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for all the insights, encouragements and laughter. I will miss you guys. I wish you all the

best!

Special thanks to the professors who agreed to serve on my thesis committee: Dr. Bram

Adams, Dr. Ettore Merlo, Dr. Michel Gagnon, Dr. Giuliano Antoniol and Dr. Thomas

Dean.

I also want to thank the NSERC and the FQRNT for funding my research. Their support

allowed me to fully focus on my doctoral studies. It was a great privilege and I am very

grateful.

Finally, I wish to thank my parents, my number one fans, for 30 years of love, care, and
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RÉSUMÉ

De nos jours, les applications Web sont omniprésentes et gèrent des quantités toujours plus

importantes de données confidentielles. Afin de protéger ces données contre les attaques

d’usagers mal intentionnés, des mécanismes de sécurité doivent être mis en place. Toutefois,

sécuriser un logiciel est une tâche extrêmement ardue puisqu’une seule brèche est souvent

suffisante pour compromettre la sécurité d’un système tout entier. Il n’est donc pas sur-

prenant de constater que jour après jour les nouvelles font état de cyber attaques et de fuites

de données confidentielles dans les systèmes informatiques. Afin de donner au lecteur une

vague idée de l’ampleur du problème, considérons que différents organismes spécialisés en

sécurité informatique rapportent qu’entre 85% et 98% des sites Web contiennent au moins

une vulnérabilité sérieuse.

Dans le cadre de cette thèse, nous nous concentrerons sur un aspect particulier de la

sécurité logicielle, à savoir les modèles de contrôle d’accès. Les modèles de contrôle d’accès

définissent les actions qu’un usager peut et ne peut pas faire dans un système. Malheureuse-

ment, années après années, les failles dans les modèles de contrôle d’accès trônent au sommet

des palmarès des failles les plus communes et les plus critiques dans les applications Web.

Toutefois, contrairement à d’autres types de faille de sécurité comme les injections SQL

(SQLi) et le cross-site scripting (XSS), les failles de contrôle d’accès ont comparativement

reçu peu d’attention de la communauté de recherche scientifique. Par ce travail de recherche,

nous espérons renverser cette tendance.

Bien que la sécurité des applications et les modèles de contrôle d’accès constituent les

principaux thèmes sous-jacents de cette thèse, notre travail de recherche est aussi fortement

teinté par le génie logiciel. Vous observerez en effet que notre travail s’applique toujours à des

applications réelles et que les approches que nous développons sont toujours construites de

manière à minimiser le fardeau de travail supplémentaire pour les développeurs. En d’autres

mots, cette thèse porte sur la sécurité des applications en pratique.

Dans le contexte de cette thèse, nous aborderons l’imposant défi d’investiguer des modèles

de contrôle d’accès non spécifiés et souvent non documentés, tels que rencontrés dans les ap-

plication Web en code ouvert. En effet, les failles de contrôle d’accès se manifestent lorsqu’un

usager est en mesure de faire des actions qu’il ne devrait pas pouvoir faire ou d’accéder à

des données auxquelles il ne devrait pas avoir accès. En absence de spécifications de sécurité,

déterminer qui devrait avoir les autorisations pour effectuer certaines actions ou accéder à

certaines données n’est pas simple.

Afin de surmonter ce défi, nous avons d’abord développé une nouvelle approche, appellée
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analyse de Traversement de Patrons de Sécurité (TPS), afin de faire la rétro-ingénierie de

modèles de contrôle d’accès à partir du code source d’applications Web et ce, d’une manière

rapide, précise et évolutive. Les résultats de l’analyse TPS donnent un portrait du modèle

de contrôle d’accès tel qu’implémenté dans une application et servent de point de départ à

des analyses plus poussées.

Par exemple, les applications Web réelles comprennent souvent des centaines de priv-

ilèges qui protègent plusieurs centaines de fonctions et modules différents. En conséquence,

les modèles de contrôle d’accès, tel qu’extraits par l’analyse TPS, peuvent être difficiles à

interpréter du point de vue du développeur, principalement à cause de leurs taille. Afin de

surmonter cette limitation, nous avons exploré comment l’analyse formelle de concepts peut

faciliter la compréhension des modèles extraits en fournissant un support visuel ainsi qu’un

cadre formel de raisonnement. Les résultats ont en effet démontrés que l’analyse formelle de

concepts permet de mettre en lumière plusieurs propriétés des modèles de contrôle d’accès

qui sont enfouies profondément dans le code des applications, qui sont invisibles aux admin-

istrateurs et aux développeurs, et qui peuvent causer des incompréhensions et des failles de

sécurité.

Au fil de nos investigations et de nos observations de plusieurs modèles de contrôle d’accès,

nous avons aussi identifié des patrons récurrents, problématiques et indépendants des applica-

tions qui mènent à des failles de contrôle d’accès. La seconde partie de cette thèse présente les

approches que nous avons développées afin de tirer profit des résultats de l’analysis TPS pour

identifier automatiquement plusieurs types de failles de contrôle d’accès communes comme

les vulnérabilités de navigation forcée, les erreurs sémantiques et les failles basées sur les

clones à protection incohérentes. Chacune de ces approches interprète en effet les résultats

de l’analyse TPS sous des angles différents afin d’identifier différents types de vulnérabilités

dans les modèles de contrôle d’accès.

Les vulnérabilités de navigation forcée se produisent lorsque des ressources sensibles ne

sont pas adéquatement protégées contre les accès direct à leur URL. En utilisant les résultats

de l’analyse TPS, nous avons montré comment nous sommes en mesure de détecter ces

vulnérabilités de manière précise et très rapide (jusqu’à 890 × plus rapidement que l’état de

l’art).

Les erreurs sémantiques se produisent quand des resources sensibles sont protégées par des

privilèges qui sont sémantiquement incorrects. Afin d’illustrer notre propos, dans le contexte

d’une application Web, protéger l’accès à des ressources administratives avec un privilège

destiné à restreindre le téléversement de fichiers est un exemple d’erreur sémantique. À notre

connaissance, nous avons été les premiers à nous attaquer à ce problème et à identifier avec

succès des erreurs sémantiques dans des modèles de contrôle d’accès. Nous avons obtenu de
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tels résultats en interprétant les résultats de l’analyse TPS à la lumière d’une technique de

traitement de la langue naturelle appellée Latent Dirichlet Allocation.

Finalement, en investiguant les résultats de l’analyse TPS à la lumière des informations

fournies par une analyse de clones logiciels, nous avons été en mesure d’identifier davantage de

nouvelles failles de contrôle d’accès. En résumé, nous avons exploré l’intuition selon laquelle

il est attendu que les clones logiciels, qui sont des blocs de code syntaxiquement similaires,

effectuent des opérations similaires dans un système et, conséquemment, qu’ils soient protégés

de manière similaire. En investiguant les clones qui ne sont pas protégés de manière similaire,

nous avons effectivement été en mesure de détecter et rapporter plusieurs nouvelles failles de

sécurité dans les systèmes étudiés.

En dépit des progrès significatifs que nous avons accomplis dans cette thèse, la recherche

sur les modèles de contrôle d’accès et les failles de contrôle d’accès, spécialement d’un point

de vue pratique n’en est encore qu’à ses débuts. D’un point de vue de génie logiciel, il reste

encore beaucoup de travail à accomplir en ce qui concerne l’extraction, la modélisation, la

compréhension et les tests de modèles de contrôle d’accès. Tout au long de cette thèse,

nous discuterons comment les travaux présentés peuvent soutenir ces activités et suggérerons

plusieurs avenues de recherche à explorer.
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ABSTRACT

Nowadays, Web applications are ubiquitous and deal with increasingly large amounts of

confidential data. In order to protect these data from malicious users, security mechanisms

must be put in place. Securing software, however, is an extremely difficult task since a

single breach is often sufficient to compromise the security of a system. Therefore, it is not

surprising that day after day, we hear about cyberattacks and confidential data leaks in the

news. To give the reader an idea, various reports suggest that between 85% and 98% of

websites contain at least one serious vulnerability.

In this thesis, we focus on one particular aspect of software security that is access control

models. Access control models are critical security components that define the actions a

user can and cannot do in a system. Year after year, several security organizations report

access control flaws among the most prevalent and critical flaws in Web applications. How-

ever, contrary to other types of security flaws such as SQL injection (SQLi) and cross-site

scripting (XSS), access control flaws comparatively received little attention from the research

community. This research work attempts to reverse this trend.

While application security and access control models are the main underlying themes

of this thesis, our research work is also strongly anchored in software engineering. You will

observe that our work is always based on real-world Web applications and that the approaches

we developed are always built in a such way as to minimize the amount of work on that is

required from developers. In other words, this thesis is about practical software security.

In the context of this thesis, we tackle the highly challenging problem of investigating

unspecified and often undocumented access control models in open source Web applications.

Indeed, access control flaws occur when some user is able to perform operations he should

not be able to do or access data he should be denied access to. In the absence of security

specifications, determining who should have the authorization to perform specific operations

or access specific data is not straightforward.

In order to overcome this challenge, we first developed a novel approach, called the Se-

curity Pattern Traversal (SPT) analysis, to reverse-engineer access control models from the

source code of applications in a fast, precise and scalable manner. Results from SPT analysis

give a portrait of the access control model as implemented in an application and serve as a

baseline for further analyzes.

For example, real-world Web application, often define several hundred privileges that

protect hundreds of different functions and modules. As a consequence, access control models,

as reverse-engineered by SPT analysis, can be difficult to interpret from a developer point of
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view, due to their size. In order to provide better support to developers, we explored how

Formal Concept Analysis (FCA) could facilitate comprehension by providing visual support

as well as automated reasoning about the extracted access control models. Results indeed

revealed how FCA could highlight properties about implemented access control models that

are buried deep into the source code of applications, that are invisible to administrators and

developers, and that can cause misunderstandings and vulnerabilities.

Through investigation and observation of several Web applications, we also identified

recurring and cross-application error-prone patterns in access control models. The second half

of this thesis presents the approaches we developed to leverage SPT results to automatically

capture these patterns that lead to access control flaws such as forced browsing vulnerabilities,

semantic errors and security-discordant clone based errors. Each of these approaches interpret

SPT analysis results from different angles to identify different kinds of access control flaws

in Web applications.

Forced browsing vulnerabilities occur when security-sensitive resources are not protected

against direct access to their URL. Using results from SPT, we showed how we can detect

such vulnerabilities in a precise and very fast (up to 890 × faster than state of the art) way.

Semantic errors occur when security-sensitive resources are protected by semantically

wrong privileges. To give the reader an idea, in the context of a Web application, protecting

access to administrative resources with a privilege that is designed to restrict file uploads is

an example of semantic error. To our knowledge, we were the first to tackle this problem and

to successfully detect semantic errors in access control models. We achieved such results by

interpreting results from SPT in the light of a natural language processing technique called

Latent Dirichlet Allocation.

Finally, by investigating SPT results in the light of software clones, we were able to

detect yet other novel access control flaws. Simply put, we explored the intuition that code

clones, that are blocks of code that are syntactically similar, are expected to perform similar

operations in a system and, consequently, be protected by similar privileges. By investigating

clones that are protected in different ways, called security-discordant clones, we were able to

report several novel access control flaws in the investigated systems.

Despite the significant advancements that were made through this thesis, research on

access control models and access control flaws, especially from a practical, application-centric

point of view, is still in the early stages. From a software engineering perspective, a lot of work

remains to be done from the extraction, modelling, understanding and testing perspectives.

Throughout this thesis we discuss how the presented work can help in these perspectives and

suggest further lines of research.
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CHAPTER 1

INTRODUCTION

Nowadays, Web applications are an integral part of our daily lives. We use them to shop,

bank, communicate and work. Consequently, these applications now manage increasingly

large amounts of confidential and sensitive data. Sadly, over the years, a parallel market

developed where security flaws in software are exploited for profit or used to blackmail people

and industries. Whereas cyber attacks where mainly the fact of isolated hackers in the 90’s,

we now observe organized communities and even industries whose sole purpose is to exploit

software flaws for profit. Governments and industries are now well aware of this problem, as

the costs associated to cybercrimes are reaching new highs [13]. To give the reader an idea,

various reports suggest that between 85% and 98% of websites contain at least one serious

vulnerability [147, 149]. While the average number of vulnerabilities per website decreases

year after year, a lot of work obviously remains to be done to properly secure modern Web

applications.

Securing modern Web applications, however, is a very difficulty task. Network (routers,

firewalls and switch), host (operating system, web server, database server, application server)

and applications themselves are all potential targets for cyber attacks and any suitable se-

curity strategy must take them all into account. Indeed, a vulnerability at any level can

compromise the security of a system and a large body of research work has been dedicated

to securing each of these components. In the context of this thesis, we will focus on one

particular aspect of computer security, that is application security.

Application security encompasses the mechanisms that are enforced inside an application

to mitigate security threats. In the context of Web applications, application level threats take

several forms. SQL injection (SQLi), cross-site scripting (XSS), cross-site request forgery

(CSRF), authentication and authorization bypass all are examples of threats that must be

mitigated at the application level [129]. In the context of this thesis, we will mainly focus

on authorization flaws, that allow users to perform actions that they should not be able to

do. Authorization flaws drastically differ from other types of flaws by the fact that they are

strongly linked to the application’s logic. To clarify the latter affirmation, let’s consider some

typical flaws in Web applications:

SQL injection attacks aim at making the application execute malicious SQL queries,

possibly with the goal of extracting sensitive data. SQL injection vulnerabilities occur when

untrusted data flows to the SQL interpreter.
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Cross-site scripting attacks aim at making malicious scripts execute in the user’s browser,

possibly defacing the website or redirecting him to malicious sites. Cross-site scripting vul-

nerabilities occur when untrusted data flows to the browser. Both SQLi and XSS attacks

can be mitigated by filtering untrusted data before it flows to any sensitive section of the

application.

Cross-site request forgery attacks aim at forcing the browser of a user that is logged

into a vulnerable application to send a forged HTTP request to the vulnerable application.

Since the user is already logged in, the attacker can access otherwise restricted areas of the

vulnerable application. Mitigating CSRF attacks can be as simple as requesting user specific

tokens with any form submission or side-effect URLs.

Authentication bypass allows an attacker to impersonate a legitimate user and perform

any action the user is allowed to do. Authentication flaws can occur at several levels, such

as logout, password management, timeouts, ”remember me” options, secret question, account

update, etc. Since authentication schemes are often custom-built, authentication flaws can

be hard to detect as each implementation is unique.

Authorization bypass, on the other hand, allows a user to perform actions he should

not be able to do. Authorization flaws usually occur when security checks are missing or

inappropriate.

SQLi, XSS, CSRF and authentication flaws are all of the “black or white” type (e.g. if

unfiltered untrusted inputs can flow to a SQL query, SQL injections are possible, if a malicious

user can impersonate a legitimate user, there is an authentication flaw, etc.). Authorization

flaws, on the other hand, come in shades of grey.

Given a piece of code, developers first have to determine whether it performs security-

sensitive operations. While certain operations are obviously security-sensitive (e.g. displaying

personal user information), some cases are more subtle (e.g. leaking path information in an

uncaught exception). Once established that a piece of code does perform security-sensitive

operations, developers must determine which privilege (authorization) check will be enforced.

Indeed, modern Web application often define hundreds of application specific privileges and

deciding which one to enforce might not be straightforward. Finally, developers must decide

where in the code the privilege check will be implemented. Checks that are performed at the

beginning of a file quickly redirect unprivileged users to an error page and are appropriate in

cases where the whole file must be protected. Checks that protect smaller portions of code

allow for fine-grain privilege-based customizations, with the risk of leaving certain security-

sensitive operations unprotected. It is not uncommon that issues related to authorization

checks are debated for years, as there is no one-size-fits-all solution [84].

Moreover, one must not forget that software evolves, gets patched and refactored, new
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features are added and all of these modifications can impact the authorization scheme. To

properly prevent authorization flaws, authorization schemes must evolve with the software.

From design to testing via implementation, authorization schemes must be synchronized and

updated at every step of the software development life cycle.

Preventing and detecting authorization flaws is thus hard and error-prone, even for devel-

opers that have a working knowledge of their application [178]. Therefore, it is not surprising

that year after year, authorization flaws are reported as one of the most prevalent and critical

type of flaws in Web applications [131, 147, 149, 148, 81, 151]. In this thesis, we tackle the

problem of detecting authorization flaws in open source Web applications, without a priori

knowledge and with source code as the only source of reliable information.

1.1 Authorization schemes

Authorization schemes determine the actions a user is allowed to perform in an application.

In practice, authorization schemes are implemented using access controls and managed using

access control models. Depending on the implementation, authorization can be managed

from a very coarse to a very granular level.

1.1.1 Principle of Least Privilege

When designing authorization scheme, it is important to enforce the principle of least privi-

lege. The principle of least privileges states that we should only allow the bare minimum of

privileges a user needs to perform the tasks he is allowed to do. For example, people from the

sales department need not to access data from the human resources to do their job. While

easily understood, the principle of least privilege is also easily violated, especially as access

control models grow in complexity.

A classic example of violation of the principle of least privilege can be found in the default

configuration of the Windows operating system. In Windows, it is rather common that casual

users always run the system with administrator privileges. Hence, a malicious program that

run under such an account already has the necessary privileges to perform any action in the

system. When the principle of least privilege is respected, malicious programs must exploit

other bugs in the system to gain higher privileges before performing their malicious actions.

The act of exploiting bugs or flaws to gain supplementary or higher privileges in a system is

often referred to as a privilege escalation attack.
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1.2 Access controls

Access controls implement authorization schemes. In other words, access controls are the

concrete mechanisms that are put in place to assert whether or not the current user can

execute a given operation on a given resource. Typical operations include read, write and

execute. Resources are application dependent, but might include things like files, database

entries or sessions. Two major strategies, that we present in the next two paragraphs, are

typically used to implement access controls: access control lists and capabilities.

1.2.1 ACL-based systems

Access control lists (ACL) are often used to control access in file systems but can also be

found in Web applications. ACL are linked to a resource (e.g. a file) and determine which

operations each user or group of users are allowed to perform on the resource. For example,

in the UNIX file system, each file has its own ACL that determines which operations (read,

write and execute) each type of users (owner, group and others) is allowed to perform on the

file.

1.2.2 Capability-based systems

Whereas access controls in ACL-based system depend on the resource and the type of user,

access controls in capability-based system strictly depend on the possession of a capability.

Informally, capabilities can be though of as pair (r,o) where r is a resource (e.g. a file)

and o is an operation (e.g. write). In capability-based systems, no matter the identity

of the user, if he owns the required capability, he can perform the given operation on the

given resource. Originally, capabilities were designed to act as tokens that were meant to be

transferable between users and applications. Analogously to a physical key, whoever owned

the capability token was granted access to the resource [101]. However, modern applications

usually implement restricted capability-based systems where capabilities are not transferable

between applications.

1.3 Access control models

Access control lists and capabilities define the low-level mechanisms that are used to grant

or deny access to resources. Access control models provide a higher level view and facilitate

the management of access controls in a system. Among the most common access control

models, we find Discretionary Access Control (DAC), Mandatory Access Control (MAC),

Attribute-Based Access Control (ABAC) and Role-Based Access Control (RBAC).
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1.3.1 Discretionary Access Control

In Discretionary Access Control (DAC) models, the owner of a resource determines the access

to the resource in question. File systems typically implement DAC models. Access controls

of the UNIX file system, for example, are implemented with ACL and managed with a DAC

model. By default, only the owner of a file can edit the ACL of the file. Hypothetically, if

DAC models were to be used in a capability-based system, they would allow the owner of a

resource to restrict ownership of all capabilities that are related to the resource in question.

DAC models, however, are usually associated to ACL.

1.3.2 MAC

In Mandatory Access Control (MAC) models, access to resources is not determined by owners,

but by a group of users that have the authority to set access on resources. Otherwise, DAC

and MAC are very similar in nature.

Figure 1.1: Example of a captcha

1.3.3 ABAC

Attribute-based access control models are, as their name implies, based on attributes. At-

tributes can include the attributes of a person, resource or environment. One of the most

widely known example of ABAC that is based on person attributes is the Captcha, as shown

in Figure 1.1. Captcha is an acronym that stands for “Completely Automated Public Turing

test to tell Computers and Humans Apart” and control access based on “human” attributes,

the idea being that only humans can solve Captcha [166]. Resource attributes can also be

used to restrict access. Web sites that customize their display based on the type of browser

or applications that restrict remote connections to certain protocols are examples of ABACs

that are based on resource attributes. Finally, examples of ABAC that are based on envi-

ronmental conditions can be found in systems that require users to re-authenticate after a
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given period of time. In these cases, time is the environmental condition upon which access

control is based.

1.3.4 RBAC

Role-based access control (RBAC) models derive from both MAC and ABAC models. Indeed,

similarly to MAC, access to resources in RBAC is granted by system administrators and not

by owners of resources. In RBAC models, however, access is granted based on the role(s)

a user owns. Typically, RBAC models are capability-based systems where capabilities are

granted to roles and roles are granted to users. In that sense, RBAC models can be seen as

a specialization of ABAC models where only role attributes are supported. In the context

of Web applications, RBAC models and their variants are the most widely adopted form of

access control models and will be the focal point of this thesis.

RBAC models [143], have been widely adopted by the industry, in part because RBAC

models simplify user management. Instead of managing a large number of user-privileges

relationships, administrators can grant users pre-defined sets of privileges, called roles [35].

In its simplest form, an RBAC model comprises users U , roles R and privileges P and

can be defined based on two binary relations:

1. UA ⊆ U ×R: User assignments, a user is assigned a set of roles

2. PA ⊆ R× P : Privilege assignments, a role is assigned a set of privileges

However, access control models, as their name implies, are only models. Implementation

details are left to developers. Consequently, we often observe a gap between theoretical

access control models, as found in the literature, and implemented models, as found in real-

life applications. In the context of this thesis, we adopted a reverse-engineering approach to

the analysis of access control models, as implemented in practice.

Indeed, our study of some of the most popular (millions of users) open source Web appli-

cations revealed that real-world Web applications are rarely based on formal, well specified

and well documented access control models. In several cases, access control models were

retro-fitted in the application and implemented in a more or less ad-hoc manner. None of

the investigated applications had formal or even informal security specifications and docu-

mentation about their access control model was often out of date, erroneous or non-existent.

Our goal is to provide support to developers who need to analyze access control models and

identify access control flaws in this sub-optimal context.
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Figure 1.2: A representation of RBAC models
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1.4 Role-based access control models in practice

Conceptually, basic RBAC models are very simple. They simply add an abstraction layer

between users and privileges, called roles, and simplify privilege management by allowing

administrators to grant or revoke privileges to groups of users sharing the same role instead

of individual users. In RBAC literature, however, implementation details are often omitted.

It is left to developers to implement RBAC infrastructures and enforce appropriate privilege

checks in the code.

Figure 1.2 shows a schematic representation of RBAC models, as implemented in practice.

Diamonds, circles, squares and triangles represent users, roles, privileges and statements

respectively. The solid box encloses users, roles and privileges. It represents basic RBAC

models, as described in the literature. In the context of Web applications, the solid box

coincides with user administration interfaces, where administrators can create and delete

users, assign them roles and manage the privileges that are granted to every role. In the

context of this thesis, we will refer to this box as the RBAC model.

The dashed box encloses privileges and statements. It captures the relation between

privileges and code statements that is induced by privilege checks. In Figure 1.2, a privilege

p maps to a statement s if a privilege check for p is executed prior to executing s. In the

context of this thesis, we will refer to this box as PP ⊆ P × S: the privilege protection,

where a privilege protects a set of statements.

Listing 1.1 shows an example of a typical privilege check. The user_can function takes a

privilege as parameter and returns a Boolean value representing whether or not the current

user owns the privilege. In this particular case, the message is only printed if the user owns

the edit_post privilege and thus statement 2 is protected by the edit_post privilege.

1 if (user can(’ edit post ’ ))

2 echo ’You can edit a post’;

Listing 1.1: Example of a typical privilege check

RBAC literature gives very few guidelines regarding the implementation of privilege pro-

tection. It is left to developers to:

1. Determine which statements are security-sensitive.

2. Design the privileges that should protect security-sensitive statements.

3. Implement privilege check routines.
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4. Prevent unauthorized accesses to security-sensitive statements with appropriate privi-

lege checks.

