[44] Muggleton, S., L. De Raedt, D. Poole, I. Bratko, P. Flach, K. Inoue and A. Srini-
vasan, “ILP turns 20”, Machine Learning (2012).

38

[45] Nguyen-tuong, A., S. Guarnieri, D. Greene and D. Evans, “Automatically Hard-
ening Web Applications Using Precise Tainting”, (2005).

[46] Olsson, R., “Inductive functional programming using incremental program trans-
formation”, Artificial intelligence (1995).

[47] Open Web Application Security Project (OWASP), “OWASP Top Ten Project”,
http://www.owasp.org/index.php/Top_10 (2010).

[48] OWASP, “Owasp filter evasion xss cheat sheet”, https://www.owasp.org/
index.php/XSS_Filter_Evasion_Cheat_Sheet (2017).

[49] Raghavan, S. and H. Garcia-Molina, “Crawling the hidden web”, Tech. rep.,
Stanford (2000).

[50] Samuel, M., P. Saxena and D. Song, “Context-Sensitive Auto-Sanitization in
Web Templating Languages Using Type Qualifiers”, (2011).

[51] Saxena, P., D. Akhawe, S. Hanna, F. Mao, S. McCamant and D. Song, “A
symbolic execution framework for javascript”, in “Security and Privacy (SP),
2010 IEEE Symposium on”, pp. 513–528 (IEEE, 2010).

[52] Saxena, P., D. Molnar and B. Livshits, “ScriptGard: Automatic Context-
Sensitive Sanitization for Large-Scale Legacy Web Applications”, (2011).

[53] Singh, R. and S. Gulwani, “Learning semantic string transformations from ex-
amples”, Proceedings of the VLDB Endowment 5, 8, 740–751 (2012).

[54] Smith, D. R., “Top-down synthesis of divide-and-conquer algorithms”, Artificial
Intelligence (1985).

[55] Srivastava, S., S. Gulwani and J. S. Foster, “From program verification to pro-
gram synthesis”, in “ACM Sigplan Notices”, vol. 45, pp. 313–326 (ACM, 2010).

[56] Stamm, S., B. Sterne and G. Markham, “Reining in the Web with Content
Security Policy”, (2010).

[57] Sun, F., L. Xu and Z. Su, “Static Detection of Access Control Vulnerabilities in
Web Applications”, (2011).

[58] Tripp, O., M. Pistoia, S. J. Fink, M. Sridharan and O. Weisman, “TAJ: Effective
Taint Analysis of Web Applications”, (2009).

[59] W3techs, “Usage Statistics and Market Share of PHP for Websites, Febru-
ary 2017”, URL http://w3techs.com/technologies/details/pl-php/all/
all (2017).

[60] Wang, R., S. Chen, X. Wang and S. Qadeer, “How to Shop for Free Online -
Security Analysis of Cashier-as-a-Service Based Web Stores”, (2011).

[61] Wassermann, G. and Z. Su, “Sound and Precise Analysis of Web Applications
for Injection Vulnerabilities”, (2007).

39

http://www.owasp.org/index.php/Top_10
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://w3techs.com/technologies/details/pl-php/all/all
http://w3techs.com/technologies/details/pl-php/all/all

[62] Weinberger, J., P. Saxena, D. Akhawe, M. Finifter, R. Shin and D. Song, “A Sys-
tematic Analysis of XSS Sanitization in Web Application Frameworks”, (2011).

[63] Xie, Y. and A. Aiken, “Static Detection of Security Vulnerabilities in Scripting
Languages”, (2006).

[64] Yu, F., M. Alkhalaf and T. Bultan, “Stranger: An Automata-based String
Analysis Tool for PHP”, (2010).

[65] Zheng, Y. and X. Zhang, “Static detection of resource contention problems in
server-side scripts”, in “Proceedings of the 34th International Conference on Soft-
ware Engineering”, pp. 584–594 (IEEE Press, 2012).

[66] Zheng, Y., X. Zhang and V. Ganesh, “Z3-str: A z3-based string solver for web ap-
plication analysis”, in “Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering”, pp. 114–124 (ACM, 2013).

40

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Background
	2.1 Inductive Reverse Engineering
	2.2 Cross Site Scripting
	2.3 Static Program Analysis
	2.4 Constraint Solvers

	3 System Design
	3.1 System Architecture
	3.2 System Components
	3.2.1 IRE Module
	3.2.2 Check Vulnerability
	3.2.3 Boolean Constraints
	3.2.4 Constraint Solver
	3.2.5 PoC & Payload Generator

	4 Abstracted Web Language
	4.1 Syntax of Language for describing AWL Programs
	4.2 Semantics of Language for describing sets of AWL Programs

	5 Implementation
	5.1 System Configuration
	5.2 Platforms and Software
	5.3 Languages
	5.4 OWASP Broken Application
	5.5 Problems Faced

	6 Evaluation
	6.1 Results
	6.2 Experiments on Vulnerable application
	6.3 Implementation Output Results

	7 Case Study
	7.1 Test Application
	7.2 IRE Module
	7.3 Result of Vulnerability Analysis

	8 Discussion
	8.1 Lessons Learned
	8.2 Vulnerable Applications
	8.3 Limitations

	9 Related Work
	10 Future Work
	11 Conclusion

	REFERENCES