Fortunately, as we shall discuss in further sections, common practices for the implementation

of privilege protection emerged over time, facilitating the development of automated privilege

protection analysis tools.

Finally the dotted-and-dashed box encloses users, roles, privileges and statements. It

represents the statements of the application any given user can access at runtime with respect

to his roles and privileges. For the rest of this thesis, we will refer to the graph in this box as

the implemented RBAC model. Observe that reasoning about the implemented RBAC model

requires knowledge about both the RBAC model and the privilege protection. In practice,

verifying security properties solely at the level of the RBAC model is of little use. Indeed,

in practice, any security property that holds on a given RBAC model can be violated by a

missing, misplaced or wrong privilege check.

Sadly, while there is a wealth of literature about RBAC models and their variants, com-

paratively few studies target the reverse-engineering, modelling and testing of privilege pro-

tection. The goal of this thesis is thus three-fold: 1. present a novel approach for reverse-

engineering of privilege protection, 2. investigate modelling techniques that will help admin-

istrators reason about the implemented RBAC and privilege protection models, and 3. define

novel analyzes for the automatic detection of access control flaws in Web applications all the

while keeping the amount of work that is required from developers to a minimum. In other

words, we not only ensured that the presented work is novel from a scientific point of view,

we also ensured that it is suitable for use by real-world developers and powerful enough to

detect unknown security flaws in major and widely popular Web applications.
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CHAPTER 2

RESEARCH PROCESS AND ORGANIZATION OF THE THESIS

This chapter briefly presents the papers that constitute the core of this thesis and highlights

the underlying long-term research process. In summary, the core chapters of the thesis can

be divided in three sections: 1. extraction of the privilege protection model, 2. investigation

and comprehension of reverse-engineered RBAC and privilege protection models with FCA

and 3. automated identification of access control vulnerabilities.

2.1 Reverse-engineering privilege protection models

Privilege checks restrict access to sensitive parts of an application. In RBAC models, the

configuration of privilege checks give rise to the privilege protection model, that maps priv-

ileges to source code statements. In open source application, however, privilege protection

models are rarely specified or documented and source code often is the only source of reliable

information.

Chapter 5 presents our first release of the Security Pattern Traversal analysis (SPT), the

original algorithm by which we reverse-engineer privilege protection model (see Figure 1.2)

of a system. In the context of this paper, we show how it can reverse-engineer the privilege

protection model of Moodle, a course-management system, counting more than a hundred

privileges. We further show how privilege protection model can help identify security-sensitive

sections of an application and supply developers with an overview of the implemented RBAC.

In chapter 7, we extend SPT with an inter-procedural analysis that tracks the propagation

of privilege checks in a system. Indeed, investigation of real world Web applications revealed

how the return values of privilege checks are often stored in variables that are propagated

in the system only to be verified later. By tracking the propagation of privilege checks, this

extended version of SPT is able to extract more precise privilege protection models. For the

sake of conservativeness, SPT favors false negatives (statements wrongly reported as unpro-

tected) over false positives (statements wrongly reported as protected). The analysis that is

presented in chapter 7 thus aims at reducing the number of false negatives without introduc-

ing false positives. Chapter 7 highlights the technical challenges we overcame and compares

four variants of the algorithm: two intra-procedural and two inter-procedural versions.
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2.2 Investigation and comprehension of reverse-engineered access control mod-

els

As mentioned earlier, reasoning about the implemented RBAC model requires reasoning

about both the RBAC and the privilege protection models. In chapter 9, we explore how

Formal Concept Analysis (FCA) can help administrators of Web applications in this task.

In the context of Web applications, RBAC models (user assignment and privilege assign-

ment relations) can usually be extracted from administrator interfaces. Privilege protection

models, on the other hand, can be extracted using SPT. In both cases, however, the extracted

models might be difficult to interpret due to their size. Indeed, modern Web applications

often define hundreds of privileges and count several thousands lines of code. In this context,

we explored how FCA can help visualizing and investigating reverse-engineered RBAC and

privilege protection models.

On the one hand, FCA extracts concept lattices from formal contexts, representing binary

relations between objects and attributes. On the other hand, RBAC models and privilege

protection models are defined based on binary relations: users have roles, roles own privileges

and privileges protect statements. In the context of this project, we showed how FCA of

the RBAC model reveals implicit role hierarchies, that are hidden from administrators and

how FCA of the privilege protection reveals implicit constraints between privileges, that can

induce misunderstandings and vulnerabilities. Moreover, we explained how FCA highlights

impacts of role re-definitions, helps assessing the functionalities a particular user can access

or ensuring that certain functionalities cannot be executed by a single user (separation of

duties).

2.3 Identification of security flaws in access control models

FCA of reverse-engineered RBAC and privilege protection models gives an overview of the

protection in a system and is useful to reason about high level security properties. Such high

level properties are typically more relevant to administrators of a system. Developers, on the

other hand, are usually more concerned by lower-level, code-centric security properties, such

as missing or erroneous privilege checks that lead to security flaws. Chapters 11 to 15 are

dedicated to automated identification of security flaws in implemented access control models.

Contrary to other types of security vulnerabilities, determining the presence or the ab-

sence of access control vulnerabilities is often a matter of interpretation and judgement. For

example, one might have to answer questions like: “should role X have access to data Y?”

In theory, such questions should be answered with the help of RBAC model specifications,

which are almost never available in practice. We therefore developed heuristics to automati-



12

cally detect access violations in the absence of security specifications. To this day, three main

strategies have been investigated:

1. Privileged resource identification using privileged hyperlinks. Web applica-

tions usually hide hyperlinks to privileged resources from unprivileged user. Forced

browsing vulnerabilities occur when hidden privileged resources are directly accessible

through their URL. In order to detect forced browsing vulnerabilities, we developed

a static analysis approach that contrasts pages that are accessible through visible hy-

perlinks with pages that can be accessed directly through their URLs. This project is

presented in chapter 11.

2. Identification of semantic errors. In access control models, privileges are expected

to be semantically related to the action they protect. For example, it is expected that

a download privilege protects the action of downloading a file. When this semantic link

is broken, semantic errors occur. In this project, we used Latent Dirichlet Allocation to

model fragments of PHP applications as a distribution of latent topics. Using a logistic

regression model, we were able to associate latent topics to privileges and to further

identify fragments for which the latent topic distribution did not match the enforced

privilege. Doing so, we were able to report semantically wrong privilege checks in the

system under study. This project is the subject of chapter 13.

3. Uncovering access control flaws with security-discordant clones. Software

clones are syntactically similar fragments of code. In the context of this study, we

hypothesized that clones usually perform similar operations and that they should be

protected by similar privileges. Investigation of security-discordant clones, that are

similar fragments of code that are protected by different privileges, revealed several

novel security flaws in the investigated applications. Chapter 15 is dedicated to this

project.
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CHAPTER 3

SECURITY PATTERN TRAVERSAL ANALYSIS

This chapter introduces Security Pattern Traversal (SPT) analysis, the cornerstone of this

thesis. SPT is the analysis that we use to extract privilege protection (see Figure 1.2) from

systems. The first release of SPT was presented by Letarte et al. [100] and could only

process simple admin/user access control models. Chapters 5 and 7 of this thesis extend

this approach to support arbitrary large numbers of privileges and track the inter-procedural

propagation of privilege checks through variables and parameters. This chapter introduces

the fundamental concepts of SPT analysis that are needed to fully understand this research

work.

As its name suggests, Security Pattern Traversal analysis tracks the propagation of par-

ticular security properties, that are the result of the traversal of a security pattern. Given

any program point, SPT tracks the results of all security patterns that have been traversed at

the time this particular program point is reached. In the context of RBAC models, security

patterns are designed to capture privilege checks and SPT will thus track the results of all

privilege checks that were traversed before a statement is executed.

For the sake of simplicity, the following section introduces a running example that illus-

trates how SPT works.

3.1 Running example

SPT is a static analysis that models the traversal of security patterns. In the context of this

thesis, security patterns capture the privilege checks in a system. In all of the investigated

applications, privilege checks are boolean: they verify a privilege and succeed if the current

1 echo ’Hello’ ;
2 if (user can(’ edit post ’ ))
3 echo ’You can edit a post’;
4 else
5 echo ’You cannot edit a post’;
6 echo ’Goodbye’;

Listing 3.1: Running example for security pattern traversal analysis.
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user has the privilege and fail otherwise. Consequently, whenever an execution path traverses

a security pattern, the result is either true or false and represents whether or not the current

user has the verified privilege.

For example, Listing 3.1 shows a simple snippet of PHP code with a privilege check (a call

to the user_can function) at line 2. In this case, the privilege check returns a Boolean value

that indicates whether the user owns the edit_post privilege. If the check succeeds, the

user has the privilege and the statement at line 3 is executed. Otherwise, the statement at

line 5 is executed. In both cases, the statement at line 6 is finally executed and the program

terminates. In this particular case, SPT would report that all execution paths that reach

line 3 succeeded a check for the edit_post privilege, all execution paths that reach line 5

failed a check for the edit_post privilege and that some execution paths that reach line 6

succeeded the check while some did not.

In order to compute such results, SPT: 1. models privilege checks as security patterns, 2.

models the program as model checking automatons and 3. performs reachability analysis on

the extracted automatons. In the following sections, we will cover these steps in more details.

Finally, section 3.5 highlights how SPT differs from and outperforms related approaches such

as slicing or branch dominators.

3.2 Modeling privilege checks as security patterns

Privilege checks are application-specific constructs that assert whether the current user owns

sufficient privileges to access security-sensitive parts of the application. If the check succeeds,

security-sensitive statements are executed. If the check fails, the execution might stop, an

error might be signaled to the user or the execution might continue. Listings 3.2 to 3.6 show

examples of security checks in different Web applications.

It is interesting to observe that while privilege checks are application specific, they share

several similarities:

1. They are syntactically stereotyped constructs.

2. The permission to check is a string that is passed as a key or a parameter.

3. They are all boolean (e.g. succeed or fail).

Figure 3.1 shows the annotated CFG resulting from our running example, as presented in

Listing 3.1. Nodes are annotated with statement numbers and there is one grant edit post

edge and one revoke edit post edge to represent the two possible outcomes of the privilege

check at line 2.
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if ($ SESSION[”admin”] == ”yes”)
//Code protected by the admin privilege

Listing 3.2: Security check in PHP Calendars

if (getUser()−>authorise(’core.manage’, ’com plugins’))
// Code protected by the core.manage privilege of the com plugin module

Listing 3.3: Security check in Joomla!

if (has capability( ’mod/workshop:submit’))
// Code protected by the mod/workshop:submit privilege

require capability ( ’mod/workshop:submit’);
// Exits if the user does not have the mod/workshop:submit privilege

Listing 3.4: Security checks in Moodle

if ($wgUser−>isAllowed(’createpage’))
// Code protected by the createpage privilege

if ($wgUser−>isAllowedAll(’createpage’, ’edit’))
// Code protected by both the createpage and edit privileges

if ($wgUser−>isAllowedAny(’createpage’, ’edit’))
// Code protected by the createpage or edit privilege

Listing 3.5: Security checks in Mediawiki

if (current user can(’manage options’))
// Code protected by the manage options privilege

if (has cap(’manage options’))
// Code protected by the manage options privilege

Listing 3.6: Security checks in Wordpress
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grant_edit_post revoke_edit_post

START

1

2

3 5

6

END

Figure 3.1: The annotated CFG that represents the snippet of code in Listing 3.1
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The fact that privilege checks are syntactically stereotyped not only facilitates code re-

views, it also greatly simplifies their modeling as security patterns. From an implementation

point of view, this allows us to model privilege checks as Abstract Syntax Tree (AST) pat-

terns, that can easily be detected using AST visitors [56]. Given the AST of an application,

application-specific visitors are designed to detect specific subtrees in the AST that represent

the application’s privilege checks. To give the reader an idea, approximately 20 to 30 lines of

Java code are usually sufficient to implement the visitors that detect privilege checks in an

application, given that the privilege check routines are known.

Security pattern traversal analysis, similarly to other program analysis approaches, does

not operate directly on the AST of a program. Further abstraction steps are required. SPT

operates on model checking automatons, that represent the control-flow, together with the

security patterns of a program.

3.3 Modeling programs as security automatons

The first step towards the extraction of security automatons is to model programs as a Control

Flow Graphs (CFG), annotated with security properties:

CFG = (VCFG, ECFG) (3.1)

where the CFG has a single entry node vin ∈ VCFG and a single exit nodes vout ∈ VCFG.

Nodes in VCFG can be of type generic, entry, exit, call begin and call end. Nodes of type

generic represent any kind of statement and are involved in intra-procedural control flow;

nodes of type call begin, call end, entry, and exit are used in inter-procedural control flow.

Conceptually, a call begin node represents the point in a caller right before the flow of control

is transferred to a callee. Similarly, a call end node represents the point in a caller right

after the flow of control is transferred back from the callee to the caller. Thus, nodes of type

call begin and call end are paired: to each call begin corresponds exactly one call end and

vice-versa. The same goes for entry and exit nodes that correspond to the entry and exit

points of a function.

Edges in ECFG can be of type generic, grant pi, revoke pi, call, or return. Edges of type

generic represent intra-procedural transfers of control. Edges of type grant pi represent intra-

procedural transfers of control that grant the privilege pi (e.g. the check for the privilege pi

succeeded). Likewise, revoke pi edges revoke the privilege pi (e.g. the check for the privilege

pi failed). Finally, edges of type call and return represent inter-procedural control flow links.

Edges of type call link call begin to entry nodes while edges of type return link exit to

call end nodes. Edges of type grant and revoke are produced based on the information that
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is returned by security pattern visitors.

Starting from this annotated CFG, SPT performs a last abstraction step by rewriting

the CFG to multiple model checking automaton, each representing one security property.

For example, Figure 3.2 shows the automaton resulting from the rewriting of the CFG in

Figure 3.1 for the granted edit post property. Each state is now labeled with a pair (s, p)

representing the statement id and the value of the security property (0 stands for false, 1

stands for true) respectively. At the beginning of the program, represented by the start state,

no privilege has been checked so (1, 0) is the only state that can be reached. Statement 1

has no influence over the security property so (1, 0) transitions to (2, 0) and (1, 1) transitions

to (2, 1). Statement 2 is a privilege check. If the check succeeds, the granted edit post

property becomes true and statement 3 is executed. Hence, all transitions from statement 2 to

1,0

2,0

3,0 5,0

6,0

1,1

2,1

3,1 5,1

6,1

END

START

Figure 3.2: The snippet of code in Listing 3.1 represented as a model checking automaton
that is suitable for SPT analysis
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statement 3 go to state (3, 1). If the check fails, the privilege is denied, the granted edit post

property remains false, and statement 5 is executed. Hence, all transitions from statement

2 to statement 5 go to state (5, 0). Neither statements 3, 5 or 6 are security checks and

the remaining transitions do not alter the security property. Once the automaton is built,

a reachability analysis from the start state will reveal the statements that are executable

together with the possible values of the security property. In the context of Figure 3.2, it is

easy to observe that the (3, 1) state is the only reachable state for statement 3 and thus that

all execution paths that reach statement 3 have the granted edit post property set to true.

1 function edit () {
2 // Body of the function

3 }
4

5 echo ’Hello’ ;

6 if (user can(’ edit post ’ ))

7 edit () ;

8 else

9 echo ’You cannot edit a post’;

10 echo ’Goodbye’;

Listing 3.7: Running example, augmented with a function call.

3.4 From simple to complex security patterns

Up to now, for comprehension considerations, our running example consisted of a very simple

snippet of code without function calls. At its core, however, SPT is an inter-procedural,

security-sensitive analysis. Security pattern traversal analysis is security-sensitive in the

sense that, contrary to context-sensitive analysis that distinguishes every calling contexts,

it only distinguishes calling contexts with different values for the security property. Listing

3.7 shows our running example, augmented with a function call. Since the edit function is

only called at statement 7, from a context where the granted edit post property is true, SPT

would report that the edit function is only reachable with the granted edit post property

set to true.

In order to perform inter-procedural, security-sensitive analysis, SPT augments the labels

of states in the automaton with context information and introduces call and return transi-

tions. Figure 3.3 shows the automaton that corresponds to the code of Listing 3.7. Notice

that labels are now triples (s, c, p) representing the statement id, the value of the security
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5,0,0

6,0,0

7,0,0

9,0,0

10,0,0

5,0,1

6,0,1

7,0,1

9,0,1

10,0,1

END

START

5,1,0

6,1,0

7,1,0

9,1,0

10,1,0

5,1,1

6,1,1

7,1,1

9,1,1

10,1,1

2,0,0 2,0,1 2,1,0 2,1,1

1,0,0 1,0,1 1,1,0 1,1,1

3,0,0 3,0,1 3,1,0 3,1,1

Figure 3.3: The snippet of code in Listing 3.7 represented as an inter-procedural model
checking automaton
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property of the context and the value of the security property of the statement respectively.

Apart from the augmented labels, the inter-procedural automaton of Figure 3.3 also intro-

duces call and return transitions, as illustrated in transitions from states 7 to 1 and states 3 to

10 respectively. Call transitions link a call begin state to an entry state. When a call occurs,

the value of the security property at the call begin state becomes the value of the security

property of both the context and the statement of the entry state. Hence, call transitions

from states (7, 0, 0) and (7, 1, 0) both lead to (1, 0, 0). Similarly, call transitions from states

(7, 0, 1) and (7, 1, 1) both lead to (1, 1, 1).

Return transitions are less straightforward to model. When an exit state is reached, SPT

must return the flow of control to the call end state with: 1. a security value for the context

that matches that of the call begin state that induced the call and 2. a security value for

the statement that matches that of the exit state. Since this information is not available

at the time the automaton is being built, SPT conservatively creates every possible return

transitions between exit and call end states, as illustrated by transitions between states 3

and 10 in Figure 3.3. Spurious return transitions are eliminated during reachability analysis

through the use of assignments on call transitions and guards on return transitions. We

refer the interested reader to [100] for the complete reachability algorithm. Note that the

reachability algorithm has a complexity that is O(n). In summary, this approach is linear over

the number of statements without loss of precision nor security information [100], whereas

typical context-sensitive approaches achieve similar results with combinatorial complexities.

Up to now, our examples only comprised one simple privilege check. Privilege checks,

however, can be used in arbitrarily complex predicates:

1 if (user can(’read’) || ext func() && user can(’read own’))

2 read file () ;

3 else

4 error( ’Sorry, you cannot read that file . ’ ) ;

Listing 3.8: A complex predicate containing security checks

In the case of Listing 3.8, if the predicate at line 1 is true, the user either has the read

privilege, the read_own privilege or both. Conversely, if the predicate is false, the user

certainly does not own the read privilege and does possibly not own the read_own privilege.

At the automaton level, such uncertainty is translated as possibly grant and possibly revoke

transitions. In our experimental setup, AST visitors detect application-specific privilege

checks and annotate the CFG with grant, possibly grant, revoke and possibly revoke edges

in accordance with De Morgan’s laws. Specifically, our implementation of SPT can process
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Table 3.1: Syntax directed definitions to compute the privileges that are definitely and pos-
sibly activated after the traversal of a Boolean predicate.

Productions Semantic Rules

S → if(E)

S.true.def = E.true.def
S.true.pos = E.true.pos
S.false.def = E.false.def
S.false.pos = E.false.pos

E → E1 || E2

E.true.def = ∅
E.true.pos = E1.true.def ∪ E1.true.pos ∪ E2.true.def ∪ E2.true.pos
E.false.def = E1.false.def ∪ E2.false.def
E.false.pos = E1.false.pos ∪ E2.false.pos

E → E1 && E2

E.true.def = E1.true.def ∪ E2.true.def
E.true.pos = E1.true.pos ∪ E2.true.pos
E.false.def = ∅
E.false.pos = E1.false.def ∪ E1.false.pos ∪ E2.false.def ∪

E2.false.pos

E → ¬E1

E.true.def = E1.false.def
E.true.pos = E1.false.pos
E.false.def = E1.true.def
E.false.pos = E1.true.pos

E → check

E.true.def = check.privilege
E.true.pos = ∅
E.false.def = ¬check.privilege
E.false.pos = ∅
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arbitrarily complex Boolean predicates with the help of the syntax directed definitions (SDD)

that are presented in Table 3.1. The production rules in Table 3.1 define a simple grammar for

conditional expressions, boolean predicates and privilege checks. In the SDD, nonterminals

have four attributes: true.def , true.pos, false.def , false.pos representing the set of security

properties that are definitely and possibly (de)activated when the predicate evaluates to true

or false respectively.

Privilege checks, however, can also appear outside predicates. For example, the result

of a privilege check can be stored in a variable that gets propagated through the system.

Consider the example of Listing 3.9.

In this case, when the read_file function is executed at line 9, line 2 verifies the

$privilege variable, that contains the result of the user_can(’read_own’) privilege check.

Thus, if the call to read_special_file at line 3 is executed, the current user owns the

read_own or the read_all privilege. Our implementation of SPT handles such complex

cases. The algorithms that are employed to inter-procedurally track privilege checks through

PHP applications are presented in chapter 7.

3.5 Differences with related approaches

Security pattern traversal analysis is very similar in nature to other static analysis approaches,

especially slicing and dominator analysis. In this section we will compare SPT to these two

approaches and highlight the major differences between them.

3.5.1 SPT vs slicing

Given a point of interest in a program, called the slicing criterion, program slicing aims at

identifying all the instructions that can affect the slicing criterion. The slicing criterion C

1 function read file ( $privilege ) {
2 if ( $privilege || user can(’ read all ’ ))
3 read special file () ;
4 else
5 error( ’Sorry, you cannot read that file . ’ ) ;
6 }
7

8 $read own = user can(’read own’);
9 read file ($read own);

Listing 3.9: Security checks can be stored in variables that are passed as parameters
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typically consists of a pair (p, V ) where p is a program point and V is a set of variables.

Specifically, program slicing reports the statements upon which the slicing criterion is control

or data dependent. Given a program dependence graph (PDG), where vertices represent

statements and edges represent control and data dependencies, a slice comprises all the

vertices that can be reached starting from the vertex that represents the slicing criterion

and traveling backward in the PDG. This form of program slicing is also called backward

slicing since it starts from a slicing criterion and travels backward in the PDG. Conversely,

if one starts from the slicing criterion and travels forward in the PDG, a forward slice, that

represents all the statements that the slicing criterion may affect, is computed [159].

START

1 2

3 5

6

Figure 3.4: The program dependence graph (PDG) that is associated to the snippet of code
in Listing 3.10.

1 echo ’Hello’ ;

2 if (user can(’ edit post ’ ))

3 echo ’You can edit a post’;

4 else

5 echo ’You cannot edit a post’;

6 echo ’Goodbye’;

Listing 3.10: Slicing vs SPT. The forward slice of the privilege check at line 2 is (3,5).

SPT reports that the edit post privilege is always granted when statement 3 is executed,

never granted when statement 5 is executed and sometimes granted when statement 6 is

executed.
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Security pattern traversal analysis and forward program slicing share some level of simi-

larity. Indeed, in both SPT and slicing, there is a notion of control dependency. As we shown

earlier, privilege checks can alter the control-flow of a program with respect to the privileges

a user owns. Furthermore, SPT also propagates properties in a forward manner, starting

from privilege checks and propagating properties along execution paths. SPT, however, goes

a step further than forward slicing: it analyses privilege checks and propagates the result of

the check. For simplicity purposes, we re-copy a previous example below. In Listing 3.10,

statement 2 is a privilege check that verifies if the user has the edit_post privilege. Fig-

ure 3.4 shows the program dependence graph that is associated to the code in Listing 3.10.

Edges in the graph represent control dependencies only since Listing 3.10 contains no data

dependencies. Considering the PDG in Figure 3.4, if statement 2 was selected as the slicing

criterion, its forward slice would be (3, 5). Hence, slicing would reveal that the privilege check

at line 2 affects the execution of statements 3 and 5. Similar conclusions could be achieved by

investigating the backward slices of statements 3 and 5 respectively. On the other hand, SPT

propagates the result of the privilege check. Figure 3.5 shows the model checking automaton

that represents the code in Listing 3.10, together with the reachable states. Thus, SPT would

report that the edit_post privilege is always granted when statement 3 is executed, never

granted when statement 5 is executed and sometimes granted when statement 6 is executed.

In that sense, SPT provides more precise information about the security of a program than

slicing.

SPT vs path conditions

Path conditions were developed to enhance the precision of slicing results. As we already

explained, slicing reports the statements that may influence (backward slicing) or that may be

influenced (forward slicing) by the slicing criterion. Path conditions are defined over program

variables and refine slicing results by defining necessary conditions for an influence relation

to exist. In other words, given a path condition PC(x, y) where x and y are statements,

if the path condition cannot be satisfied, there is definitely no influence from x to y [140,

75]. Path condition approaches typically use constraint solvers to determine whether or not

there exists inputs that can satisfy the path condition. While both SPT and path condition

approaches perform some form of predicate evaluation (see Table 3.1), the aim is totally

different. SPT aims to identify the privileges a user must own to execute a given statement

while path conditions aim at pruning slicing results by eliminating spurious control and

data dependencies. Some interesting work by Hammer et al. explored how path conditions

approaches could be adapted for security assesment [74]. However, they report a complexity of

O(n3) for the context-sensitive version of their algorithm. SPT, on the other hand, performs
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Figure 3.5: The snippet of code in Listing 3.10 represented as a model checking automaton.
States in bold represent the reachable states in the automaton.
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a security-sensitive analysis that has a complexity of O(n), allowing it to scale to large

applications.

3.5.2 SPT vs branch dominators

When a program is represented as a control-flow graph (CFG), we say that node d dominates

node n if every path from the entry node of the CFG to n goes through d. Similarly, a branch

br dominates node n if every path from the entry node of the CFG to n goes through br.

Given that security checks are used in control-flow predicates and that the result of security

checks are reflected in the branches that are followed, branch dominator analysis might seem

a good alternative to SPT analysis. However, consider the snippet of code of Listing 3.11

1 switch ($action)
2 {
3 case read:
4 if (user can(’read post’))
5 ...
6 else
7 error( ’ Insufficient privileges ’ ) ;
8 break;
9 case edit:

10 if (user can(’read post’) && user can(’edit post’))
11 ...
12 else
13 error( ’ Insufficient privileges ’ ) ;
14 break;
15 default:
16 error( ’Unsupported action’)
17 }
18 echo ’Done with processing’;

Listing 3.11: Line 18 can only be executed if the user owns the read post privilege.

It is clear that line 18 is only executed if the user owns the read_post privilege. SPT

analysis would report this result without problem. Now, consider the control-flow graph that

is associated to the snippet of code of Listing 3.11, as represented in Figure 3.6. Neither the

(4, 5) or the (10, 11) branch dominates node 18. Consequently, a branch dominator analysis

would fail to report that the statement at line 18 can only be executed by users who own the

read_post privilege. At the inter-procedural level, however, SPT significantly outperforms

branch dominators. Consider the following snippet of code:
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Figure 3.6: Control-flow graph of the snippet of code of Listing 3.11
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Figure 3.7: Control-flow graph of the snippet of code of Listing 3.12
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1 // file1 .php

2 include ’library .php’

3

4 echo ’This is file 1’ ;

5 if (user can(’ edit post ’ ))

6 edit () ;

7 // file2 .php

8 include ’library .php’

9

10 echo ’This is file 2’ ;

11 if (user can(’ edit post ’ ))

12 edit () ;

13 //library .php

14 function edit () {
15 // Body of the function

16 }

Listing: SPT vs branch dominators. At the inter-procedural level, branch dominators might

fail to report that a privilege is always granted before a function is called. Here, branch

dominators would fail to report that the edit function is protected by the edit post privilege

Figure 3.7 shows the annotated control-flow graph that corresponds to the previous snippet

of code. In the figure, CB and CE stand for call begin and call end nodes respectively and

represent the points in code right before function call and right after function return. Observe

that the edit function is called from both file1.php and file2.php, as represented by edges

(CB 6, ENTRY ) and (CB 12, ENTRY ). In both cases, the function is only called if a check

for the edit_post privilege succeeds. However, no branch of neither checks dominates the

entry point of the function. A branch dominator analysis would thus be unable to report

that the edit_post privilege is always granted when the edit function is called. SPT, on the

other hand, naturally detects and reports such cases. Overall, SPT extracts more relevant

security information than branch dominators, especially at the inter-procedural level.
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CHAPTER 4

RELATED WORK

The work that is presented in this thesis spans several fields of computer science. This

literature review reflects the diversity of topics covered and is organized around three main

themes: 1. program analysis, 2. formal concept analysis and 3. vulnerability detection in

Web applications. While relevant literature is reviewed in each of the paper that constitute

the core chapters of this thesis, this section also covers topics that we did not have the chance

to address in chapters 5 to 15. Several of the reviews presented here are adapted from“related

work” sections of chapters 5 to 15.

4.1 Program analysis

In chapter 3, we presented the Security Pattern Traversal (SPT) analysis, a static analysis

that propagates the results of security checks throughout programs. We also briefly showed

how SPT differs from program slicing and branch dominators. In this section, we discuss

these techniques as well as other program analysis approaches that are related to SPT.

4.1.1 Program slicing

In subsection 3.5.1, we described slicing as an analysis that reports the statements upon

which a slicing criterion (p, V ) is control or data dependent. We also showed how SPT differs

from slicing in the way it analyzes the control dependencies that are induced by security

checks. In this section, we briefly review existing slicing approaches.

Program slicing was originally proposed by Weiser [171] who suggested that slicing could

be used for debugging tasks. In Weiser’s paper, a slice S is defined as a reduced, executable

program obtained by removing statements from the original program P such that S replicates

parts of the behavior of P, including the faulty behavior. More recent definitions of slicing

left out the requirement that a slice must be executable and instead focused on reporting the

statements that can influence the slicing criterion.

Another important distinction must be made between static and dynamic slicing. Original

slicing approaches computed slices statically, making no assumptions about the inputs to the

program and including all the statements that may influence the slicing criterion. Dynamic

slicing approaches, that compute slices at run-time based on specific test inputs, were later

proposed.
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Static slicing

In Weiser’s approach, slices are calculated by computing consecutive sets of transitively rel-

evant statements, according to data flow and control flow dependences [159]. In subsequent

work, Ottenstein and Ottenstein [127] restated the problem of computing static slices as a

reachability problem in a program dependence graph (PDG) representing data and control

dependencies, as we described in 3.5.1. Nowadays, the PDG-based approach to computing

static slices is the most commonly used [80, 54, 79, 25].

Dynamic slicing

The term“dynamic program slicing”was first coined by Korel et al. in [94]. Contrary to static

slicing, in dynamic slicing, the only data and control dependences that are taken into account

are those that occur in a specific execution of the program. Dynamic slicing approaches work

based on execution traces. In that context, the slicing criterion usually is a triple (input,

statement, variable) where statement corresponds to a particular occurrence of a statement

in the execution trace and input defines the inputs that generated the trace [2, 95, 68].

4.1.2 Dominator analysis

In subsection 3.5.2, we discussed how SPT is related to branch dominators algorithms. While

dominators find applications in a variety of domains, they are most notably used in optimizing

compilers [3]. While the problem of finding dominators can be expressed quite simply using

standard data flow equations, they are so widely used in compilers that a vast body of work

have been dedicated to the elaboration of more efficient algorithms [98, 78, 12, 64].

4.1.3 Model checking

Remind from chapter 3 that SPT models programs and security checks as model checking

automaton. More general model checking approaches for program verification have been

presented in [17, 18, 49, 165]. These approaches are arguably more powerful, but also more

complex and costly to execute. SPT can be considered as a special case of general model

checking approaches that is suitable for problems that can expressed as a reachability problem

over a Boolean property.

In [31], authors present a model checking approach, named MOPS, to verify security proper-

ties on C programs. In MOPS, security properties are expressed as finite state automatons

(FSA), and programs are represented as push-down automatons (PDA). Using a process

known as composition, MOPS merges the security FSA with the program PDA and produces

a composite PDA. Using model checking techniques, MOPS determines whether there is a
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reachable risky state in the composite PDA. If so, it reports a vulnerability together with the

execution path that led to the risky state.

MOPS and SPT mainly differ on two aspects. First, contrary to SPT, MOPS does not

evaluate predicates. For example, MOPS would not be able to determine that the following

predicate: user_can(read) && user_can(write) grants both the read and write privi-

leges. Second, MOPS models security properties as FSA and programs as PDA. On the one

hand, the use of PDAs allows MOPS to be path-sensitive and to supply counter-examples

when a security property is violated. On the other hand, the use of FSAs allows for the

expression of more complex security properties than SPT. However, these implementation

choices come at a price. The complexity of MOPS ranges between O(SP 2) and O(S3P 2)

where S is the number of states in the FSA and P is the number of statements in the

control-flow graph (CFG) of the program. SPT, on the other hand, has a complexity that is

O(P ).

4.1.4 Points-to analysis

Chapter 7 presents algorithms to track the propagation of security patterns trough variables

and parameters. These algorithms are strongly inspired from points-to analysis, that as-

sociates pointers or heap references to variables and storage locations. In the context of

SPT, the goal is to determine to which security patterns a variable can directly or indirectly

(through aliasing) points to.

Points-to analysis is not a new subject. However, it has attracted and continues to attract the

attention of many researchers. Over the years, several studies have been devoted to the area of

alias analysis [24, 172, 44, 154, 133, 77]. However, the focus of most of these studies was static

languages like C, C++ and Java. The dynamic nature of the PHP language made the existing

analyses difficult to reuse and initiated the work presented in chapter 7. Some recent research

also targets points-to analysis for the highly dynamic JavaScript language [50, 155, 85].

4.2 Formal concept analysis

In chapter 9, we show how Formal Concept Analysis (FCA) can be used to investigate reverse-

engineered RBAC and privilege protection models. On the one hand, we show, in chapter 1,

how RBAC and privilege protection models are defined based on binary relations. On the

other hand, FCA takes a binary relation, abstracted as Object × Attribute, as input and

identifies clusters of objects that share identical attributes before ordering them in a Galois

lattice [59]. Therefore, FCA naturally lends itself to the analysis of RBAC and privilege

protection models.
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Unsurprisingly, many researchers indeed suggested FCA-based approaches to support the

design [117, 46, 126] of RBAC models. The idea behind these approaches is to empower

the role engineer with the formalism that is provided by FCA to design better and more

robust RBAC models. Using a process that is called attribute exploration, role engineers can

iteratively define constraints on their RBAC model while the underlying FCA engine takes

care of producing an appropriate RBAC configuration.

In the context of the work presented in chapter 9, however, we used FCA to investigate

reverse-engineered RBAC and privilege protection models. The only work, that we are aware

of, that is related to this study used a combination of static analysis and formal concept analy-

sis to mine security-sensitive operations from legacy code [58]. In this work, authors manually

identify application specific, security-sensitive, code patterns that are further statically de-

tected with the help of ASTs. Formal concept analysis is then used to identify candidate

fingerprints, that are sets of security-sensitive code patterns that tend to cluster together in

the system. A final step of manual analysis by domain experts is required to select relevant

candidate fingerprints and refine them to build a final set of fingerprints. Fingerprints are

then matched against the code base to identify security-sensitive operations that are further

protected with specific authorization hooks.

Apart from the investigation of access control models, formal concept analysis also finds use

in several other areas of software engineering, such as program testing, refactoring, compre-

hension, maintenance and others [158, 161, 137, 160, 67, 91, 114].

4.3 Vulnerability detection in Web applications

The studies that are presented in chapters 11 to 15 specifically target the detection of access

control vulnerabilities in PHP applications. In the following paragraphs, we review funda-

mental studies about both the detection of vulnerabilities in Web applications in general and

in access control models in particular.

4.3.1 Detection of SQLi and XSS

Year after year, SQLi and XSS vulnerabilities continue to sit at the top of the OWASP Top

10 Web application vulnerabilities [131] list. While SQLi and XSS vulnerabilities are not the

focus of this thesis, several approaches that were developed for the detection of SQLi and

XSS present interesting similarities with SPT.
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Taint analysis

In some respects, SPT, when applied to a single privilege, relates to taint analysis. Generally

speaking, one refers to tainted variables do designate untrusted data that can flow to security-

sensitive code. Untrusted variables are therefore tagged as tainted until some sanitizing

routine sanitizes them. Classic taint analysis is thus a data-flow analysis. Our approach, on

the other hand, implements a form of static control-flow taint analysis where privilege checks

are analogous to sanitizing routines that sanitize tainted execution paths. Taint analysis,

both in its static and dynamic forms, has been successfully employed to detect SQLi and

XSS vulnerabilities in Web applications.

Classic taint analysis, however, does not make any distinction between sanitizing routines.

For example, in the context of SQLi vulnerability detection, a taint analyzer would only report

whether or not the untrusted variables have been processed by some sanitizing routines before

flowing to the SQL interpreter. SPT, on the other hand, differentiates the privilege checks

that have been traversed before executing security-sensitive code.

Tripp et al. [163] implemented a static taint analysis for Java (TAJ). Their approach aims

at identifying XSS and injection vulnerabilities in Web applications and is able to handle

reflective calls, flow through containers and nested taint.

Clause et al. [34] presented a framework (DYTAN) for conservative dynamic tainting. Their

framework takes as input a user supplied configuration file, describing the taint analysis to be

performed, and instruments x86 binaries accordingly. Execution of the instrumented binaries

generates reports according to user’s specifications. Interestingly, to our knowledge, they are

among the first authors to explicitly address the problem of control flow tainting.

Jovanovic et al. [88, 89] developed Pixy, a static taint analysis for identification of cross-site

scripting (XSS) vulnerabilities in PHP Web applications. Pixy uses an inter-procedural and

context-sensitive data flow analysis enhanced with literal analysis to detect potential XSS

vulnerabilities in PHP scripts. Literal analysis allows Pixy to statically approximate the

target of dynamic includes and enhance the precision of their analysis. Chapter 7 discusses

how we adapted and implemented this idea in the context of SPT.

Several other data-flow based approaches have been dedicated to the detection of SQLi and

XSS vulnerabilities [106, 105, 173, 83, 72, 92].

String analysis

String analysis has also been explored as an alternative to data-flow based approaches for the

detection of SQLi and XSS vulnerabilities. String analysis is a technique that tracks string

values in a program. For example, advanced string analysis techniques are typically able to
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approximate, in the form of regular expressions, all the strings a variable can hold at a given

point in the program. Since PHP programs typically output HTML strings, string analysis

techniques can be used to approximate all the HTML pages a script can output.

Minamide [116] implemented a PHP string analyzer, based on Christensen et al. [32] im-

plementation for Java, to validate dynamically generated web pages. Wassermann and Su

further extended Minamide’s approach to detect SQLi [168] and XSS [169] vulnerabilities.

While very powerful, string analysis approaches typically suffer from high complexity and

execution times.

Model checking

Model checking approaches have also been used for the detection of XSS attacks. The anal-

ysis presented in [104], aims at identifying confidential information leaks and XSS attacks

using source code model checking. Programmers are first requested to manually add special

comments to identify each confidential strings in the application. Their tool then extracts

these specifications from source code as well as XSS sanitizing routines and produces model

checking automatons that are compatible with Bandera [48], a model-checking tool. It is

then left to Bandera to determine whether there exists XSS vulnerabilities or if confidential

strings can flow to untrusted parts of the application.

4.3.2 Detection of access control vulnerabilities

Compared to SQLi and XSS vulnerabilities, detecting access control vulnerabilities often

poses an additional challenge: the lack of security specifications. Whereas it is usually

accepted that SQLi and XSS vulnerabilities occur when untrusted input data can flow to

the SQL interpreter or the JavaScript engine, access control violations do not admit such a

clear and generic definition. For example, there is no clear and general rule as to what an

administrator should be allowed to do in a system. Therefore, access control violations must

be interpreted in the light of application-specific security specifications, that define the actions

any user and/or role is allowed to perform in the system. However, such specifications are

rarely available, especially in open source systems. To circumvent this problem, researchers

have adopted two main strategies.

The first strategy is to extract formal access control models from source code and to perform

security verifications on the extracted models. On the one hand, extracting formal access

control models enables users to formulate and verify potentially complex security properties.

On the other hand, users are usually required to manually specify the security properties

they wish to verify.
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The second strategy is to build heuristics that detect access control violations based on a set

of assumptions that are expected to hold for a large range of applications. These approaches

are usually fully automated but are limited by their heuristic nature and the assumptions

that are made.

The work that is presented in chapters 5 to 9 mostly follow the first strategy while the work

in chapters 11 to 15 is mostly related to the second strategy.

Access control model extraction and verification

Alalfi et al. developed a framework for the extraction and verification of access control models

in Web applications. In summary, their framework consists in a suite of tools that reverse-

engineer access control models to UML representations and perform security verifications

over the extracted UML models. In the following paragraphs, we review each of the tools

that compose their framework in more details.

The SQL2XMI [6] tool automatically transforms a SQL schema into a UML ER data model.

This UML ER model serves as a reference model for subsequent tools.

The PHP2XMI [7] tool instruments PHP applications using the TXL [36] technology to

recover dynamic behavior models from dynamic execution traces. The behavior model that is

recovered by PHP2XMI is a sequence diagram where users and dynamic pages are represented

as lifelines and transitions between pages are represented as messages.

The WAFA [9] tool extends PHP2XMI by including interactions with the database into the

sequence diagram that is extracted by PHP2XMI. The database interaction information that

is collected by WAFA can be mapped onto the UML ER model of SQL2XMI.

The DWASTIC [10] tool instruments PHP applications to gather coverage metrics that are

specifically tailored for Web applications. Metrics include page access, SQL statement and

server environment variables coverage ratios.

The PHP2SecureUML framework [11] uses SQL2XMI, PHP2XMI and WAFA to extract

secureUML models from dynamic executions of PHP applications. In this context, DWASTIC

is used to assess the quality of reverse-engineered secureUML models: the higher the coverage

metrics, the higher the quality of extracted models.

Finally, in [5], the authors presented the SecureUML2Prolog tool that transforms a se-

cureUML model to a Prolog-based formal model, that is suitable for verification of access

control security properties, such as unauthorized access to privileged resources.

In a similar perspective of access control model extraction and verification, Koved et al.

[96] proposed an approach to compute access rights requirements in Java applications. The

authors used their tool to construct an Access Right Invocation Graph (ARIG), representing

the privilege protection model, as implemented in the code. In [136] they further extended
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their approach with taint analysis to detect and automatically protect code that should have

privileged access. Their technique also identifies unnecessary and redundant privileged code

and tag tainted variables as benign or malicious depending on whether or not they are used

in privileged functions.

Wang et al. [167] presented a technique for the automatic reverse engineering of access control

models from access control configuration files.

In [73], Hallé et al. proposed to model web applications as state machine and dynamically

verify that runtime operations don’t violate some pre-defined temporal properties. Similarly,

Dalton et al. proposed a tool, called Nemesis [41] that takes a user specified access control

model as input and dynamically detects access control violations at runtime.

Heuristics for the detection of access control vulnerabilities

As we previously mentioned, in order to circumvent the lack access control specifications,

some researchers developed heuristic approaches to infer specification and automatically de-

tect specific types of access control flaws.

Swaddler [38] automatically learns the relationships between an application’s critical execu-

tion points and internal states to infer a workflow. It then detects anomalous behaviors by

reporting executions that violate the workflow. In subsequent work [51] they enhanced their

tool to infer invariants of an application from its execution traces. Invariant violations are

then reported at runtime.

In 2011, Son et al. introduced RoleCast [152], a tool that is specifically designed for access

control vulnerabilities detection. RoleCast statically infers the privilege checks of a program

by analyzing the variables that are usually verified before the execution of security-sensitive

operations. In the context of their study, security-sensitive operations are limited to INSERT,

UPDATE and DELETE database operations. To mitigate some difficulties that are specifically

related to the static analysis of PHP, they convert PHP applications to Java programs and

perform several post-processing operations to produce well-formed Java files. RoleCast then

processes the Java version of the program and reports a vulnerability if an execution path

that lead to a sensitive operation misses a privilege check.

Some other approaches detect access control violations based on the protection level of hy-

perlinks [156]. The assumption behind these studies is the following: if all the hyperlinks

that point to a page are privileged, direct URL access to the page should be denied. Oth-

erwise, a forced browsing vulnerability is reported. Work by Sun et al. [156] relies on string

analysis techniques [168, 169] to identify forced browsing vulnerabilities in PHP applications.

Similarly to SPT, their analysis relies on application-dependent patterns to identify security

checks. However, contrary to SPT, their approach requires manual specification of infor-
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mation such as: session values, cookie values, request parameter values, database records,

variable values and function return values. Chapter 11 shows how we adapted SPT to detect

forced browsing vulnerabilities with equivalent precision, but much less manual work and

much higher execution speeds (up to 890× faster).

In [176], the authors present Chucky, a tool to identify missing security checks based on the

neighbors of a function. The idea behind their approach is to first identify, with the help of

information retrieval techniques, neighbour functions that share a similar vocabulary with a

target function. Chucky then compares security checks in the target function with those of its

neighboring functions to identify discrepancies, the idea being that if neighboring functions

do perform a check while the target function does not, there might be a missing security

check. Interestingly, Chucky is strongly related to the work presented in chapters 13 and

15 that respectively use information retrieval techniques and clone analysis (another form of

neighborhood) to identify wrong or missing security checks.

Other researchers also developed approaches to detect access control violations based on

dynamic analysis [19, 20]. Applying data-mining techniques to access logs that are collected

over a certain period of time, their approach identifies access control misconfigurations, that

are small differences between the privileges of a group of users.

On a similar line of thoughts, Das et al. developed the Baaz tool [45] to automatically detect

misconfigurations in access control models. Contrary to the approach by Bauer et al. that

is based on dynamic analysis, Baaz detects misconfigurations based on static access control

policies.

In [57], authors proposed an approach to mine security-sensitive operations from legacy code

using a mix of static and dynamic analysis. They first extract static code patterns and

dynamic side-effects of operations that are known to be security-sensitive. Both static code

patterns and dynamic side-effect constitute the fingerprint of an operation. Then, their tool

automatically mitigate security flaws by protecting operations that share similar fingerprints

with security-sensitive operations.

Conformance testing and verification

For cases where formal security policies are available, conformance testing and verification

approaches can prove very powerful. Conformance testing and verification aims at certifying

that the implemented access control model is conformant with a given security policy. On

the one hand, testing approaches uses test-case generation techniques to derive security test

suites from security policies [111, 123, 82, 110, 162, 108]. Some of these approaches guarantee

the conformance of the security policy with the implemented program if all tests succeed. On

the other hand, verification methods express security policies and their implementations in
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formal or logical languages to verify security properties. Examples of verification approaches

can be found in [21, 76, 138, 93, 70, 52].

The only work we are aware of that uses static analysis to check conformance of RBAC

security policies with their implementations were presented in [134, 124]. In [134] authors

presented a method to test conformance between policies and implementations based on

Abstract Syntax Trees (AST). However, while the approach is related to ours, they only

presented a case study on a very simple policy and a snippet of five lines of code.

The static analysis presented in [124] leverages the J2EE framework specifications to detect

inconsistencies between access control policies and their implementations in J2EE applica-

tions.
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CHAPTER 5

PAPER 1: EXTRACTION AND COMPREHENSION OF MOODLE’S

ACCESS CONTROL MODEL: A CASE STUDY

ABSTRACT

Whether for development, maintenance or refactoring, multiple steps in software

development cycle require comprehension of a program’s access control model

(AC model). In this paper, we present a novel approach to reverse-engineer AC

model structure from PHP source code. Using an hybrid approach combining

static analysis and model checking techniques, we are able to extract AC model

structure in a fast and precise way.

An experimental tool was developed to evaluate the presented approach and

report AC models using source code coloring. For this case study, Moodle, a

medium-scale (approx. 625K lines of code), open-source PHP application with a

rich AC model was investigated. Results revealed that, although very complex by

design, implemented AC models may comparatively be very simple, suggesting

that developers tend to maintain a low complexity level when implementing ACs.

Detailed figures and distributions are reported.

We believe the presented tool and approach may help in understanding and

evaluating the implemented AC models in Web systems. Discussion of findings,

limitations, and further research are presented.

5.1 Introduction

Web applications are present in every area of daily life; we use them to communicate, buy

and sell merchandise, gather information, etc.

Among all the web applications we use, many deal with privacy or security sensitive in-

formation such as: credit card numbers, addresses or financial data. These applications

must therefore implement mechanisms to control access to privacy or security sensitive con-

tent. Some good examples of applications that need to implement such mechanisms are:

e-commerce applications, e-learning applications, content management systems, forums, or

online banking applications.

Access control (AC) models simplify administration of user privileges and are therefore well

suited for Web applications, which often have to deal with a large number of users that may
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change in time. In fact, AC models are widely used in Web applications nowadays.

Sandhu et al. [143] introduced a terminology to describe Role-based Access Control models

(RBAC). As its name suggest, RBAC defines an AC model based on user roles. For the sake

of clarity, we borrowed some relevant terms from their terminology to describe AC models:

• “User” refers to any person who directly interacts with a Web application through its

user interface.

• “Object” refers to a passive entity that contains or receives information. In the context

of this paper, “objects” will refer to sections of code and statements.

• “Capability” is the name of an interactive action a “user” may perform on an “object”.

For example, moodle/blog:view is a “capability” in Moodle.

• “Permission” represents the allowed level of interaction for a given “capability”

• “Access control” refers to the process of determining whether a “user” can perform the

action described by a “capability” according to their “permission”.

Several software engineering objectives may benefit from extracting and understanding the

AC model of an application.

• Identification and correction of AC model defects and vulnerabilities. Indeed, under-

standing which “permissions” are required to access an “object” helps to detect vulner-

able AC.

• Modification of existing AC model structures. Full understanding of an AC model is

effectively required to assess that the model correctly implements the AC policy.

• Addition of new “objects” and “capabilities”. As an application is developed, developers

may need to define new “capabilities” in relation to some of the “objects” they created.

Comprehension of the implemented AC model may help determine whether interac-

tions with the new “objects” need to be described with new “capabilities” or if existing

“capabilities” are sufficient. Introduction of unnecessary “capabilities” adds complexity

to AC models and decreases long term maintainability.

• Impact analysis of AC model related modifications. Extracting the implemented AC

model can help showing the impact of conferring a new “permission” to a “user” by

highlighting newly accessible sections of code.
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• Regression testing. For example, comparing extracted AC models along the evolution

of a software may help target “objects” for which related AC were modified and that

require re-testing.

• Software documentation for auditing and training. AC models can serve as a solid base

for writing documentation, can facilitate communication among customers, designers,

and developers and thus can simplify training.

In this paper, we are interested in extraction and reporting of AC models from source code

using reverse-engineering techniques. Though we studied a Web based PHP application, the

presented technique is not strictly restricted to PHP nor to Web applications and can be

customized for other languages and paradigms.

In the context of this paper, our objective is to identify the necessarily enabled “capabilities”

required to access “objects” in an application. The necessary perspective is important since

enabled “capabilities” may not be sufficient to restrict access to “objects”.

For the rest of this paper, we will refer to a Necessarily Enabled Capability under the ab-

breviation NEC. Moreover, according to the definition of “objects” presented above, we may

now refer to “objects” as statements. The detailed definition of a NEC will be presented in

Section 5.3.3.

5.1.1 Case study: AC model extraction in Moodle

For this paper, we studied the AC model of an open-source course management system,

written in PHP, known as Moodle [118]. The first version was released in 2002 and the

application is still under active development.

The recovery of the AC model in Moodle currently poses serious challenges. Indeed, several

difficulties arise when trying to extract an AC model. Among them, we can list:

• Sparse documentation

• Inter-procedural flow issues

• Dealing with programming language idiosyncrasies

• Discrepancies between documentation (when available) and implementation

In this paper, we implemented a tool to automate the identification of NECs related to

statements in an application. Specifically, we applied our method on a recent version of

Moodle, a medium-scale software application that presents a rich AC model. As we will

detail in section 5.3, our tool makes use of a PHP parser, a model extractor, and a model

checker to generate reports and highlighted source code.
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5.1.2 Objective and contributions

We present a novel approach, based on model checking, to extract the AC model from source

code and to communicate the extracted model to developers. NECs are reported using source

code coloring, that should help developers to explore and understand the implemented AC

model model in a visual way.

The contribution of this paper is two-fold. First, our approach is able to extract and report

rich and complex AC models from medium-scale software systems. Second, our technique

runs in linear time and benefits from model checking formalism.

5.1.3 Outline

The rest of the paper is organized as follows: section 5.2 presents the AC model in Moodle,

as described in its documentation. Section 5.3 presents our AC model extraction framework

and describes each of its components. Section 5.4 first shows results and statistics about the

extracted AC model from Moodle and then shows samples of code coloring reports. Section

5.5 discusses our results and threats to validity. Section 5.6 concludes the paper.

5.2 Access controls in Moodle

AC in Moodle is enforced through capabilities, as described in Moodle documentation [118].

Capabilities in Moodle correspond to the “capability” definition we provided in section 5.1.

5.2.1 Access control patterns in Moodle

As mentioned earlier, the goal of this paper is to identify NECs associated with each statement

in Moodle. Therefore we had to detect AC patterns in Moodle source code. This section

presents the patterns we identified and investigated.

The first pattern consists of a single Moodle function: require capability. The pattern detects

calls to require capability with two parameters: a constant string representing a “capability”

name and a variable representing the current context. Require capability function controls

access of a “user” to subsequent statements by interrupting the execution of the PHP script

if access to the “object” is denied.

An occurrence of this pattern is illustrated in Listing 5.1, at line 4. In this case, execution is

interrupted, if the “user” is denied the right to solicit moodle/site:uploadusers “capability” in

the system context.
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1 /// File header

2

3 admin externalpage setup(’uploadusers’);

4 require capability(’moodle/site:uploadusers’, get context instance(CONTEXT SYSTEM));

5

6 /// Do the job

Listing 5.1: Example of require capability usage

The second pattern consists of a Moodle function: has capability, which is called inside a

conditional statement. The pattern detects calls to has capability function with two pa-

rameters: a constant string representing a “capability” name and a variable representing the

current context. Has capability function returns a Boolean variable representing whether or

not the “user” has sufficient “permissions” to access the “object” targeted by the “capability”.

“Access control” in this case is performed by the conditional statement.

Listing 5.2 illustrates an occurrence of this pattern at line 3. In this case, appropriate

hyperlinks are added to the page that will be displayed, if the “user” is granted the right to

solicit moodle/course:viewparticipants “capability” in the course context.

1 $navlinks = array();

2

3 if (has capability(’moodle/course:viewparticipants’, get context instance(CONTEXT COURSE, $course

−>id)))

4 {
5 $navlinks[] = array(’name’ => $strparticipants,

6 ’link’ => ”$CFG−>wwwroot/user/index.php?id=$course−>id”,

7 ’type’ => ’misc’);

8 }
9

10 ///Do the job

Listing 5.2: Example of has capability usage

Moodle version 1.0 was released on August 2002. However, the AC model described in

this paper was introduced in version 1.7, on November 2006. Prior to version 1.7, Moodle

used fixed “roles”. AC were then performed once, at the top of the file, using functions like

isteacher, isstudent, or isguestuser. Before version 1.7 was released, a large portion of

Moodle’s code therefore had to be updated to make it compliant with the new AC model.

The need for backward compatibility has sometimes led to implementation of mixed AC, as

illustrated in Listing 5.3. Both isloggedin and isguestuser, on line 1, implement legacy AC

while has capability implements AC for the new AC model.
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1 if (isguestuser() or !isloggedin() or has capability(’moodle/legacy:guest’, $modcontext)) {
2 $canreply = ($forum−>type != ’news’); // no reply in news forums

3 }
4 else {
5 $canreply = forum user can post($forum, $discussion, $USER, $cm, $course, $modcontext);

6 }

Listing 5.3: Intermixing new style and legacy permission checks

Moreover, we observed there exists other “access controls” patterns in the code. For example,

multiple calls to has capability are sometimes joined in a complex Boolean predicate inside an

if statement. In the context of this paper, we only have investigated the first two patterns

we presented: calls to require capability and calls to has capability inside a conditional

statement and have left remaining patterns for further research. Section 5.5 will discuss

related consequences and issues.

5.3 Model extraction framework

This section aims to provide the reader with an overview of our methodology. The goal of

the framework is to extract and report an application’s AC model.

PHP 

Parser

Model

Extraction

Model 

Checker

CFG

Model

Checking

Automaton

PHP

Source Code

NEC

Reporting

Module

Reports

Code

Highlighter

Highlighted

Source CodeNEC

Figure 5.1: Process of extracting AC model from source code and reporting results.

The whole process of extracting an AC model a from source code is illustrated in Figure 5.1.

The process starts with PHP source code and finishes with the production of reports and of

highlighted source code.
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5.3.1 PHP parser

Our experimental setup uses a PHP parser generated by JavaCC, a common parser generator

tool for LL grammars. The PHP grammar used with JavaCC was inspired by [144] although

it was heavily modified to fit our needs. Also, the grammar was augmented with JJTree

instructions to generate Abstract Syntax Tree (AST) for each source file of Moodle.

The output of the parser is a program Control Flow Graph (CFG):

CFG = (VCFG, ECFG) (5.1)

with a unique entry node vin ∈ VCFG and a unique exit node vout ∈ VCFG. Nodes in VCFG can

be of type generic, call begin, call end, entry, or exit. Nodes of type generic are involved

in intra-procedural control flow; nodes of type call begin, call end, entry, and exit are used

in inter-procedural control flow.

Edges in ECFG can be of type generic, allow ci, prevent ci, call, or return. Edges of

type generic represent intra-procedural transfers of control that do not affect capability

enablement; edges of type allow ci represent intra-procedural transfers of control that enable

a capability ci ; likewise prevent ci are edges that disable a capability ci; finally, edge of type

call and return represent inter-procedural control flow links.

Finding AC patterns in Moodle involves finding some syntactic patterns in the AST. As we

mentioned in subsection 5.2.1 the primitive has capability(ci, u) is a function determining if

a “user” u can solicit a “capability” ci.

Execution of code based on privileges can thus be accomplished by the simple use of a

conditional statement using has capability as its condition. If the predicate returns true,

control is transferred to a block in which “capability” ci is enabled for “user” u until block

end. Conversely, if the predicate returns false, control is transferred to another block in

which “capability” ci is disabled for “user” u until block end. Those transfers of control are

represented in the CFG with allow ci and prevent ci edges.

In a similar manner, calls to require capability(ci, u) are also represented with allow ci and

prevent ci edges except that prevent ci edges always point to the exit node, since the program

terminates.

5.3.2 Model extraction and inter-procedural aspects

The model extraction uses a CFG from the PHP parser and transforms it into an automaton

A suitable for model checking:

A = (QA, LA, TA, q0, VA, GA, AA) (5.2)
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where QA is a finite set of states; LA is a finite set of labels applied on the states; TA ⊆
QA×QA is a set of transitions; q0 is the initial state; VA is a set of variables used in “guards”

and “assignments”; GA is a set of “guards” that are logical propositions over VA and are

associated with transitions; and AA is a set of assignments that modify the value of variables

and are also associated with transitions.

The model extraction is performed by operations that include the rewriting of intra-

procedural and inter-procedural nodes, and the identification of capability granting func-

tions through AC patterns. The intra-procedural nodes VCFG and edges ECFG are directly

rewritten in the automaton A into the corresponding states QA and transitions TA. A label

stmtx is applied on each state to indicate to which statement in the source code this state

corresponds. The label is formed as stmtx with x as a unique identifier.

In more of states and transitions, inter-procedural nodes and edges will also produce variables

VA, guards GA, and assignments AA. The variables with guards and assignments are used to

reproduce the logic of inter-procedural analysis as explained in [100].

Inter-procedural representations in the automaton add time and complexity; nevertheless, we

found they are essential. Intra-procedural analysis only deals with events that occur inside

the scope of a function, but a NEC affects all statements executed after it even if they are

located in other functions.

Thus, some functions do not produce NEC but are still affected by NECs produced by their

calling function. Therefore, intra-procedural analysis alone is not precise enough, because it

limits NECs’ scope to statements inside a function.

Although we could have, in principle, done the same analysis with static analyzes by using

an algorithm that operates directly on the CFG, as demonstrated by [145], we preferred

to use model checking because of the formal reasoning it offers. Optimized and specialized

inter-procedural static analyzes are hard to devise and it may be difficult to assess their

soundness and complexity. Making an inter-procedural automaton for model checking is at

least as difficult as doing an inter-procedural static analysis, but we found reasoning about

the formally specified automaton easier than reasoning about an algorithm that operates on

a CFG.

5.3.3 Model checking

Software model checking [33] is the algorithmic analysis of programs to prove properties

of their executions. While originating from logic and theorem proving fields, it has now

evolved as a hybrid technique, simultaneously making use of analyzes traditionally classified

as theorem proving, model checking, or dataflow analysis [87].

A well-known limitation of model checking techniques is known as the combinatorial ”state
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explosion problem”. Various techniques have been developed over the years to circumvent this

problem and analyze increasingly larger software. Among them, we find bounded, symbolic

and abstract model checking as well as a large variety of state-space exploration and graph

refinement algorithms.

The capability ci is defined as a NEC for the statement stmtj if the following temporal logic

formula is verified:

♦stmtj ∧�( stmtj ∧ ci) (5.3)

meaning that the automaton can possibly reach a statement labeled stmtj (♦stmtj) and

always when stmtj is reachable, “capability” ci is enabled (�( stmtj ∧ ci)). States satisfying

Equation 5.3 correspond to statements that are reachable by an execution for which a ca-

pability ci is enabled, but that cannot be reached by an execution for which ci is disabled.

Indeed, capability ci represents a NEC for statement stmtj.

The model checker in Figure 5.1 solves the reachability problem of states in the automaton

and therefore solves the corresponding problem of identifying NECs for statements.

For ease of implementation, we produce many automata, each one representing the whole

system for one of Moodle’s 217 capabilities. Building an automaton representing all capa-

bilities would require model checking the effect of all 2217 combinations of capabilities; this

would lead to a combinatorial state explosion. We therefore analyzed the effect of each 217

capability by producing one automaton for each capability.

Introduced in [66, 150], may and must models are among the latest approximation tech-

niques for model checking. For those more familiar with program analysis techniques, may

and must models are conceptually related to static and dynamic analysis respectively. May

models provide information about a whole system, covering all of its possible executions. For

performance and scalability reasons may models often provide an over-approximation of real-

ity. Thus, an erroneous execution reported by a may model may not be triggered by any real

execution path. Conversely, must models, as their name suggest, report information that are

guaranteed to hold on those particular executions that were reported. Must models typically

under-approximate the whole system as covering all possible executions of a program is often

infeasible.

In this paper, we present a scalable summary-based approach to perform formal verification of

multi-feature security properties on large software. To achieve scalability, we combined a may

model with an inter-procedural analysis [18, 139] on a restricted number of contexts. While

this restricts the kind of property that can be verified, it can perform analysis on arbitrarily

large systems efficiently without any loss of precision due to the specially conceived inter-

procedural model.
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5.3.4 Property satisfaction profiles

Property satisfaction profiles (PSP ) were introduced in [99] as Boolean vectors representing

Boolean satisfaction values of a set of properties defined on CFG nodes. In the context of this

study, we defined PSP for each node in the security CFG as: psp(v) = (p0, p1, ..., pi, ..., pn),

where each property represents the Boolean satisfaction of a specific capability in Moodle.

More specifically, every property is a Boolean pair, indicating if the state is reachable with-

out and with the capability, see Equation 5.4. This is an important precision since strong

conclusions may be drawn when a node is reachable only in one of the two states. A node

that is only reachable with a specific capability is guaranteed, under the limitations of the

model, to be secured with this capability under any executions of the system.

psp(v) = (pv0 , pv1) =

((reachable(qv,0,0) ∨ reachable(qv,1,0)),
(reachable(qv,0,1) ∨ reachable(qv,1,1)))

(5.4)

PSP are produced through the calculation and conjunction of state reachability proper-

ties [90], on each security models. Psp(v) vector therefore represents the Boolean values of

reachability for potentially every available capabilities in Moodle on a single CFG node.

Mapping model states to CFG nodes is trivial as graph rewriting rules create four model

states for every nodes in the CFG [99, 100]. Mapping back CFG nodes to specific lines of

code in PHP files is also a trivial operation as the parser can instruments the CFG with

pertinent information. Using these information, we are able to highlight every lines of code

in original PHP files according to their corresponding PSPs.

5.4 Experiments and results

Moodle is a medium-scale application, totaling 625 473 LOC across 2331 PHP files. The

Moodle website reports a total of 39 412 496 users across 211 countries [119]. In the context

of this paper, we analyzed Moodle 1.9.5, a recent version although not the latest.

The goal of our analysis is to extract NECs for each statement and communicate results to

developers in a comprehensive manner.

Table 5.1 shows execution times for the different steps involved in our technique.

Results presented in this paper are derived from model checking 217 automata, each repre-

senting a single “capability” in Moodle. Hence, we report the average times to extract the

model checking automata and perform model checking.

Moodle 1.9.5 has a total of 217 “capabilities”. Out of these, we were surprised to observe

that only 146 “capabilities” were actually identified as NECs. We will discuss, in section 5.5
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Table 5.1: Execution times for AC model analysis of Moodle

Step Time

Parsing Moodle and building CFG 13m 55s
Model extraction (average) 20s
Computing NECs (average) 8s
Total time on 217 capabilities 114m 44s

consequences and issues of this observation.

Furthermore, out of a total of 2217 possible combinations of NECs, results revealed that only

166 combinations of NECs were actually detected by our approach. Out of these, 135 consist

of a single NEC, 28 of two NECs and 3 of three NECs.

In the context of this paper, we define NEC coverage as NECi → {stmt1, . . . , stmtn}; the

set of statements a NEC is associated to. Interesting results may be drawn from calculating

NEC combinations coverages. Results are reported in Figure 5.2.

We can observe that cardinality of NEC combinations coverages vary widely from one combi-

nation to another. Out of the 166 observed NEC combinations, cardinality of coverage varied

from 1 to 5347 with an average cardinality of 373.84 and a standard deviation of 725.15.

Crossing coverage information with Moodle directory structure provides some interesting

insights about Moodle AC model. In Table 5.2 we present base directories of Moodle with

their number of files and average percentage of covered statements. This shows, for example,

that files in the admin directory are less covered, on average, compared to directories with a

similar number of files like grade and course.

Coloring statements according to their NEC combinations is an effective way to communicate

the implemented AC model to developers. Figure 5.3 shows an example of a colored section

of PHP code. A call to require capability at the head of the file colors the whole code in

light gray. Sections of code that are also covered by moodle/site:doanything through a call

to has capability are colored in dark gray.

5.5 Discussion

Since our algorithm has linear time and memory complexity [100], it scales well to analysis

of medium/large applications. Furthermore, since we independantly analyzed “capabilities”

of Moodle, linearity is preserved. In practice, Table 5.1 shows we are able to generate model

checking automata and extract NECs from Moodle, in about 30 seconds on average.

Results revealed that out of 217 documented capabilities, 71 are never identified as NECs by

our technique. Different reasons may explain this matter of fact:
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Figure 5.2: Histogram reporting NEC combinations coverages

1. AC patterns involving require capability and has capability functions have been inves-

tigated to obtain the results presented in this paper. Additional AC patterns in Moodle

are described in subsection 5.2.1 and can be investigated using the same approach.

2. As presented in subsection 5.3.3, our approach identifies NECs through model checking

of the extracted automata. AC patterns located in dead code are undetected since they

are unreachable.
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Table 5.2: Moodle directories with their number of files and average NEC coverage

Moodle directory Number of Average percentage of
files covered statements (%)

/ 7 0.15
/admin 170 8.10
/auth 40 0.0
/backup 13 6.03
/blocks 98 0.34
/blog 10 4.22
/calendar 9 0.12
/course 77 15.52
/enrol 32 4.67
/error 1 0.0
/files 1 41.62
/filter 17 2.70
/grade 103 14.47
/group 14 26.48
/install 86 0.0
/iplookup 1 0.0
/lang 118 0.0
/lib 711 0.31
/login 10 0.93
/message 8 7.98
/mnet 10 7.59
/mod 453 5.73
/my 2 0.0
/notes 7 5.63
/pix 2 0.0
/question 107 1.21
/rss 1 0.0
/search 100 0.28
/sso 3 0.0
/tag 10 12.80
/theme 47 0.99
/user 41 7.32
/userpix 2 46.62

We also observed that out of 2217 possible combinations of NECs, 166 were actually detected;

the longest one being of length 3. This observation supports the assumption that while AC

models can be very rich and complex, implemented models may prove to be simpler. It also

suggests that developers tend to maintain a relatively low level of complexity when it comes
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Figure 5.3: Example HTML output of a PHP file colored according to combinations of NECs

to protecting their code.

The histogram of Figure 5.2 revealed major differences between NEC coverages, which, we

think, may reflect different coding intentions.

Calls to require capability usually appear at the top of file since, in general, developers want

the execution of the script to be interrupted quickly if a “user” does not have appropriate

“permissions”. Therefore, NECs induced by calls to require capability functions tend to have

higher coverage. We think that such NECs are used for “protection” purposes. For example,

in Moodle, the script governing bulk registration of users from a comma separated file is

covered at 97% by the moodle/site:uploadusers NEC by a call to require capability at the

head of the file.

Alternatively, has capability functions tend to have a more limited scope and we think that

NECs induced by this function may represent options. For example, Listing 5.2 shows that

moodle/course:viewparticipants NEC covers the single statement that governs the addition

of hyperlinks to a Web page.

While not a hard rule, manual inspection tends to support the hypothesis that higher coverage

relates to protection and lower coverage to option control. Further investigation would be

required to fully assess this hypothesis.

NEC coverage reports are provided to ease reasoning about capability enforcement by devel-

opers. For instance, it may help to:
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1. Identify vulnerabilities. Given a coverage report, a developer may identify and investi-

gate pieces of code that are not covered with the expected NEC combination.

2. Understand the AC model, as implemented, when documentation is sparse or unavail-

able.

3. Document existing code. Since our analysis is precise and conservative [115, 100, 99],

coverage results can be used for documenting the underlying AC model.

5.5.1 Threats to validity

Since we applied our technique to a single system, conclusions from our analysis may not

generalize to all software systems or AC models. Furthermore, to provide a scalable, linear

time analysis, we had to introduce the following approximations:

First, we only considered require capability and has capability functions. Legacy functions,

such as the ones described in subsection 5.2.1, were ignored since they don’t belong to the new

AC model and are tagged for deletion. Moreover, boolean predicates including one or more

calls to has capability function were not treated in this preliminary version. Enhancement

of our technique with treatment of boolean predicates is planned for a future release.

Furthermore, although our technique is largely application independent, AC patterns remain

application dependent. However, we may argue that access control patterns are usually quite

stereotyped, since they often test the value of an AC property. Therefore, new access control

patterns can often be implemented as simple substructure matches in an AST.

On the other hand, implementation of complex patterns that are expressed as complex

Boolean predicates would require more advanced analyses and more programming effort for

tree matches. Nevertheless, we think that complex security patterns may be hard to maintain

and should be replaced by a call to a specialized security function that is maintained by a

security team, rather than by general developers.

Moreover, PHP supports string evaluation through its eval function. It takes an arbitrary

string and evaluates it as if it was native PHP code. Our technique cannot correctly infer its

behavior and two control flow approximations were considered for this paper:

1. Make every eval function a potential call to every function in Moodle.

2. Ignore eval functions.

Manual inspection of the 235 calls to eval in Moodle revealed that none of them induces

inter-procedural calls. Eval calls were therefore treated as generic edges in the CFG. In the

context of this study, this approximation has no consequence since calls to eval can rightly

be represented with a simple edge in the CFG.
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Finally, during model extraction, our conservative inter-procedural analysis may also keep

infeasible execution paths in the model checking automaton. For instance, consider a con-

ditional statement with a predicate that can never be true. Our technique currently cannot

detect such cases and would therefore report NECs on unexecutable statement. In practice,

our technique remains conservative since it does not report false information; if the statement

was to be executed, it would be covered by the NEC.

5.5.2 Related Work

Taint analysis

In some respects, our approach, when applied to a single“capability”, relates to taint analysis.

Generally speaking, one refers to tainted variables do designate untrusted data that can flow

to security-sensitive code. Untrusted data are therefore tagged as tainted until some sanitizing

routine sanitizes them. Our approach implements a form of control flow taint analysis where

AC are analogous to sanitizing routines that sanitize tainted executions.

However, in contrast with classic taint analyzes, in which no distinction is made between

sanitizing routines, the presented approach is able to tag executions with precise sanitation

information, in the form of multiple and independant NECs.

Tripp et al. [163] implemented a static taint analysis for Java (TAJ). Their approach aims at

identifying security vulnerabilities in Web applications and is able to handle reflective calls,

flow through containers and nested taint. Interestingly, the authors share our willingness to

provide a scalable approach, suited for industrial size applications. Their approach mainly

differs from ours from the language (Java vs. PHP) point of view.

Clause et al. [34] presented a framework (DYTAN) for conservative dynamic tainting. Their

framework takes in entry a user supplied configuration file, describing the taint analysis to be

performed, and instruments x86 binaries accordingly. Execution of the instrumented binaries

generates reports according to user’s specifications. Interestingly, to our knowledge, they are

among the first authors to explicitly address the problem of control flow tainting. While

their approach could theoretically be used to implement an analysis similar to ours, their

framework can currently treat x86 binaries only and is therefore unsuitable for source code

of applications written in PHP.

Jovanovic et al. [88] developed a static taint analysis for identification of cross-site scripting

(XSS) vulnerabilities in PHP Web applications. They used an inter-procedural and context-

sensitive data flow analysis enhanced with literal analysis to detect potential XSS vulnera-

bilities in PHP scripts. They claim a false positive rate of 50%. Their work differs from ours

in the implemented analysis, which is solely static and aimed at XSS flaws detection. Our
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analysis uses model checking on top of an inter-procedural analysis to provide precise results.

Access control model extraction

In [4] Alalfi et al. proposed a framework to reverse-engineer and verify secureUML diagrams

for PHP Web applications. They suggest their framework could be used to detect access

privilege violations in Web applications. Our technique differs from theirs in the chosen

approach; they model an application AC model with a secureUML diagram that can further

be converted to a model checking automaton while we extract AC model using static analysis

techniques and convert the resulting CFG in a model checking automaton.

Koved et al. [96] proposed an approach to compute access rights requirements in Java appli-

cations. The authors used their tool to construct an Access Right Invocation Graph (ARIG),

representing authorization model as implemented in the code. While conceptually related to

our analysis, our approach was designed for analysis of PHP Web applications instead of Java

applications. Furthermore, since Java is a typed language, it generally eases the challenges

faced by static analysis.

Pistoia et al. [136] extended the preceding approach with taint analysis for detecting and au-

tomatically protecting code that should have privileged access. Their technique also identifies

unnecessary and redundant privileged code and tag tainted variables as benign or malicious

depending on whether or not it is used in privileged functions.

Wang et al. [167] presented a technique for automatic reverse engineering of an applica-

tion’s access-control configurations. When available, access rights in configuration files may

prove a fast and efficient way to retrieve security specifications. However, several software

applications, such as Moodle, lack such information, thus requiring a different approach.

A survey in [8] presents 24 different modeling methods used with websites. It is interesting

to observe that, among the 24 reported modeling methods, none is specifically targeted at

AC modeling, underlying the relevance of our approach.

5.5.3 Future work

In this paper, we have presented a subset of all the research questions that our technique

may help solving.

Considering the reasonable execution times we obtained on Moodle, it would be interesting to

extend our analysis to monitor evolution of AC models along multiple versions of a software

application. Comparison of AC models from one version to another would help testers to

focus on modified blocks of code and refine regression testing strategies.

If scalability became an issue on larger systems, we could consider implementation of incre-
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mental, or bounded model checking techniques [87].

In the long term, we would like to enhance our technique with dynamic analysis. Dynamic

analysis could help eliminate infeasible execution paths that were introduced by static ap-

proximations, improving overall precision of our technique. An interesting approach that

combines model checking with static and dynamic analyzes to test Web applications is pre-

sented in [14].

5.6 Conclusion

In this paper, we have presented a novel approach that extracts the implemented AC model

from source code based on NECs. We evaluated our technique on Moodle, a medium-scale,

course management system written in PHP.

Using a PHP parser, Moodle’s AST was computed and AC patterns were identified and

extracted. An inter-procedural CFG with capability enabling edges was further derived from

Moodle’s AST . Model checking automata, each representing one capability of Moodle, were

then extracted from the CFG. Model checking results were interpreted as NECs on each

statement. NEC data were finally mapped back to source code using a coloring strategy.

Results shown that our technique is able to extract NECs on an a medium scale application

with acceptable practical performances, supporting the assumption that it can be used for

daily development and evolution monitoring.

Moreover, results revealed how rich and complex AC models may have comparatively simple

implementations; out of every possible NEC combinations in Moodle, a very small proportion

is actually used.

Furthermore, NECs were reported using simple code coloring, providing developers with a

practical tool to understand and analyze implemented AC models. Reported NEC coverage

also revealed the potential existence of two distinct AC usage: protection and option.

Globally, we think our approach may help in comprehension, documentation and refactoring

of medium to large-scale Web applications.
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CHAPTER 6

CORRECTIONS FOR PAPER 1

The previous chapter contains the published version of the paper entitled: “Extraction and

Comprehension of Moodle’s Access Control Model: A Case Study”. The current chapter

addresses comments and corrections by the jury regarding this paper.

In subsection 5.3.3, we mentioned that we analyzed the effect of each of Moodle’s capabili-

ties independently. Consequently, the presented approach cannot directly take into account

interactions between different capabilities. However, a simple post-processing step is suffi-

cient to merge back the results and draw conclusions about interactions between capabilities.

Suppose, for example, the following capability check:

1 if (has capability(’edit post’) && has capability(’create post’))

2 echo ’Success’;

3 else

4 echo ’Fail’;

Listing 6.1: Capturing interactions with independent analysis of capabilities

Independent analysis of the edit_post and create_post capabilities would reveal that line

2 is definitely protected by the edit_post capability and also definitely protected by the

create_post capability. Merging these results would lead to the conclusion that line 2 is

definitely protected by both capabilities. This approach is however limited in certain contexts.

Consider the following example:

1 if (has capability(’edit post’) || has capability(’create post’))

2 echo ’Success’;

3 else

4 echo ’Fail’;

Listing 6.2: Limitations of independent analysis of capabilities

In this case, independent analysis of each capability would reveal that line 2 is possibly

protected by the edit_post capability and also possibly protected by the create_post ca-

pability. However, we would not have enough information to conclude that line 2 is always

protected by at least one of the two capabilities. If such level of precision is required, however,

the model checking automaton can be augmented with more states that should be labelled in
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such a way to represent interactions between capabilities. One must be aware, however, that

the number of states will increase in an exponential manner with the number of interactions

that will be modelled.

In subsection 5.5.1, we mentioned that after manual inspection, calls to eval were ignored.

A member of the jury rightly observed that eval can contain access checks and impact the

results of SPT. While it was not clearly stated in the original paper, we manually ensured

that this what not the case in the investigated version of Moodle.

On another line of thoughts, in section 5.6, we reported that: “out of every possible NEC

combinations in Moodle, a very small proportion is actually used”. What we meant was

that given a set of capabilities S of cardinality n, any given combination of capabilities

in P (S) can be enforced. In other words, in theory, a statement can be protected by 2n

different combinations of capabilities. In practice, however, we observed that the number of

combinations of capabilties that are enforced is much smaller.
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CHAPTER 7

PAPER 2: ALIAS-AWARE PROPAGATION OF SIMPLE PATTERN-BASED

PROPERTIES IN PHP APPLICATIONS

ABSTRACT

In this paper, we present novel algorithms for the propagation of pattern-based

properties in PHP applications. Intuitively, pattern-based properties designate

those properties that are intrinsically associated to syntactic patterns in the

source code. Security checks in access control models are an example of pattern-

based properties. At the source code level, permissions are typically verified

with stereotyped constructs, called security checks, that can be detected with

syntactic patterns.

Depending on the program, pattern-based properties can be aliased to variables

that are propagated through the application. In that context, support from

data-flow approaches is needed to track the propagation of patterns through the

application. In the context of this paper, we focus on the alias-aware propaga-

tion of security checks through PHP applications. Specifically, we investigated

the propagation of security checks in 8 PHP applications that implement access

control models.

We show how, using the Datalog language, one can implement conceptually com-

plex data-flow algorithms in an incremental, intuitive and compact manner. From

the results perspective, we show how our algorithm identifies security checks and

security check aliased variables in a precise way. The reported false positive rate

varies between 0% and 4% for the investigated applications.

7.1 Introduction

In recent years, a significant body of work have been devoted to the design of static analyses

for PHP applications, mainly in the field of security. On one hand, we find data-flow based

approaches [125, 173, 83, 92] for the detection of taint-style vulnerabilities. On the other

hand, we find string analysis based approaches [116, 168, 169] that approximate the output

of a PHP program in order to determine if it correctly filters out malicious input data.

In this paper, we propose a novel static analysis algorithm for the propagation of pattern-

based properties in PHP applications. Informally, pattern-based properties designate those



62

properties that are intrinsically associated to syntactic patterns in the source code. For ex-

ample, permissions in access control models usually are pattern-based properties. At the

source code level, permissions are typically verified with stereotyped constructs, called secu-

rity checks, that can be detected with syntactic patterns.

In a previous study, we investigated the extraction of access control models in PHP applica-

tions [60]. Using syntactic patterns and model checking techniques, we extracted, for each

statement, some of the permissions a user must own to execute the statement. In that study

we did not, however, investigate security check aliased variables. Suppose for example that

the result of a security check on permission p is stored in a variable v and that v is fur-

ther checked in a conditional statement. Without data-flow support, we cannot deduce that

verifying the value of v is conceptually equivalent to performing a security check on p.

The main goal of this paper is to design an inter-procedural, alias-aware pattern propagation

algorithm, tailored for PHP applications. We show how this algorithm increases the precision

of security checks detection and how, with minor adjustments, the same algorithm can be

used to approximate the target of dynamic include statements. For the sake of simplicity, we

use the term “pattern propagation” in place of pattern-based properties propagation. All the

presented algorithms are complete, reusable Datalog programs.

Section 7.2 introduces the Datalog language. In sections 7.3 to 7.6, we guide the reader

through algorithms of incremental complexity, starting with a simple, intra-procedural ver-

sion, and ending up with an inter-procedural, alias-aware pattern propagation algorithm.

Section 7.7 presents some uses for pattern propagation in PHP proprams. Sections 7.8 and 7.9

show and discuss the results. Section 7.10 presents related work and section 7.11 concludes

the paper.

The main contributions of this paper are as follows:

• Several reusable pattern propagation algorithms of various precision, implemented as

Datalog programs, readily executable in the bddbddb framework [172].

• An integrated alias analysis, tailored for the semantic of the PHP language.

• Evaluation of the proposed algorithms for the extraction of security checks in PHP

applications and approximation of the target of dynamic include statements.

7.2 The Datalog language

All the algorithms presented in this paper are executable Datalog [164] programs. In this

section, we provide a brief introduction to the Datalog language.
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Datalog is a deductive database language that is conceptually related to Prolog. Inputs to

a Datalog program are relations, similar to relational database tables. Datalog relations

are represented with two-dimensional tables where columns represent attributes and rows

represent tuples of attributes. Tuples in a relation are interpreted as predicates. For example,

if the tuple (a, b, c) is in the relation A, we consider the predicate A(a, b, c) to be true. If the

tuple is not in the relation, the predicate is false. For example, suppose the Parent relation,

representing the parenthood relationship between a parent and a child. The Parent relation

can be expressed with the Parent(parent, child) Datalog relation. Each tuple in the Parent

relation represents the fact that parent is the parent of child. Thus, if Sarah is the mother

of Jack, the tuple (Sarah, Jack) is in the Parent relation and we say that the predicate

Parent(Sarah, Jack) is true.

A Datalog program consists of a set of rules over predicates. Rules define new predicates based

on the conjunction of other predicates. Moreover, Datalog allows for the recursive definition

of predicates. For example, suppose that we want to compute the Ancestor(ancestor, child)

relation, representing the fact that ancestor is an ancestor of child. The Ancestor relation

can be defined as the transitive closure over the Parent relation:

Ancestor(X,Y) :- Parent(X,Y).

Ancestor(X,Z) :- Ancestor(X,Y),

Ancestor(Y,Z).

In the Datalog program above, the first rule initializes the Ancestor relation and states that

every parent X is also an ancestor of his child Y . The second rule computes the transitive

closure and states that if X is the ancestor of Y and Y is the ancestor of Z, then X is the

ancestor of Z. Note that the second rule recursively defines the Ancestor relation over itself.

Datalog engines automatically resolve recursive rules until a fixed-point is reached.

Negation in Datalog programs can lead to infinite loops and must be handled with care.

Consider the following rule:

P(x) :- E(x), !P(x).

Suppose that E(1) is true and P (1) is false. Then, P (1) would be true after the first iteration,

false after the second, etc. Thus, Datalog engines that allow negation only accept stratified

programs [30]. Informally, a stratified program allows for the gouping of rules into strata that

can be solved in sequence. Informally, a requirement for program stratification is that any

negated relation must not depend on the head of the predicate. Besides stratified negation,

the bddbddb framework also allows the use of constants (literals enclosed in quotes) and don’t

cares (an underscore) in place of variables.
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7.3 Intra-procedural pattern propagation algorithms

This section presents intra-procedural algorithms for pattern propagation in PHP applica-

tions. It introduces the reader to program analysis with Dalatog programs and shows a

flow-insensitive and a flow-sensitive version of the intra-procedural pattern propagation al-

gorithm.

7.3.1 Intra-procedural, flow-insensitive pattern propagation

The first algorithm we present is intra-procedural and flow-insensitive. It only considers

assignments of patterns to variables (e.g. $a = check(‘permission’)) and variable copy

(e.g. $b = $a). The inputs to this algorithm can be computed directly from the Abstract

Syntax Tree (AST) of a program.

Domains

V 15734 variable.map

Fn 9107 functions.map

L 217 patterns.map

F 3009 files.map

Relations

input PatAssign (v:V, fn:Fn, fi:F, l:L)
input V arAssign (v1:V, fn:Fn, fi:F, v2:V)
output Pat (v:V, fn:Fn, fi:F, l:L)

Rules

Pat(v, fn, fi, l) : − PatAssign(v, fn, fi, l). (7.1)

Pat(v, fn, fi, l) : − V arAssign(v, fn, fi, w),

Pat(w, fn, fi, l). (7.2)

Algorithm 7.1: Intra-procedural, flow-insensitive, pattern propagation analysis

The structure of a Datalog program can be separated in three sections. The first section

defines the domain of the attributes in the program. For example, the first line of the domain

section defines the domain V to be of size 15734. The variable.map file maps the integer in

the range [0,15734[ to a string pattern representing the variable name. The domains used in

Algorithm 7.1 are:

• V is the domain of variables. It represents all variable names in a PHP program.
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• Fn is the domain of functions. The global scope of every PHP script is represented with

the special “main” function. In PHP, all the instructions outside a class or a function

belong to the global scope.

• L is the domain of patterns. In the context of this paper, we investigated patterns that

represent security checks and summarized them as the permission they verify.

• F is the domain of files. All the files in a PHP application are listed in files.map.

The second section defines the relations of the Datalog program. Relation declarations are

preceded by an optional keyword, defining whether it is an input or an output relation.

If no keyword is specified, the relation is internal; it is used for rule computation but not

written out. The second part of the relation declaration consists of the relation name and

the last part defines the tuples’ attributes, together with their domain. The relations used

in Algorithm 7.1 are:

• PatAssign: V × Fn × F × L represents pattern assignment statements. For example,

if the predicate PatAssign(v, fn, fi, l) is true, it means that the variable v in function

fn, in file fi is assigned the pattern l.

• V arAssign: V × Fn × F × V represents variable copy statements. If

V arAssign(v, fn, fi, w) is true, it means that the variable w is copied into the variable

v in function fn, in file fi.

• Pat: V × Fn × F × L is the output relation, representing the association between a

variable and a pattern. If Pat(v, fn, fi, l) is true, it means the variable v in function

fn, in file f must hold the pattern l.

The last section defines the rules of the Datalog program. The head of a rule, the part on

the left-and side of the :- operator, consists of a predicate that will be true if the predicate

on the right-hand side is true. As mentioned earlier, rules can be recursively defined, as is

the case for Rule 7.2 in the program above. Rule 7.1 initializes the Pat relation. Rule 7.2

states that if the variable w is copied to the variable v in function fn, in file fi and w must

hold the pattern l, then v must also hold l.

7.3.2 Intra-procedural, flow-sensitive pattern propagation

It is well known that flow sensitivity increases the precision of data-flow analyses. Flow-

sensitive pattern propagation is very similar in nature to the classic constant propagation

algorithm. Instead of constants, it reports the patterns a variable may be aliased to at each
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point of a program. Adding flow sensitivity however requires more work from the front-end

part of the analysis. While the inputs to the previous algorithm could be computed at the

AST level, a flow sensitive analysis requires information about the sequence of instructions,

which is usually extracted from a control-flow graph.

Domains
Domains from Algorithm 7.1 plus:

S 404399 statements.map

Relations

input PatAssign (v:V, s:S, l:L)
input V arAssign (v1:V, s:S, v2:V)
input Follows (i:S, j:S)
input Unset (v:V, i:S)
output Pat (v:V, i:S, l:L)

Rules

Pat(v, i, l) : − PatAssign(v, i, l). (7.3)

Pat(v, i, l) : − Pat(w, i, l),

V arAssign(v, i, w). (7.4)

Pat(v, j, l) : − Pat(v, i, l),

!PatAssign(v, j, ),

!V arAssign(v, j, ),

!Unset(v, j),

Follows(i, j). (7.5)

Algorithm 7.2: Intra-procedural, flow-sensitive, pattern propagation analysis

Adding flow sensitivity to the previous algorithm is simple, given that a pre-computed control-

flow graph is available. Patterns are now propagated through a sequence of instructions

until the variable gets reassigned or destroyed. The domain S replaces the domain Fn of

Algorithm 7.1:

• S is the domain of statements. It replaces Fn in Algorithm 7.1. Pattern information

is now computed at the granularity of statements instead of functions.

The second attribute Fn of PatAssign, V arAssign and Pat relations is replaced by S to

reflect the fact that pattern information is now available at every statement instead of every

function. New relations were also introduced:
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• Follows: S × S represents the sequence of statements in the program. If Follows(i, j)

is true, it means that the statement j immediately follows the statement i in the

control-flow graph.

• Unset: V × S represents the PHP unset operator. This operator destroys a variable.

Rules 7.3 and 7.4 were drawn from Algorithm 7.1 and modified to support flow-sensitive

analysis. Rule 7.5 states that if a variable v is associated with a pattern l at statement i, it

will also be associated with l at statement j if it is not reassigned or destroyed at j and if j

follows i. The negation operator is represented with an ! and represents don’t care values.

7.4 Supporting inter-procedural analysis

Inter-procedural analysis takes function calls into account. By modeling passing of parameters

and return of values, inter-procedural analysis increases the precision and the complexity of

pattern propagation analysis. When dealing with inter-procedural analysis, an important

distinction must be made between context sensitive and insensitive analyses. A context

sensitive analysis can distinguish different call sites to a function, while a context-insensitive

analysis merges information from all call sites.

While the algorithms presented in this paper are fundamentally context-insensitive, it has

been shown that context-sensitivity can be achieved with context-insensitive algorithms if

the call graph is cloned [172]. In a cloned call graph, functions and methods are duplicated

in such a way that every call site calls a different clone. In this context, applying context-

insensitive algorithms to the cloned call graph yields context-sensitive results. While cloning

leads to a combinatorial explosion of the number of nodes in the call graph, it has been

shown that cloned call graphs can be represented in a very compact manner in the bddbddb

framework using binary decisions diagrams (BDDs). Discussion about achieving context-

sensitivity using BDDs is beyond the scope of this paper. The interested reader can refer

to [172, 24, 102]. An alternative, B-tree based Datalog engine for program analysis was also

developed by Bravenboer et al. [29].

Flow sensitivity adds precision and complexity to the analysis. Algorithm 7.2 was presented to

give the reader an idea of how flow sensitivity can be easily supported in Datalog programs.

Flow sensitivity however requires one to keep information about every variable at every

program point and increases the size of the search space significantly.

As mentioned earlier, BDDs can technically represent very large amounts data in a very

compact manner. However, the data has to be organized in such a way that it takes advantage

of the structure of BDDs. Unfortunately, finding the optimal organization of data for BDDs is

an NP-complete problem [28]. Preliminary experiments with inter-procedural, flow-sensitive
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analyzes did not yield conclusive results in terms of memory usage. Hence, we only present

the flow-insensitive versions of the inter-procedural algorithms we developed. Results however

show that flow-insensitivity do not hinder the quality of the results in a significant manner.

7.5 Inter-procedural pattern propagation

The following algorithm models inter-procedural calls and returns and computes the call

graph on the fly, based on the name of the called function and the available functions in the

caller’s scope. For the sake of simplicity, we defer the processing of the global operator and

the $GLOBALS associative array to a further version, presented in section 7.6.

In PHP, there are two distinct scopes: the local and the global scope. A local variable is

defined in a function. On the other hand, global variables appear outside any function. In

PHP, the global scope spans all included files, making this kind of operations possible:

1 //File includee.php

2 echo $a; //Prints 1;

3 $a = 2;

4

5 //File main.php

6 $a = 1;

7 include(‘‘includee.php’’);

8 echo $a; //Prints 2;

Listing 7.1: Example of global scope sharing in PHP

The includee.php file can print the value of the variable $a at line 2 since it was defined

in main.php and both files share the same global scope. The reassignment of $a at line 3 if

reflected in main.php when the value of $a is printed at line 8.

In the presented algorithms, the global scope of a script is represented with the special “main”

function. At the inter-procedural level, the global scope of a script thus spans the “main”

function of all the scripts it includes. The following program implements inter-procedural

pattern propagation:

Algorithm 7.3 uses domains from Algorithm 7.1 and adds the domain P :

• P is the domain of parameter positions. The positions of the actual parameters at call

sites and formal parameters in function signatures are represented by integers in the

domain of P .

The following relations were introduced to model inter-procedural calls and returns:
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Domains
Domains from Algorithm 7.1 plus:

P 256 positions.map

Relations
Relations from Algorithm 7.1. plus:

input Formal (p:P, fn:Fn, fi:F, v:V)
input Actual (t:Fn, p:P, v:V, c:Fn, f :F)
input RetAssign (t:Fn, v:V, c:Fn, f :F)
input Return (t:Fn, f :F, v:V)
input Include0 (f1:F,f2:F)

Include (f1:F,f2:F)

Rules
Rules from Algorithm 7.1 plus:

Include(f1, f2) : − Include0(f1, f2). (7.6)

Include(f1, f2) : − Include0(f2, f1). (7.7)

Include(f1, f3) : − Include(f1, f2),

Include(f2, f3). (7.8)

Pat(w, t, f2, l) : − Actual(t, p, v, c, f1),

Formal(p, t, f2, w),

Include(f1, f2),

Pat(v, c, f1, l). (7.9)

Pat(w, c, f1, l) : − RetAssign(t, w, c, f1),

Return(t, f2, v),

Include(f1, f2),

Pat(v, t, f2, l). (7.10)

Pat(v, ‘main’, f1, l) : − Pat(v, ‘main’, f2, l),

Include(f1, f2). (7.11)

Algorithm 7.3: Inter-procedural, flow-insensitive, context-insensitive, pattern propagation
analysis
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• Formal: P ×Fn × F × V represents the formal parameters in a function signature.

Formal(p, fn, f, v) means that the parameter in position p, in the signature of function

fn, in file f , is the variable v.

• Actual: Fn × P × V × Fn × F represents the actual parameters at call sites.

Actual(t, p, v, c, f) means that the actual parameter that is passed to the target function

t, in position p is the variable v in the caller function c in file f .

• RetAssign: Fn × V × Fn × F represents the assignment of a return value to a variable.

RetAssign(t, v, c, f) means that the return value of the function t is assigned to the

variable v in the caller function c, in file f .

• Return: Fn × F × V represents function returns. Return(t, f, v) means that the

function t in file f returns the variable v.

• Include0: F × F represents the initial include operations. Include0(f1, f2) means that

the file f1 includes the file f2. Note that for the purpose of the algorithm, the Include0

relation is reflexive: a file always “includes” itself.

• Include: F × F represents the transitive closure over the Include0 relation.

Include(f1, f2) means that the file f1 transitively includes the file f2. Also note that

the Include relation is symmetric to model that the global scope is shared between

included files.

Rules 7.6 and 7.7 initialize the symmetric Include relation. Rule 7.8 computes the transitive

closure over the Include relation. As a result, the global scope of a file f1 is shared with all

the files f2 for which the predicate Include(f1, f2) is true. Rule 7.9 models the transfer of

patterns between actual and formal parameters during a call. The patterns aliased to the

actual parameter v in position p, in file f1 are transferred to the formal parameter w, in

position p, in file f2 if the caller and callee names match and if f1 includes f2. Rule 7.10

models the assignment of a return value to a variable. If the variable w, in function c, in file

f1 is assigned the result of a call to function t, and t in file f2 returns the variable v and f1

includes f2, then the patterns v must hold are transferred to w.

Rule 7.11 models the sharing of global variables between files. The global scope of a file

is represented as the “main” function. Rule 7.11 states that if the variable v in the main

function of the file f2 holds the pattern l, the variable v in the main function of the file f1

must also hold l if f1 and f2 share the same global scope.
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7.6 Alias analysis

Several studies have been devoted to the area of alias analysis [24, 172, 44] and, more re-

cently, [154, 133, 77]. However, the vast majority of alias analyses were developed and

optimized for languages such as C or Java, in the context of pointers and references, and it

seems unclear how they can be straightforwardly translated for alias analysis of pattern-based

properties in PHP programs.

Before going into the details of inter-procedural alias analysis, let’s remind that, in PHP, there

are two distinct scopes: the local the global scope. As we mentioned earlier, global variables

are shared between the “main” functions all included files. However, global variables can also

be accessed from the local scope through the global operator or the GLOBALS associative

array, which is available at every point of the program. Declaring a variable with the global

operator, makes the variable a reference to its global version. The $GLOBALS associative array

holds references to all variables in the global scope. The names of the global variables are

the keys of this associative array. More information about references in PHP can be found

in the PHP manual [135].

7.6.1 Inter-procedural, alias-aware pattern propagation

There are three main operations performed on references in PHP:

1. Assign-by-reference: $a =& $b. After assignment by reference, $a and $b point to the

same content in the symbol table.

2. Pass-by-reference: function foo(&$var). After the call to function foo, the actual

parameter and the formal var parameter will point to the same content in the symbol

table.

3. Return by reference: function &foo($var). The value returned by foo will be a

reference.

That being said, it is clear that pattern propagation depends on alias analysis to produce

sound results. Indeed, whenever a variable is assigned a pattern, all the variables pointing to

the same content in the symbol table will point to the new pattern. Algorithm 7.4 implements

an inter-procedural, alias-aware, pattern propagation algorithm.

Algorithm 7.4 inherits all the domains from Algorithm 7.3 and introduces these new relations:

• Ref : V × Fn × F × V represents the assign-by-reference operations. Ref(v, fn, f, w)

states that the variable w is assigned by reference to the variable v in function fn, in

file f .
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Domains
Domains from Algorithm 7.3.

Relations
Relations from Algorithm 7.3. plus:

input Ref (v:V,fn:Fn,f :F,w:V)
input RFormal (p:P, fn:Fn, fi:F, v:V)
input RRetAssign (t:Fn, v:V, c:Fn, f :F)
input RReturn (t:Fn, f :F, v:V)
input Global (v:V, fn:Fn, f :F)

Al0 (v:V,t1:Fn,f1:F,w:V,t2:Fn,f2:F)
Al (v:V,t1:Fn,f1:F,w:V,t2:Fn,f2:F)

Rules
Rules from Algorithm 7.3. plus:

Al0(v, fn, f, w, fn, f) : − Ref(v, fn, f, w). (7.12)

Al0(w, t, f2, v, c, f1) : − Actual(t, p, v, c, f1),

RFormal(p, t, f2, w),

Include(f1, f2). (7.13)

Al0(w, t, f2, v, c, f1) : − RRetAssign(t, w, c, f1),

RReturn(t, f2, v),

Include(f1, f2). (7.14)

Al0(v, t, f, v, ‘main’, f) : − Global(v, t, f). (7.15)

Al(v, t1, f1, w, t2, f2) : − Al0(v, t1, f1, w, t2, f2).

(7.16)

Al(w, t2, f2, v, t1, f1) : − Al0(v, t1, f1, w, t2, f2).

(7.17)

Al(v, t1, f1, x, t3, f3) : − Al(v, t1, f1, w, t2, f2)

Al(w, t2, f2, x, t3, f3).

(7.18)

Pat(v, t1, f1, l) : − Al(v, t1, f1, w, t2, f2),

Pat(w, t2, f2, l).

(7.19)

Algorithm 7.4: Alias-aware pattern propagation analysis
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• RFormal: P × Fn × F × V represents the formal parameters that are passed by

reference in a function signature. RFormal(p, fn, f, v) means that the parameter in

position p, in function fn, in file f is the variable v and is passed by reference.

• RRetAssign: Fn × V × Fn × F represents the assignment by reference of a return

value to a variable. RRetAssign(t, v, c, f) means that the return value of the function

t is assigned by reference to the variable v in the caller function c, in file f .

• RReturn: Fn × F × V represents return-by-reference operations. Return(fn, f, v)

means that the function fn in file f returns a reference to the variable v.

• Global: V× Fn× F represents variables that reference the global scope. Either they are

declared with the global keyword or they are accessed from the $GLOBALS associative

array. Global(v, fn, f) means that the variable v in function fn, in file f is a global

variable.

• Al0: V × Fn × F × V × Fn × F represents the initial aliases, induced either by assign-

by-reference, call-by-reference, return-by-reference or the declaration of a reference to

a global variable. Al0(v, t1, f1, w, t2, f2) means that the variable v in function t1 in file

f1 is aliased to the variable w in function t2, in file f2.

• Al: V × Fn × F × V × Fn × F represents the final alias relations. Conceptually,

aliased variables can be represented as alias sets where each member of an alias set is

aliased to every other member of the set. The Al relation is computed from Al0 and

represents the alias sets in the program. Al(v, t1, f1, w, t2, f2) means that the variable

v in function t1 in file f1 is aliased to the variable w in function t2, in file f2.

Rule 7.12 initializes the Al0 relation. Whenever a variable w is assigned by reference to

a variable v, the two variables are aliased. Rule 7.13 models the alias relationship that is

created between formal and actual parameters on call-by-reference operations in a similar

manner to Rule 7.9. Rule 7.14 models the alias relationship that is created on return-by-

reference operations, similarly to Rule 7.10. Rule 7.15 models the alias relation that is created

through the use of the global operator of the $GLOBALS associative array. When a variable

v is declared global in function t, in file f , v is aliased with its global version: the variable

v in the “main” function of file f . Rules 7.16 to 7.18 compute the set of all ordered pairs of

aliases from the Al0 relation. The resulting Al relation represents the sets of aliases in the

system. Rule 7.19 propagates patterns through alias sets. If the variable v1 in function t1,

in file f1, is aliased to the variable v2 in function t2, in filef2 and v2 must hold the pattern

l, then v1 must also hold l.
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7.7 Uses of pattern propagation for the analysis of PHP programs

In this section, we briefly introduce some uses of pattern propagation for static analysis of

PHP programs. Apart from security checks, we show how pattern propagation also proves

useful to model the propagation of literals in PHP applications. First, we show how security

checks can be identified with syntactic patterns. We then use a simple example to explain

how pattern propagation increases the precision of security check detection. Afterwards, we

review how pattern propagation also helps approximate the literals a variable may hold and

how this information can enhance the precision of static analysis of PHP programs.

7.7.1 Pattern propagation and security checks

Access control models in Web applications are typically enforced with heavily stereotyped

security checks that are easily detected at the source code level with application-dependent

syntactic patterns. In a previous study [60], we proposed a technique for the extraction of

access control models in PHP applications. In summary, this technique extracts, for each

statement, some of the permissions a user must own to execute the statement. In order to

produce such results, our technique first identifies the security checks in a program based

on application-dependent syntactic patterns. Listings 7.2 to 7.4 show examples of security

checks in three different PHP applications.

As can be observed, security checks vary from one system to another. However, one can

observe that these these checks either call special functions or verify specific variables. Iden-

tifying security checks at the abstract syntax tree (AST) level thus requires a few syntactic

patterns that can be customized from one application to the other. To facilitate the pattern

propagation analysis, we summarize security checks as the permission they verify. For exam-

ple, in Listing 7.3, the $_SESSION["admin"] == "yes" security check would be summarized

as the “admin” permission.

1 require capability(’moodle/site:uploadusers’);

2 // Stops the execution if the current user doesn’t have the ’moodle/site:uploadusers’ capability

3

4 if (has capability(’moodle/course:viewparticipants’)) {
5 // Do something if the current user has the ’moodle/course:viewparticipants’ capability

6 }

Listing 7.2: Examples of a security checks in Moodle
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1 if ( $ SESSION[”admin”] == ”yes’’ ) {
2 // Do something if the current user is the administrator

3 }

Listing 7.3: Example of a security check in PHP Calendars

1 if (check admin login()) {
2 // Do something if the logged in user is an administrator

3 }

Listing 7.4: Example of a security check in YaPiG

1 $can upload = has capability(’moodle/site:uploadusers’);

2 if ($can upload) {
3 // Do some operation protected by the ’moodle/site:uploadusers’ permission

4 }

Listing 7.5: Example of a security check in Moodle that require literal

analysis.

Detection of security checks in this manner is however limited to cases where:

1. The security check is performed in a conditional statement.

2. All the components of the security check (e.g. the permission name, the role name or

the expected variable value) are static literals.

To illustrate our point, consider the following snippet of code in Listing 7.5. On the one

hand, syntactic patterns can detect the has_capability(‘moodle/site:uploadusers’) se-

curity check. However, pattern propagation is required to determine that $can_upload is

conceptually aliased to the “moodle/site:uploadusers” permission.

7.7.2 Pattern propagation and literals

Unlike in languages like C, C++ or Java, file inclusion targets in PHP are not required to

be represented with static literals. In PHP, any arbitrary expression that evaluates to a

string can be used as a file inclusion target. In this context, pattern propagation can help

approximate the target of dynamic include statements. Consider the following example: The

target of the dynamic include statement in Listing 7.6 is revolved at run time based on

the literal values of $ROOT and $lang. Without further information, static analysis must

conservatively assume that this statement can include any file in any “templates” directory.
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1 //Inclusion of a file based on a dynamically built string
2 include($ROOT . ’/templates/’ . $lang);

Listing 7.6: Example of a dynamic include statement

From a pattern propagation perspective, literals can be viewed as extremely simple syntactic

patterns that are summarized as their literal value. From that perspective, we see that the

presented algorithms can be used for the propagation of literals through a program. Using

literal information, it is possible to approximate the target of dynamic include statements

and thus improve the precision of various static analyses for PHP applications. Section 7.8

shows how pattern propagation helps approximate the target of dynamic include statements

in the investigated applications.

The PHP language also supports variable variables and functions. In such cases, the name

of the variable or the function is resolved at runtime through the evaluation of a potentially

arbitrary expression that returns a string literal. PHP also support the use of the eval(arg)

function where arg is an arbitrary expression that returns a string literal. On calls to eval,

the PHP interpreter executes the content of arg as if it was PHP code. Pattern propagation

analysis can be used to approximate the content of eval arguments as well as the target of

variable variables and functions.

7.7.3 Limitations

Our current implementation neither supports arrays, nor object-oriented features of PHP.

Uses of arrays, object member variables and methods are treated in a pessimistic way, mean-

ing that all the variables implied in such constructs are assigned the special “unknown” value,

to represent that the analysis lost track of the patterns this variable might hold. On the

other hand, calls to the eval function, variable variables and variable functions are treated

in an optimistic way, meaning that these constructs are considered not to affect pattern anal-

ysis. The pessimistic, overly conservative approximation, would have been to consider that

these constructs can potentially alter any variables and call any functions. The presented

analyses are thus of the must type since the extracted information is true for some program

executions. A discussion about may and must analyses is presented in [66].

7.8 Experimental results

From the experimental perspective, we performed two kind of investigations. First, we in-

vestigated how pattern propagation analysis can help track security checks in applications
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that implement an access control models. In section 7.8.1 we compare the performances of

pattern propagation algorithms for the detection of security checks.

We also investigated how pattern propagation analysis can improve the static approximation

of dynamic include targets. Algorithms 7.1 to 7.4 were applied to eight PHP applications.

Section 7.8.3 presents the resolution rates before/after pattern propagation analysis for each

applications and each algorithm.

Table 7.1 shows characteristics about investigated applications. The version numbers are

listed together with the application name, when available. The reported numbers of lines of

code exclude blank lines and comments and were calculated with the cloc.pl software [43].

7.8.1 Security check detection

As illustrated in Listing 7.5, pattern propagation analysis can model the propagation of

security checks through a program. Table 7.2 reports the results of using pattern propagation

analysis to model the propagation of security checks in investigated applications.

Numbers in table 7.2 represent the number of detected security checks. The baseline column

shows the number of security checks that were detected with syntactic patterns only. The

remaining four columns report the additional security checks that were detected by pattern

propagation analysis. The intra f-i column refers to the intra-procedural, flow-insensitive

algorithm. The intra f-s column shows results for the intra-procedural, flow-sensitive algo-

rithm. Column inter reports results for the inter-procedural algorithm without aliases and

column Inter al. shows results for the inter-procedural algorithm with processing of aliases.

Syntactic patterns are sufficient to detect all the security checks in all investigated appli-

cations but PHPoll and Moodle. Intra-procedural, flow-insensitive pattern propagation is

sufficient to detect all the security checks in PHPoll with an execution time of 0.017 second.

Table 7.1: Characteristics of the evaluated applications

Application Files
LOC

PHP HTML
SCARF 25 1,318 0
Events Lister 2.03 37 2,076 544
PHP Calendars 67 1,350 0
PHPoll 0.97 93 2,571 0
PHP iCalendar 1.1 183 8,276 0
AWCM 2.1 668 12,942 5,106
YaPiG 0.95 134 4,801 1,271
Moodle 1.9.5 5124 404,399 30,547
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Table 7.2: Number or detected security checks with each pattern propagation algorithms.

Application Baseline
Algorithm

Intra f-i Intra f-s Inter Inter al.
SCARF 16 16 16 16 16
Events Lister 2.03 12 12 12 12 12
PHP Calendars 2 2 2 2 2
PHPoll 0.97 0 3 3 3 3
PHP iCalendar 1.1 1 1 1 1 1
AWCM 2.1 1 1 1 1 1
YaPiG 0.95 8 8 8 8 8
Moodle 1.9.5 992 1062 1063 1072 1072

For Moodle, syntactic patterns alone detected 992 checks. Intra-procedural, flow-insensitive

analysis detects 70 supplementary checks in 0.098 second. The intra-procedural, flow-sensitive

algorithm detects one more security check with an execution time of 105.958 seconds. Inter-

procedural analysis detected 9 more security checks in 15.661 seconds. The alias-aware version

executed in 26.542 seconds and did not detect any new security check.

7.8.2 Precision and recall

We manually calculated the precision of our algorithms for all investigated applications.

Indeed, we confirmed, through code inspection, the validity of all the reported security

checks. Moreover, apart from Moodle, we manually calculated the recall of our algorithms for

all the applications. Through code inspection, we certified that our approach detected all the

security checks in investigated programs. Moodle was omitted due to its size and complexity

level. Overall, our approach achieved 100% precision and 100% recall for 7 applications out

of 8 in terms of security check detection.

In the case of Moodle, our intra-procedural, flow-insensitive, pattern propagation analysis

produced 1 false positive. In that particular case, the same variable is assigned the result

of two different security checks. However, only one “version” of the variable is used. The

intra-procedural, flow-sensitive pattern propagation analysis removes this ambiguity. Inter-

procedural analysis detected 9 additional security checks and introduced 2 false positives.

In summary, the precision of our security check detection algorithms varies between 96% and

100%. Overall, when combined with syntactic patterns, the precision of our security check

detection algorithms varies between 99.7% and 100%. Recall could not be calculated for

Moodle due to its size and complexity.
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7.8.3 Resolving includes

Table 7.3 shows resolution rates of include targets before/after pattern propagation analysis.

The baseline results, before pattern propagation, were generated with an “intelligent” include

resolution algorithm that processes commonly used built-in functions like dirname(), and

built-in constants like __DIR__ and __FILE__. Results show that our approach resolves 81%

to 100% of the include statements. Previous work by Jovanovic et al. [89] reported include

resolution rates between 72% and 100% on seven PHP applications.

Table 7.3 shows that include statements in SCARF and Events Lister can all be resolved

without pattern propagation analysis. In the case of PHP Calendars, inter-procedural pattern

propagation is required to resolve all includes. Manual reviews revealed that the unresolved

includes in PHPoll point to inexistent files. PHP iCalendar makes heavy use of constants

to generate include statements. Moreover, in PHP iCalendar, the constants that are used in

dynamic include statements are always defined locally, before the include statement. Intra-

procedural analysis is thus sufficient to resolve almost all includes in the program. The

unresolved includes in AWCM are built dynamically based on database values, a feature our

algorithms do not yet support. YaPiG and Moodle use constants in a similar manner to

AWCM to dynamically generate include targets and inter-procedural pattern propagation

yields the best gains in precision.

Unresolved include statements in YaPiG and Moodle are generated based on constructs that

are beyond the scope of our pattern propagation analyses: classes, user inputs and database

values. For all investigated applications, flow-sensitivity and treatment of aliases did not

yield better resolution of include statements.

Table 7.4 shows the execution times for the propagation of literals with each pattern prop-

agation algorithms. Times are in seconds unless indicated otherwise. All the analyses were

run on a computer with Intel Core2 Duo 3.0GHz processors and 4 GB of RAM. Columns

names refer to the presented algorithms.

Since no assign-by-reference, pass-by-reference or return-by-reference were detected in PHPoll

and AWCM, we did not run the alias sensitive algorithm on these programs. All the reported

times exclude I/O operations and correspond to the time spent solving Datalog rules in the

bddbddb framework. Overall, Table 7.4 shows that the implemented analyses are fast and

scale to medium-large applications. In the case of Moodle, some atypical structures in the

program slow down the alias-aware propagation of literals.
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Table 7.3: Include resolution rates in percentage (%) with different pattern propagation
algorithms.

Application Baseline
Algorithm

Intra f-i Intra f-s Inter Inter al.
SCARF 100 – – – –
Events Lister 2.03 100 – – – –
PHP Calendars 97 97 97 100 100
PHPoll 0.97 96 96 96 96 96
PHP iCalendar 1.1 24 98 98 100 100
AWCM 2.1 95 95 95 95 95
YaPiG 0.95 49 49 49 87 87
Moodle 1.9.5 55 56 56 81 81

Table 7.4: Execution times in seconds for the propagation of literals with different pattern
propagation algorithms.

Application
Algorithm

Intra f-i Intra f-s Inter Inter al.
SCARF 0.008 0.587 0.379 0.398
Events Lister 2.03 0.093 0.793 0.336 0.447
PHP Calendars 0.206 0.979 0.445 0.569
PHPoll 0.97 0.118 0.992 0.354 –
PHP iCalendar 1.1 0.160 0.39451 0.736 0.810
AWCM 2.1 0.126 7.566 0.905 –
YaPiG 0.95 0.101 0.825 0.702 0.728
Moodle 1.9.5 0.531 105.958 567.514 2h54m48s
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7.9 Discussion

In this paper, we presented four pattern propagation analysis algorithms: intra-procedural

and flow-insensitive, intra-procedural and flow-sensitive as well as inter-procedural algorithms

with and without processing of aliases. To our knowledge, we are among the first to propose

such algorithms for the PHP language.

All the algorithms introduced in this paper are Datalog programs readily reusable in the

bddbddb framework or any Datalog engine. Data-flow analyses are typically tedious to im-

plement, especially when no framework is available for the target language, as is the case for

PHP. Moreover, implementations are typically hard to share as they are usually tied to a

specific front-end. For these reasons, we were won over by the expressiveness, compactness

and simplicity of the Datalog language to express data-flow analyses and we hope the reader

shares our enthusiasm.

From the results perspective, Table 7.3 shows that our pattern propagation analyses can

resolve up to 76% more include statements when compared to baseline results. Given the

highly dynamic nature of the PHP language, we were pleased to observe that our algorithms

performed so well, despite their approximated nature. In this case, there seems to be a

dichotomy between the possibilities the language offers and the features that are used in

practice. Indeed, in the case of include statements, developers seem to make a wise use of

the dynamic features of PHP, leading to good resolution rates by our algorithms. In other

words, while PHP does not limit the complexity of the expressions in an include statement,

it seems that developers naturally adopted good practices that ease their resolution.

Interestingly, when it comes to security checks, our algorithms also performed very well. In

the context of security, the motto seems to be: keep it simple. For 6 applications out of 8, we

manually validated that all the security checks were detected using syntactic patterns only.

In the case of PHPoll, an intra-procedural, flow-insensitive analysis was sufficient to detect

all the security checks. In the case of Moodle, the vast majority (992) of identified security

checks (1072) are detected with syntactic patterns. Intra-procedural analyses detected 71

supplementary security checks and inter-procedural analysis detected 9 more.

The results show that when it comes to security checks, developers seem to attach importance

to simplicity. For example, they often prefer to explicitly check the same permission repeat-

edly rather than storing the result of the security check in a variable that will be checked

multiple times. Moreover, at the inter-procedural level, we only observed a few cases where

security checks were passed as parameters. These implicit, unofficial coding practices greatly

simplify the analyses in practice and yield good results with the proposed algorithms.
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7.10 Related work

Jovanovic et al. [88, 89] developed the Pixy tool for the detection of cross-site scripting

vulnerabilities in PHP applications. Pixy uses an inter-procedural, context and flow-sensitive

analysis to propagate taint information and detect vulnerabilities. Pixy also uses a literal

analysis algorithm to resolve include statements with a precision ranging from 72% to 100%.

While the investigated applications differ, our approach performed slightly better, with a

precision between 81% and 100%. Also, while our algorithms process the whole PHP program

at once, their analysis has to be run for each and every entry point of the application.

Recently, Son et al. [152] introduced RoleCast, a tool that is specifically designed for ac-

cess control vulnerabilities detection. RoleCast statically infers the access control checks by

analyzing the variables that are usually verified before the execution of security-sensitive

operations. To overcome the difficulties induced by the static analysis of PHP applications,

they convert PHP applications to Java programs and perform several post-processing opera-

tions to produce well-formed Java files. While our approach relies on application-dependent

patterns to identify security checks, their approach relies on numerous assumptions about the

design and implementation of access control models. Whether or not these assumptions are

always verified in practice is unclear. Moreover, the authors do not clearly address the issues

of mapping back the information from the generated Java code back to the PHP program.

Work by Sun et al. [156] relies on string analysis techniques [168, 169] to identify access

control vulnerabilities in PHP applications. Their analysis also relies on application- depen-

dent patterns to identify security checks. Furthermore, their approach requires the manual

specification of the application’s “critical states.” According to the authors, a critical state in-

cludes information such as: session values, cookie values, request parameter values, database

records, variable values or function return values. For medium to large applications, this

seems like an unattainable goal. We think, however, that our pattern propagation algorithms

might be useful in this context, to help developers identify potential values for critical states.

In [4] Alalfi et al. proposed a framework, based on static and dynamic analysis, for the

reverse-engineering of access control models in PHP applications. The models are extracted

in secureUML and suitable for verification and validation.

Several studies have been devoted to the area of alias analysis [24, 172, 44], and more re-

cently [154, 133, 77]. However, the focus of most of these studies was on typed languages like

C and Java. The semantic differences between PHP and typed languages made the existing

analyses difficult to reuse.

The bddbddb framework was previously used by Livshits and Lam to perform security analy-

ses of Java applications [106]. Their goal was to detect SQL injection and cross-site scripting
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vulnerabilities in Web applications using static analysis.

7.11 Conclusion

In this paper we presented several pattern propagation algorithms, tailored for PHP appli-

cations. All the algorithms were implemented as Datalog programs and can be reused as-is,

provided that a PHP front-end is available to supply the inputs to the programs. Our study

confirmed previous claims about the simplicity and effectiveness of Datalog to implement

reputably complex static analyses.

While the main goal of this paper was to improve to the precision of security check detection

through pattern propagation, we showed how the proposed algorithms could also be applied to

other problems, like the resolution of dynamic include statements. Empirical results revealed

that, for the investigated problems, context and flow-insensitive algorithms yield very precise

results in a much faster manner than context and flow-sensitive approaches.

In conclusion, we showed how the proposed algorithms propagate simple patterns in a fast

and precise manner. In subsequent work, we plan to address the current limitations of our

approach. We also plan to investigate the impact of operations, other than assignement,

on patterns. For example, we observed that security checks are sometimes combined with

Boolean operations. It would be interesting to model the impact of such operations on

patterns and provide more insights about the source code.
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CHAPTER 8

CORRECTIONS FOR PAPER 2

The previous chapter contains the published version of the paper entitled: “Alias-Aware

Propagation of Simple Pattern-Based Properties in PHP Applications”. The current chapter

addresses comments and corrections by the jury regarding this paper.

In section 7.2, we stated that: “Datalog is a deductive database language that is conceptually

related to Prolog.” In fact, Datalog is a subset of Prolog.

In section 7.4, we mentioned that: “Results however show that flow-insensitivity does not

hinder the quality of the results in a significant manner.” and we were asked why flow-

sensitivity was needed earlier since it does not seem to significantly impact results. The fact

is that we did not know a priori whether or not flow-sensitivity would have a significant

impact. After determining that it did not significantly impact the quality of the results, we

decided to pursue our experiments with flow-insensitive algorithms only.

In algorithm 7.3, at rule 7.8, a member of the jury remarked that the first “Include” could be

replaced by “Include0” to eliminate a source of recursion.

In subsection 7.7.3, we mentioned that: “our current implementation neither supports arrays,

nor object oriented features of PHP” and a member of the jury asked to elaborate on impacts

over the false positive rate.

In the context of this study, we tracked the propagation of privilege checks throughout vari-

ables and parameters. In this context, false positives refer to cases where a variable or

parameter is reported to contain the result of a privilege check when it’s not. In this study,

we manually verified each and every variable and parameter that was reported to contain the

result of an access check and determined that every result was correct, for a false positive

rate of 0%. Intuition dictates that if we were to support arrays or object-oriented features,

the false positive rate would significantly increase. However, we performed no experiment

to validate this intuition. In the context of this study, the fact that we stop propagating

security patterns whenever we encounter an unsupported structure mainly impacts the false

negative rate.

In subsection 7.8.2, we mentioned that the precision of pattern propagation algorithms varied

between 96% and 100% and jumped to 99,7% to 100% when combined with syntactic patterns.

A reviewer asked how syntactic patterns could improve precision. The reason is simple. The

precision of pattern propagation algorithms was calculated based only on the new security

checks that were detected and ignoring those that were already detected by syntactic patterns.
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Since syntactic patterns always achieve a precision of 100%, the precision increases when we

combine both approaches.
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CHAPTER 9

PAPER 3: INVESTIGATION OF ACCESS CONTROL MODELS WITH

FORMAL CONCEPT ANALYSIS: A CASE STUDY

ABSTRACT

Web applications manage increasingly large amounts of sensitive information and

often need to implement access control (AC) models. However, documentation

about the implemented AC model is often sparse and few, if no tool exists to sup-

port AC model investigation. Based on the results of a previous study, we show

how formal concept analysis (FCA) can support the understanding and visual-

ization of reverse-engineered AC models. Results of applying FCA to Moodle, a

medium-sized (625 473 LOC) Web application, are presented and discussed. We

show how FCA enhances the overall comprehension of reverse-engineered AC

models and sheds light on previously unknown features of Moodle’s AC model.

9.1 Introduction

Every day, millions of people communicate, shop, bank, gather information, and perform

numerous common tasks using web applications. Those applications must restrict access to

private and security-sensitive information they routinely handle such as: credit card numbers,

addresses, and financial data.

Role-Based Access Control (RBAC) models [143], have been widely adopted by the industry,

in part because RBAC models simplify user management. Instead of managing a large

number of user-permissions relationships, administrators can grant users sets of pre-defined

permissions, called roles [35].

On one hand, an RBAC model, in its simplest form, is defined based on a set of binary

relations: a user owns a set of roles, a role owns a set of permissions and a permission

associates an operation to an object. More sophisticated RBAC models will sometimes

introduce the concepts of inheritance or constraint relationships between roles. On the other

hand, formal concept analysis, (FCA) takes a binary relation as input and identify clusters

of objects that share identical attributes before ordering them in a Galois lattice [59]. The

two approaches are obviously complementary.

Many researchers indeed suggested FCA-based approaches to support the design [117, 46, 126]

of RBAC models. However, none of these approaches tackles the problem of investigating



87

the implemented access control (AC) model when no specifications are available. Whereas

many web applications (e.g. Moodle, Drupal, phpBB and Wordpress) 1 implement RBAC-

like access control models, specification and documentation of the implemented models are

often sparse.

9.1.1 Contributions

To our knowledge, FCA has never been used for the investigation of AC models. Furthermore,

while some previous studies tackled the problem of extracting [60, 96, 167] AC models from

source code, we are among the first to target the investigation of the extracted models. The

main contributions of this work are:

• A novel approach to AC model investigation.

• An experimental study of applying FCA to Moodle, a medium-sized PHP application

with a sparsely documented AC model.

• A discussion about the knowledge that can be extracted through FCA of reverse-

engineered AC models.

9.2 Access Control Models

9.2.1 Formal RBAC models

In RBAC, an administrator assigns permissions to roles and roles to users. According to

the ANSI standard defining RBAC models 2, a core RBAC model consists of the following

elements: USERS, ROLES, OPS, OBS; the sets of users, roles, operations and objects

respectively and the following four mappings: UA, PA, Op and Ob; the user-role, permission-

role, permission-to-operation and permission-to-object mappings respectively. Hierarchical

RBAC introduces the notion of permission inheritance through a role lattice while a con-

strained RBAC restricts the allowed combinations of roles.

9.2.2 Access control models in Web applications

Open source Web applications often implement a simplified form of RBAC model where

operations and objects are merged together. For example, the action of reading a file in a

classic RBAC model would be implemented with a permission that grants the read opera-

tion on the file object. In open source Web applications, the same action would often be

implemented with a simple read file permission.

1See: http://moodle.org, http://drupal.org, http://www.phpbb.com and http://wordpress.org
2See ANSI-INCITS 359-2004, February 2004
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Therefore, we characterized AC models in Web applications with three mappings instead of

four: user-to-role, role-to-permission and permission-to-statements. The later replaces the Op

and Ob mappings in the core RBAC model and represents the statements that a permission

protects.

9.3 Extraction of AC models from source code

In this section, we present the methodology we use to extract the AC model from the source

code of a Web application. This section is a summary of the methodology used and presented

in a previous paper [60].

9.3.1 Extraction of role-to-permission relationships

The storage of role-to-permission relationships is specific to every Web applications and their

extraction requires manual operations. However, for all the investigated applications, the set

of manual operations was limited to: parsing an HTML table from the “admin” console or

launching a simple query to the application’s database.

9.3.2 Extraction of permission-to-code relationships

In the absence of security specifications or informal description of a permission, all is left to

understand the effect of a permission is to observe the source code it protects. In a previous

study [60], we presented an approach to extract necessarily enabled capabilities (NECs)

from PHP source code. NECs represent the permissions a user must have to execute a

statement. Our method for NEC extraction consists of four steps: identification of access

control patterns, extraction of an inter-procedural control flow-graph (CFG), conversion of

the CFG to a set of formal automata and model checking of the automata to extract NECs.

Access control patterns

Access control routines are used to assert that a user owns a given permission. More precisely,

these routines verify that the user belongs to at least one role such that the role owns the

permission. Identification of access control routines is thus a crucial step for the extraction

of NECs. Listings 1 to 3 show examples of access controls routines in three different PHP

applications.
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1 require capability(’moodle/site:uploadusers’);

2 // Stops the execution if the current user doesn’t have the ’moodle/site:uploadusers’ capability

3

4 if (has capability(’moodle/course:viewparticipants’)) {
5 // Do something if the current user has the ’moodle/course:viewparticipants’ capability

6 }

Listing 9.1: Example of access control routines in Moodle

1 if ( $user−>has cap( ’publish posts’ ) ) {
2 // Do something if $user has the ‘‘publish posts’’ capability

3 }
4

5 if ( current user can( ’edit post’ ) ) {
6 // Do something if the current user has the ‘‘edit post’’ capability

7 }

Listing 9.2: Example of access control routines in Wordpress

1 if (user access(’post comments’)) {
2 // Do something if the current user has the ‘‘post comment’’ capability

3 }

Listing 9.3: Example of an access control routine in Drupal

As can be observed, the routines vary from one system to another. However, we see that all

these routines receive a string argument, representing the permission, and return a Boolean

value asserting whether or not the user can perform the corresponding action. From a syntac-

tic point of view, these functions are almost identical. Therefore, identifying access control

routines at the abstract syntax tree (AST) level requires a single access control pattern, with

minor customizations from one application to the other.

Control flow graph

Starting from the AST, an inter-procedural CFG is extracted:

CFG = (VCFG, ECFG) (9.1)

with a unique entry node vin ∈ VCFG and a unique exit node vout ∈ VCFG. Nodes in VCFG can

be of type generic, call begin, call end, entry, or exit. Nodes of type generic are involved
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in intra-procedural control flow; nodes of type call begin, call end, entry, and exit are used

in inter-procedural control flow.

Edges in ECFG can be of type generic, allow ci, prevent ci, call, or return. Edges of type

generic represent intra-procedural transfers of control, edges of type allow ci represent intra-

procedural transfers of control that enable a capability ci, likewise prevent ci are edges that

disable a capability ci and edges of type call and return represent inter-procedural control

flow links.

Edges of type allow ci and prevent ci are created according to the access control rou-

tines that were identified in the previous step. For example, observe Listing 9.3. In

that case, the edge representing the true branch of the if statement would be of type

allow ′′post comments′′. Conversely, the edge representing its false branch would be of

type prevent ′′post comments′′.

Model checking

Software model checking [33] is the algorithmic analysis of programs to prove properties of

their executions.

In order to extract permission-to-code relationships, the CFG is converted into several model

checking automata, each representing a single capability. A custom model checker then

process each automaton in order to identify the statements stmt for which the following

equation hold:

♦stmtj ∧�( stmtj ∧ ci) (9.2)

meaning that the automaton eventually reaches a statement stmtj (♦stmtj) and always

when stmtj is reachable, the “capability” ci is allowed (�( stmtj ∧ ci)). Statements satisfying

Equation 9.2 are only reachable by an execution for which the capability ci is enabled. In

this case, the capability ci is a NEC for the statement stmtj. The AC model extraction

technique is described in more details in [60].

Using this methodology we have successfully reverse-engineered the NECs from Moodle, a

medium-sized course management system totaling 625 473 LOC across 2331 PHP files.

In the context of this paper, the NEC-to-statements relationship is equivalent to the

permission-to-statements relationship, as presented in subsection 9.2.2.

9.4 Formal concept analysis

Formal concept analysis builds a concept lattice (or Galois lattice) from a matrix, called

a formal context, representing binary relations between objects (not to be confused with

RBAC objects) and attributes [59]. Below, we present the basic definitions necessary for the



91

comprehension of FCA.

A formal context is a triple (G,M, I) where G and M are sets of objects and attributes

respectively. I ⊆ G ×M is a binary relation between G and M . For g ∈ G and m ∈ M ,

gIm→ (g,m) ∈ I: there exists a binary relation between g and m.

A formal concept of the context (G,M, I) is a pair (X, Y ), where X ⊆ G and Y ⊆M satisfy

the following properties:

• X = {g ∈ G | (∀m ∈ Y ) gIm}, i.e., X is the set of all objects that share all attributes

in Y.

• Y = {m ∈M | (∀g ∈ X) gIm}, i.e., Y is the set of all attributes shared by all objects

in X.

In the Galois lattice resulting from FCA, concepts are partially ordered according to the

following partial order relation: (X1, Y1) � (X2, Y2) if X1 ⊆ X2 or equivalently if Y1 ⊇ Y2. In

FCA terminology, X and Y are often referred to as the extent and the intent of the concept

respectively.

Also, we say that a concept c is labeled with an object g ∈ G if c is the smallest concept in

which g appears. Conversely, we say that a concept c is labeled with an attribute m ∈ M if

c is the largest concept in which m appears. In both figures 9.1 and 9.2, a circle represents a

concept and will have its lower half colored in black if it has an object label. Conversely, it

will have its upper half colored in blue if it has an attribute label.

Starting from a concept lattice, it is possible to derive a base of implications: rules that hold

for the whole formal context. In this paper, implications were calculated based on Duquenne-

Guiges methodology [71]. Concept lattices and Duquenne-Guiges implications were generated

with the Concept Explorer software [177].

9.5 Results and discussion

In this section, we present the preliminary results obtained by performing FCA on Moodle’s

reverse-engineered AC model. Results will be discussed as they are presented.

9.5.1 Analyzing role-to-permissions mapping

Moodle’s role-to-permissions formal context comprises 7 objects (roles) and 145 attributes

(permissions). Fig. 9.1 shows the Galois lattice obtained by performing FCA on that context.

Nodes in the lattice represent formal concepts; pairs (R,P ) where each role ∈ R owns all the

permission ∈ P and each permission ∈ P belongs to every role ∈ R. Either R or P can be

empty.
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Figure 9.1: Galois lattice representing Moodle’s role-to-permission mappings. Concepts rep-
resented with bigger circles have a role label (white rectangles). Selected permission labels
(grayed rectangles) are also displayed.

In the lattice of Figure 9.1, the intent of the concept at the bottom, the infimum, is the set of

all 145 permissions and corresponds to the admin role. Conversely, the extent of the concept

at the top, the supremum, is the set of all 7 roles.

Due to space limitations, we only displayed selected permissions labels (grayed rectangles)

since some of them can comprise more than 100 permissions. As can be expected, no role

shares the same concept in the lattice. However, it is interesting to observe that there exists

concepts with no associated role. We say that such concepts represent implicit roles; roles

that are inherent to the formal context but that don’t have a name. An interesting feature

of implicit roles is that they can be added to the AC model without modifying the structure

of the lattice.

Investigating implicit roles

While they don’t have a name, implicit roles undoubtedly have a meaning; they reflect, in

some ways, the need to have some explicit roles share specific permissions. Moodle has four
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implicit roles, numbered from 1 to 4 on Figure 9.1. Let’s investigate them in more details:

Implicit role 1: The assistant. The first implicit role is situated at the intersection between a

student, a non-editing teacher and a guest in the lattice. Contrary to the guest role, it owns

the permissions to start discussions on forums, participate to surveys, read posts and chat

with other users. On the other hand, it cannot grade or submit homework like a teacher or a

student. This seems to be a suitable role for teacher assistants or lab techs, who often need

to interact with students and teacher of a course but that don’t need to grade homework or

submit assignments. In this case, FCA might have identified an interesting addition to the

existing AC model.

Implicit role 2: The UI customization. Implicit role 2 represents the permissions

that are shared between the course creator and non-editing teacher roles. The permis-

sion label consists of two permissions. It is interesting to observe that whereas the

moodle/course:viewhiddencourses permission is common to both course creator and non-

editing teacher roles, the moodle/course:viewhiddencategories permission is reserved to the

course creator role.

In Moodle, a category defines a group of courses like physics, history or chemistry. Moreover,

“hidden” courses or categories are not visible to users who don’t own the corresponding

viewhidden permission. Thus, a course creator can view all the courses in all the categories

while a teacher will only see all the courses in his “visible” categories (e.g. a chemistry teacher

will only see chemistry courses). In this case, FCA revealed how the AC model is used to

customize the user interface (UI) of the application in function of the user’s role. Although

we had the intuition that Moodle’s AC model was sometimes used in this fashion [60], FCA

proved it beyond doubts.

Implicit role 3: The ambiguous. Implicit role 3 represents the intersection of permissions

between the authenticated user and the guest roles. Particularly, we see that while the

moodle/blog:view permission is shared between both roles, similar view permissions, such as

mod/forum:viewdiscussions and mod/assignment:view are specific to the guest role. This

choice of implementation may seem questionable. In that context, FCA might have revealed

a discrepancy between the AC model as planned by the developers and as implemented in

the system.

Implicit role 4: The call for re-factoring. Implicit role 4, the supremum of the lattice is

labeled with one permission: moodle/block:view. Therefore, this permission is shared by all

the roles in the system. This is a serious indication that either this permission is useless and

should be tagged for deletion or it was granted to a role that should not own it. Either way,

this case should be investigated by developers.
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Investigating the role hierarchy

One can observe that FCA naturally reveals the implicit role hierarchy that is created by

the role-to-permissions mapping. Indeed, for any two concepts labeled with roles r1 and r2,

c1 � c2 ⇒ permissions(r2) ⊆ permissions(r1). Thus, although Moodle doesn’t explicitly

support the notion of role hierarchy like hierarchical RBAC models do, FCA revealed how

its AC model implicitly implement one.

Investigating Moodle’s role hierarchy, we were surprised to observe that:

1. The course creator and authenticated user roles do not subsume the guest role.

2. The authenticated user role is only subsumed by the admin role

Intuitively, we would have thought that the “guest” privileges were shared by all other roles.

In a similar manner, it seemed intuitive to us that any user of the system other than “guest”

was an “authenticated user”. Without visual support nor clear documentation, these are the

kind of facts that an administrator must learn by trial-and-error or code inspection.

Reasoning about the aforementioned observations, we realized that there seems to exist a

dichotomy among the roles: support vs. full-fledged roles. A support role, as its name

suggests, was not designed to be used on its own. Authenticated user and course creator are

two such roles. They do not own the permissions of a guest (paths from the infimum to the

supremum that go through these roles do not go through the guest role) and thus cannot

interact with the application in the most basic way. They, however, possess some “special”

permissions that can complement the other, full-fledged, roles; authenticated users can edit

their profile while course creators, as the name suggests, have the ability to create courses.

Contrary to a support role, a full-fledged role can be assigned to a user without any further

modifications. Student, teacher, non-editing teacher and guest are examples of such roles.

They cluster in the center of the lattice and their hierarchy is more complex. Student, non-

editing teacher and teacher roles own all the privileges of a guest and the teacher role owns

all the privileges of a non-editing teacher, as can be expected. Furthermore, we see that

teachers and students only share a subset of permissions.

Moodle currently has no mechanism to distinguish support roles from full-fledged roles. Still,

it would seem pertinent to enforce the prerequisite that a support role can only be granted to

users with a full-fledged role, in order to prevent misconceptions and unexpected behaviors

of the application. Interestingly, the RBAC standard defines the constrained RBAC model

that is specifically designed to enforce such restrictions.

In the case of Moodle, FCA revealed how an apparently trivial AC model can in fact contain

lots of unexpected, implicit features such as a role hierarchy and role constraints.
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Supporting role addition and redefinition

A recurrent need among users of Web applications is that of customizing the AC model. This

will generally results either in modifications of the default role-to-permission relationships or

the creation of new roles.

Although legitimate operations, modification and creation of roles may alter the structure

of the lattice, introducing new inheritance relations and removing others. We think it may

be hard to reason about the underlying AC lattice without formal and visual support. For

example, a suggested supplementary role in Moodle is the parent role. According to Moodle’s

documentation, this role should include three permissions that would allow the parent to view

his child’s grades as well as read his blog and forum posts.

Adding such a simple role to the existing AC model resulted in three new concepts in the

role lattice: one concept for the parent role; the two others representing two new implicit

roles (data not shown). We already showed how some implicit roles in the default AC model

might require developer’s attention. In a similar manner, we strongly suggest that any

newly introduced role, either implicit or explicit, should be reviewed by the administrator of

the application. Interestingly, while implicit roles are very hard to identify by hand, FCA

naturally brings them to light.

9.5.2 Analyzing NEC-to-statements mapping

Figure 9.2: Zoomed-in section of the Galois lattice representing Moodle’s permission-to-
statements mappings.

As mentioned earlier, NECs represent the permissions that are required to execute a state-

ment. Representing the NEC-to-statements mapping of Moodle as a formal context results

in a 145 NECs × 62059 statements matrix. To avoid useless calculations, statements that are
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not protected by any NEC do not appear in the formal context. Fig. 9.2 shows a zoomed-in

section of the Galois lattice resulting from FCA on that formal context. The complete lattice

comprises 166 concepts and is too wide to be presented here.

Circles in this lattice represent formal concepts; pairs (N ,S) where each NEC ∈ N protect

all the statements ∈ S and each statement ∈ S is protected by every NEC ∈ N .

Investigation of the permission-to-statements lattice

In the lattice, the vast majority of concepts are strictly independent from one another; any

path from the infimum to the supremum typically goes through one concept only. Moreover,

every concept in the lattice is labeled with at most one permission. Thus, in Moodle, different

NECs usually protect different sets of statements.

Nevertheless, not every concepts are independent from one another. While most concepts

(135) represent statements that are protected by a single NEC, 28 concepts represent state-

ments that are protected by 2 NECs and 3 concepts represent statements that are protected

by 3 NECs.

The zoomed-in section in Figure 9.2 represents a typical section of the lattice: most con-

cepts are mutually independent and aligned in a “flat” manner while some concepts “inherit”

NECs from other concepts. Once again, without a priori knowledge of the system nor clear

documentation, some NEC inheritance relationships might seem counter-intuitive. Formal

concept analysis provides visual support for developers or administrators to observe the im-

plemented AC model “as-is” and judge if the reported concepts are legitimate or not.

Investigation of the Duquenne-Guigues implications

In section 9.4, we mentioned that starting from a formal context, it is possible to derive what is

known as a Duquenne-Guigues base of implications. Without going into details, let’s mention

that this base of implications is minimal in the sense that it contains no redundant impli-

cations, holds for the whole formal context and, in the case of the permission-to-statements

context, represents implications between NECs. In other words, if there exists an implica-

tion between NEC A and NEC B (A→ B), it means that whenever a statement in Moodle

is protected by NEC A, it is also protected by NEC B.

Table 9.1 shows the implications that were detected on the formal context representing

Moodle’s NEC-to-statements relationships. Statements that are protected by NEC in the

permission column are always also protected by the corresponding NEC in the implication

column.

For example, considering the first implication in Table 9.1, we see that moodle/grade:export is
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Table 9.1: Duquenne-Guigues implications extracted from Moodle’s NEC-to-statements for-
mal context

Permission Implication
gradeexport/ods:view

moodle/grade:export
gradeexport/txt:view
gradeexport/xls:view
gradeexport/xml:view
gradeimport/csv:view

moodle/grade:import
gradeimport/xml:view
gradereport/grader:view

moodle/grade:viewall
moodle/grade:edit
gradereport/grader:view
moodle/grade:manage
moodle/grade:edit

gradereport/grader:view
moodle/grade:viewall
moodle/grade:manage
moodle/grade:viewall
moodle/question:useall mod/quiz:manage
mod/chat:deletelog mod/chat:readlog
mod/forum:movediscussions mod/forum:viewdiscussion
mod/scorm:deleteresponses mod/scorm:viewreport

mod/forum:startdiscussion
mod/forum:movediscussions
mod/forum:viewdiscussion

a pre-requisite to gradeexport/ods:view, gradeexport/txt:view, gradeexport/xls:view and grade-

export/xml:view. An administrator ignoring the existence of these implications might end up

granting a role with one of the four permissions without granting moodle/grade:export. As a

result, the role would not behave as expected ; it would not be able to export grades. Whereas

we do not advocate the systematic elimination of implications between NECs, we strongly

suggest that documenting such implications might help prevent errors and unexpected be-

haviors of the application.

Another interesting implication can be found in the last row of Table 9.1. It shows that

statements that are protected with mod/forum:startdiscussion are also protected by mod-

/forum:movediscussion and mod/forum:viewdiscussion. Mapping back this information on

the role-to-permission lattice, we realized that each of these permissions appears at different

levels in the lattice of Figure 9.1. Mod/forum:viewdiscussion appears for the first time at

the guest concept, mod/forum:startdiscussion appears at the “assistant” concept, and mod/-

forum:movediscussion appears at the non-editing teacher concept.

Furthermore, studying the lattice of Figure 9.1, we see that these three roles are organized
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in an “inheritance” chain where non-editing teacher ≺ assistant ≺ guest. Thus, permis-

sions(guest) ⊂ permissions(assistant) ⊂ permissions(non-editing teacher), and, with the de-

fault configuration, non-editing teacher, teacher and admin are the only roles that can execute

these statements.

Observe however that, because of the role hierarchy, while the statements are protected by

three different permissions, only one additional permission is required for an “assistant” to

execute them while a guest would need two more permissions. For anyone not familiar with

AC models, intuition might dictates that stacking permission checks leads to a “safer” AC

model, in the sense that even if one of the permissions is mistakenly granted or stolen through

a privilege escalation attack, the remaining permissions still enforce protection. Considering

the reported implications, it becomes clear that this intuition is wrong. In this case, the

number of privileges that an attacker must gain to execute the protected statements primarily

depends on the attacker’s granted role.

9.6 Conclusion

In this paper, we presented novel results from applying FCA to Moodle’s reverse-engineered

AC model. FCA of the extracted role-to-permissions relationship did: 1. reveal a new,

potentially useful role (the assistant), 2. show how the AC model is sometimes used for

UI customization, 3. draw attention to a faulty permission, shared by all the roles of the

application, 4. reveal the implicit role hierarchy, 5. shed light over a dichotomy between

support vs. full-fledged roles and 6. illustrate how the addition of a simple role (the parent)

can have unexpected impacts over the role lattice.

Furthermore, FCA of the extracted permission-to-statements relationship brought to light

some implications between permissions, as implemented in the source code. On one hand,

we showed how these undocumented implications might lead to unexpected behavior of the

application. On the other hand, we explained how permission implications may induce a false

sense of security against misconfigurations and privilege escalation attacks.
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CHAPTER 10

CORRECTIONS FOR PAPER 3

The previous chapter contains the published version of the paper entitled: “Investigation of

Access Control Models with Formal Concept Analysis: A Case Study”. The current chapter

addresses comments and corrections by the jury regarding this paper.

In section 9.4, we briefly introduced the Duquenne-Guiges base of implications as a set of

rules that holds for a whole formal context and were asked to elaborate. A clearer way to

explain what implications are is the following: an implication between a set of attributes A

and B, denoted as A → B, can be read as: if an object has all attributes from A, then it

also has all attributes from B. A Duquenne-Guiges basis of implications simply reports the

minimal set of implications that exist in a formal context.

In section 9.5.1, we discussed how FCA could reveal and help reason about what we called

implicit roles. We were asked if we had the chance to pursue our investigations to determine

whether these implicit roles have a real impact or are only byproducts of FCA. Since the

publication of this paper, we investigated 67 releases of Moodle and monitored the evolution

of its access control model. In summary, in Moodle, implicit roles do not become explicit

roles over time. However, implicit roles with few privileges (implicit roles 2, 3 and 4 in the

paper) are very unstable, in the sense that they often merge with other roles and split back to

implicit roles from one version to another. In other words, developers should look at implicit

roles with few privileges and take actions to eliminate them as these implicit roles seem to

be a source of confusion in the long term.

In subsection 9.5.2 we explained that in the NEC to statement formal context, if an implica-

tion exists between to sets of NECs A and B, it means that any statement that is protected

by all NEC ∈ A is also protected by all NEC ∈ B. Implications between NECs can be

caused by different situations. Nested access checks are one of them. If all access checks for

NECs in A are nested in access checks for NECs in B, then there is an implication of the

form A → B. Access checks can also be “inter-procedurally” nested. In other words, if a

function that performs access checks for NECs in A is only called from contexts that perform

access checks for NECs in B, then there is also an implication of the form A→ B.

In subsection 9.5.2, we also presented a section of a formal concept lattice that was derived

from a formal context containing 145 NECs × 62,059 statements. Some members of the jury

expressed some reservations regarding the manual investigation of such a large lattice. We

totally agree with the jury that such a lattice is not practical, as-is, for end-users. However,
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several properties can be calculated in a fully automated manner based on a formal concept

lattice. The Duquenne-Guiges basis of implications, that we used in the paper to draw

conclusions about interactions between privileges, is only one of the several properties that

can be automatically calculated based on a formal concept lattice.
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CHAPTER 11

PAPER 4: FAST DETECTION OF ACCESS CONTROL VULNERABILITIES

IN PHP APPLICATIONS

ABSTRACT

Access control vulnerabilities in web applications are on the rise. In its 2010

“Top 10 Most Critical Web Applications Security Risks”, the OWASP reported

that the prevalence of access control vulnerabilities in web applications increased

compared to 2007. However, in contrast to SQL injection and cross-site scripting

flaws, access control vulnerabilities comparatively received much less attention

from the research community.

This paper presents ACMA (Access Control Model Analyzer), a model checking-

based tool for the detection of access control vulnerabilities in PHP applications.

The core of ACMA uses a lightweight model checker to detect the privileges that

are enforced at each statement of an application. Based on this information,

ACMA can detect several types of access control vulnerabilities: from forced

browsing vulnerabilities to faulty access controls. We show how, when compared

to the state of the art, ACMA achieves advantageously comparable results with

accelerations up to 890 times faster. Moreover, contrary to the state of the art,

ACMA scales up to medium-large applications with large access control models,

as shown by the analysis of Moodle, a 400,000+ LOC application counting more

than 200 distinct privileges. Results show that ACMA is fast, precise and scalable

making it a practical tool for the detection of access control vulnerabilities in

real-world applications. A discussion about further extensions to ACMA is also

presented.

11.1 Introduction

Every day, millions of people communicate, shop, bank, gather information, and perform nu-

merous tasks using web applications. An increasing number of web applications now deal with

private or security sensitive information. Such applications must implement access control

mechanisms to protect the privacy of their users. However, the design and implementation of

an access control model is far from trivial, especially in web applications. Due to the stateless

nature of the HTTP protocol, web applications must verify the credentials of a user for every
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incoming requests that access privileged information.

To help alleviate this task, several standards, secure application development guides and

application security APIs have been developed and released over the years, often for free.

Still, a high proportion of web applications rely on ad-hoc solutions to enforce access controls.

Access control models are thus often application-dependent. As a consequence, developing

automated detection techniques for access control vulnerabilities is harder than for language-

dependent vulnerabilities such as SQL injection (SQLi) and cross-site scripting (XSS).

While SQLi and XSS vulnerabilities still are the most prevalent flaws in web applications, the

OWASP raised the “Failure to Restrict URL access” vulnerability from the 10th position (in

2007) to the 8th position (in 2010) of their “Top 10 Most Critical Web Application Security

Risks” [129]. In 2010, they also added the “Unvalidated Redirects and Forwards” to their list.

Both types of vulnerabilities stem from faulty access controls.

One of the main challenges for the detection of access control vulnerabilities lies in the

identification of pages that should have a restricted access. Recently, some researchers [156,

152] observed that privileged pages are rarely left entirely unprotected. They argue that

access control vulnerabilities usually occur because of “hidden” execution paths that lack

access control checks rather than because of a complete absence of access control.

For example, web applications will typically hide links to privileged pages from unprivileged

users. While this is a good practice, it is not sufficient to ensure security, as a malicious

user can guess the URL of the hidden page and access the privileged information through

this “hidden” path. In the context of this paper, we refer to this kind of access control

vulnerabilities as “forced browsing” vulnerabilities. Forced browsing vulnerabilities are a

subset of “hidden” paths vulnerabilities in access control models. The term was introduced

by Sun et al. [156] as they were the first to tackle the automatic identification of such security

flaws.

In this paper, we present ACMA (Access Control Models Analyzer) a novel approach for

the detection of access control vulnerabilities in PHP web applications. Contrary to the

approach presented in [156], ACMA can detect many types of access control vulnerabilities,

not just forced browsing ones. Moreover, ACMA handles larger applications than previously

published tools [156, 152] and identifies forced browsing vulnerability faster (up to 890 times

faster) with positively comparable false positive and precision rates.

The main contributions of this paper are:

• The definition and implementation of a fast and precise approach, anchored in inter-

procedural analysis and model checking theory, for the automatic detection of access

control vulnerabilities.
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• The comparison of ACMA with the state of the art. We ran our tool on all the applica-

tions previously investigated in [156]. Results show that ACMA is faster, more scalable

and requires less manual efforts without sacrificing precision.

• A discussion of the additional types of access control vulnerabilities that are found in

web applications and how ACMA can be used to report them.

The rest of this paper is organized as follows. In section 11.2, we define the concepts that are

needed to model access control vulnerabilities. In section 11.3, we present ACMA’s approach

and detail its algorithms. Section 11.4 shows the running time and precision of ACMA and

reports the vulnerabilities that were identified. In section 11.5 we present some application

specific results and compare them to those in [156]. Section 11.6 emphasizes the speed and

scalability of ACMA by investigating Moodle, a medium-large application with a large access

control model. This section also proposes a classification of access control vulnerabilities

and discusses how ACMA can help identify and report them. Finally, section 11.7 discusses

related work and section 11.8 concludes the paper.

11.2 Definitions

This section presents the terms and definitions that will be used throughout this paper.

1. Privilege: A privilege grants the permission to perform certain actions on certain

objects. For example, in a typical blog engine, the “post comment” privilege allows a user to

post (action) a comment (object).

2. Role: A role is simply a label for a group of privileges. In large systems with lots of

privileges, it is often more practical to grant users a pre-defined set of privileges, called a

role, instead of granting users each privilege separately. In small systems, roles often act as

privileges.

3. Access control routine: An access control routine is a mechanism by which an appli-

cation verifies that a user owns a given privilege or belongs to a given role.

4. Privileged user: In the context of this paper, a privileged user owns a specific privilege

or belongs to a specific role. Access control routines grant access to privileged users.

5. P -protected links: A link is said to be p-protected if it is only displayed to users that

own the privilege p.

6. P -privileged page: A page is p-privileged if it is only pointed to by p-protected links.

7. P -guarded page: A page is p-guarded if it is only accessible by users who own the priv-

ilege p. Note that p-privileged pages are not necessarily p-guarded. Typically, unprivileged

users trying to access a guarded page will either be redirected to another page or presented

with an error message before any sensitive content is displayed.
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8. Normal browsing: Normal browsing defines the navigation of a user that only uses the

intended entry points of an application and that only follows the links that are presented to

him.

9. Forced browsing: We define forced browsing as the action of directly navigating to a

page through its URL.

10. Forced browsing vulnerability: A forced browsing vulnerability exists if a p-

privileged page is not p-guarded and thus reachable through forced browsing. Often, this kind

of vulnerability occurs when developers try to “hide” a page by only displaying p-protected

links to that page. In these cases, a malicious unprivileged user might be able to perform a

privilege escalation attack by correctly guessing the URL of the “hidden” page.

11.3 The ACMA tool

This section aims to provide the reader with a detailed description of our methodology.

ACMA builds on work previously published in [60]. For the purpose of this paper, we imple-

mented several extensions to identify forced browsing vulnerabilities. Specifically, ACMA: 1.

extracts the p-privileged pages of an application 2. identifies the p-guarded pages 3. verifies

that the p-privileged pages are p-guarded and 4. reports the vulnerabilities.

PHP
Parser

Model
Extraction

Model
Checker

Detection
module

PHP
Source Code CFG

Automaton

P-protected
Statements

Vulnerability
report

Figure 11.1: ACMA architecture

ACMA’s architecture is illustrated in Figure 11.1. The process starts with PHP source code

and finishes with the production of a vulnerability report.
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11.3.1 Control-flow graph extraction

Our experimental setup uses a PHP parser generated by JavaCC, a common parser generator

tool. The PHP grammar used with JavaCC is a modified version of [144]

The parser outputs a program Control Flow Graph (CFG):

CFG = (VCFG, ECFG) (11.1)

with multiple entry nodes vin ∈ VCFG and a multiple exit nodes vout ∈ VCFG. Indeed, each

PHP script of an application has its own entry and exit nodes. Nodes in VCFG can be of

type generic, entry, exit, call begin, call end, function begin and function end. Nodes of

type generic are involved in intra-procedural control flow; nodes of type call begin, call end,

entry, exit, function begin and function end are used in inter-procedural control flow.

Edges in ECFG can be of type generic, grant pi, revoke pi, call, or return. Edges of type

generic represent intra-procedural transfers of control that do not affect the granting of

privileges. Edges of type grant pi represent intra-procedural transfers of control that grant

the privilege pi. Likewise, revoke pi edges revoke the privilege pi. Finally, edges of type call

and return represent inter-procedural control flow links. Edges of type call link call begin

to function begin nodes while edges of type return link function end to call end nodes.

Identifying access control routines involves finding some syntactic patterns in the Abstract

Syntax Tree (AST). While these patterns are application-dependent, we observed that they

usually are very similar in their syntactic structures. In some applications, a function receives

a string argument, representing the privilege, and return a Boolean value asserting whether

or not the user owns the privilege. In other systems, an explicit comparison is performed

between a session variable, representing the privilege, and the required value of the variable.

The application-specific access control routines are presented in section 11.5.

The access control routines that are identified at the AST level produce security edges in the

CFG. For example, suppose an access check in the form of a predicate inside an if statement.

If the predicate evaluates to true, the control is transferred to a block in which the privilege

pi is granted until block end. Conversely, if the predicate evaluates to false, the control is

transferred to another block in which the privilege pi is revoked. Those transfers of control

are represented in the CFG with grant pi and revoke pi edges.
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11.3.2 Model extraction and inter-procedural aspects

The model extraction uses the CFG produced by the PHP parser and transforms it into an

automaton A suitable for model checking:

A = (QA, LA, TA, q0, VA, GA, AA) (11.2)

whereQA is a finite set of states; LA is a finite set of labels applied on the states; TA ⊆ QA×QA

is a set of transitions; q0 is the initial state; VA is a set of variables used in “guards” and

“assignments”; GA is a set of “guards” that are logical propositions over VA and are associated

with transitions; and AA is a set of assignments that modify the value of variables and are

also associated with transitions.

The model extraction is performed by operations that include the rewriting of intra-

procedural and inter-procedural nodes, and the identification of privilege granting functions

through access control patterns. The intra-procedural nodes VCFG and edges ECFG are di-

rectly rewritten in the automaton A into the corresponding states QA and transitions TA. A

label x is associated to each state to indicate to which statement the state corresponds to.

Conceptually, we model the granting and revoking of privileges as the activation and deac-

tivation of Boolean properties in the model checking automaton. To model these Boolean

properties in the automaton, each state is duplicated in two versions sx,0 and sx,1, where sx,0

represents that the property is false (deactivated) and sx,1 represents that the property is true

(activated). During the model extraction phase, grant edges, that represent the granting of

a privilege, become transitions to sx,1 states. Conversely, revoke edges, that represent the

revoking of a privilege, become transitions to sx,0 states.

From the inter-procedural perspective, ACMA performs a security-sensitive analysis. Unlike

context-sensitive analysis, that distinguishes every calling context, ACMA only distinguishes

calling contexts with different security levels. In the context of this paper, ACMA deals

with Boolean privileges. The possible security contexts are thus limited to true and false,

depending if the privilege was previously granted or revoked.

At the automaton level, ACMA treats the security contexts in a similar manner to privileges:

each state in the automaton is duplicated in two versions, representing the two possible

security contexts. At the end of the model extraction phase, the number of states in the

automaton equals 4 × |VCFG|. Indeed, to each vertex vx ∈ VCFG corresponds four states

sx,0,0, sx,0,1, sx,1,0, sx,1,1, representing every combination of security context and privilege

activation values. Variables VA, guards GA and assignments AA are used to reproduce the

inter-procedural logic and propagate security contexts through inter-procedural call and re-

turn transitions, as detailed in [100].
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Performing a security-sensitive analysis considerably reduces computation time at the expense

of path-sensitivity. On the one hand, ACMA identifies all the privileges that may [66] be

activated at each statement. On the other hand, since ACMA merges calling contexts with

identical security levels, it cannot, for example, retrieve the execution path that misses an

access control check. However, in the context of access controls vulnerabilities, we argue that

retrieving the execution path that exposed a vulnerability is not as crucial as detecting the

flaw. Indeed, information about the faulty execution path is usually not required for the

repair of access control vulnerabilities. These flaws are generally repaired by the addition of

an appropriate access control check.

11.3.3 Model checking of security properties

Software model checking [33] is the algorithmic analysis of programs to prove properties

of their executions. While originating from logic and theorem proving fields, it has now

evolved as a hybrid technique, simultaneously making use of analysis traditionally classified

as theorem proving, model checking, or dataflow analysis [87].

A well-known limitation of model checking techniques is known as the combinatorial “state

space explosion problem”, where the model checker has to explore a combinatorial number of

states in the system under study. Several papers proposed exploration strategies, heuristics

and specialized data structures to circumvent this problem and analyze increasingly large

systems.

The approach we adopted in ACMA differs from these strategies. Instead of solving “generic”

model checking problems, ACMA uses a specialized model checker for the verification of

Boolean control-flow properties. As a consequence, ACMA is able to verify Boolean privileges

in a fast and precise way, making it suitable for the analysis of real-world applications.

Since the Boolean privileges and security contexts are directly encoded in the states of the

automaton, ACMA can solve the security-sensitive inter-procedural propagation of privileges

by computing state reachability over the automaton. Moreover, since the number of states

in the automaton equals 4× |VCFG|, the reachability analysis in ACMA scales linearly with

the size of the application. For more details about the state reachability algorithm, see [100].

A statement stmtj is defined as p-protected by the privilege pi if the following formula is

verified:

♦stmtj ∧�( stmtj ∧ pi) (11.3)

meaning that the statement stmtj is eventually reached (♦stmtj) and always when stmtj

is reachable, the privilege pi is granted (�( stmtj ∧ pi)). States satisfying Equation 11.3

correspond to statements that are reachable by an execution for which the privilege pi is
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granted, but that cannot be reached by an execution for which pi was not granted.

The model checker in Figure 11.1 solves the reachability problem of states in the automa-

ton and therefore solves the corresponding problem of identifying p-protected statements.

To prevent combinatorial state space explosion, ACMA produces many automata, one per

privilege, and analyzes them separately.

In summary, the model checker computes may information, that is true of all program exe-

cutions [66], and reports the p-protected statements, that are guaranteed to be protected by

the privilege p on every execution paths.

11.3.4 Privileged pages extraction

Our model checker reports p-protected statements for each privilege of an application, as

presented in Equation 11.3. In section 11.2, we defined a page as p-privileged iff all the links

pointing to it are p-protected.

Using the results from our model checker, we designed an algorithm, presented in Algo-

rithm 11.1, to extract p-privileged pages from an application. The simplified form of the

regular expressions used in the algorithm are the following:

link re = <a\b[^>]*href=(.*?)[\s>]

form re = <form\b[^>]*action=(.*?)[\s>]

frame re = <i?frame\b[^>]*src=(.*?)[\s>]

These regular expressions are presented as a reference. ACMA uses a mix of regular expres-

sions and post-processing routines to deal with malformed HTML and to extract a maximum

number of links. In the algorithm, regular expressions are matched against statements using

the match function (see line 5).

The algorithm presented in Algorithm 11.1 can be summarized into three steps:

1. Extract the targets of p-protected links.

2. Extract the targets of unprotected links.

3. Report the targets that are only pointed to by p-protected links for each privilege p ∈ P .

Those are the p-privileged pages.

In its current version, the algorithm reports privileged pages on a per-privilege basis. In sec-

tion 11.2, we defined a role as a label for a collection of privileges. For some applications, it

might be more significant to report privileged pages on a per-role basis.
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1: P = {privileges}
2: protected pages = ∅
3: unprotected pages = ∅
4: for all stmt ∈ {statements} do
5: if link re.match(stmt) || form re.match(stmt) || frame re.match(stmt) then
6: link = stmt
7: for all p ∈ P do
8: if link ∈ {p-protected statements} then
9: protected pages[p] ∪= link.target

10: else
11: unprotected pages[p] ∪= link.target
12: end if
13: end for
14: end if
15: end for
16: privileged pages = ∅
17: for all p ∈ P do
18: privileged pages[p] = protected pages[p] \ unprotected pages[p]
19: end for
20: return privileged pages

Algorithm 11.1: Privileged pages extraction algorithm

From an algorithmic point of view, adding support for per-role privileged pages is simple. It

is sufficient to replace the set of privileges at line 7 in Algorithm 11.1 by a set of privilege

tuples R = {(p1, . . . , pm), . . . , (p1, . . . , pn)}, where each tuple r ∈ R represents a role. Then,

at line 8, instead of verifying if the link is p-protected, it would be sufficient to verify if the

link is r-protected, where:

r-protected links = {p-protected links | p ∈ r}.

11.3.5 Forced browsing analysis

Forced browsing analysis is performed by considering each PHP script or HTML file of

an application as an entry point of the application. Indeed, when a user enters a URL

that represents the path to an application’s file, the server will try to execute the PHP

script or render the HTML file. Note that in practice, a lot of forced browsing requests are

simply filtered out by the web server or result in an error page. However, for the sake of

circumspection, we consider each file of a Web application as a potential entry point.

First, the PHP parser identifies the entry point of each file at the AST level and converts them

into entry nodes in the CFG. During the model extraction phase, each entry node becomes an

entry state in the automaton. Forced browsing is then simulated during the model checking
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phase by computing state reachability from each entry state in the automaton.

11.3.6 Detection of vulnerabilities

A forced browsing vulnerability exists if a page that should be guarded is accessible by

unprivileged users through direct access to the URL of the page. However, identifying the

pages that ought to be privileged is not a trivial task When the size of the application is

small, asking the developers or some knowledgeable users to supply security specifications is

a possible solution. However, as the number of pages increases, it might become difficult to

find people with sufficient knowledge to provide specifications for the whole application.

ACMA infers the pages that should be guarded by comparing the pages that are reachable

through“normal”browsing versus the pages that are reachable through“forced”browsing. On

the one hand, p-privileged pages represents the pages that are only reachable by p-privileged

users under normal browsing. On the other hand, p-guarded pages represent the pages that

are only reachable by p-privileged users, even under forced browsing. ACMA makes the

assumption that p-privileged pages should also be p-guarded.

As mentioned in section 11.2, a guarded page will usually quickly redirect unprivileged users

to another page or display an error message. At the source code level, this behavior is

usually implemented with an early access check coupled with a redirection in case of failure.

According to this assumption, the last statement of a guarded page is only reachable by

privileged users. Our approach thus reports a page as p-guarded when the last reachable

statement of the corresponding PHP script is p-protected.

ACMA reports a vulnerability whenever it identifies a p-privileged page that is not p-guarded.

11.4 Experimental results

This section presents the performances of ACMA for access control vulnerabilities detection.

We first show how ACMA outperforms the previous tool both in terms of speed and scalability

with positively comparable precision and false positive rates. Second, we show how ACMA

is the first tool of its kind to handle medium-large applications by investigating Moodle, a

PHP application counting more than 400,000 LOC. All the analyzes were computed on a PC

with a dual-core CPU (3.0GHz) and 4GB of RAM.

Table 11.1 shows characteristics about the investigated applications. The first seven appli-

cations were also studied in [156] and serve as a benchmark for ACMA while the last line

shows statistics about Moodle, a newly investigated application. The version numbers are

listed together with the application name, when available. The reported numbers of lines of

code exclude blank lines and comments and where calculated with the cloc.pl software [43].
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Table 11.1: Characteristics of the evaluated applications

Application Files
LOC

PHP HTML
SCARF 25 1,318 0
Events Lister 2.03 37 2,076 544
PHP Calendars 67 1,350 0
PHPoll 0.97 93 2,571 0
PHP iCalendar 1.1 183 8,276 0
AWCM 2.1 668 12,942 5,106
YaPiG 0.95 134 4,801 1,271
Moodle 1.9.5 5124 404,399 30,547

Table 11.2 reports the vulnerability analysis results for all the investigated applications. An

important distinction must be made between “privileged” pages and “guarded” pages. As

mentioned in section 11.2, ACMA reports a page as privileged if it is only pointed to by

privileged links while a page is reported as guarded if it prevents unprivileged access with an

explicit access control check.

In Table 11.2, column “Priv.” shows the number of privileged pages that were identified in

each application. Column “Vuln.” reports the number of pages presenting a forced browsing

vulnerability, while columns “FP” and “Guarded” show the number of false positive and the

number of guarded pages respectively.

Manual verification revealed that ACMA identified all the known forced browsing vulnerabil-

ities in the investigated applications. The vulnerabilities reported by ACMA are consistent

with the results reported in [156]. Furthermore, the two approaches are comparable in term

of false positive rate.

Table 11.3 shows the precision rates of our link extraction algorithm for all the applications.

Table 11.2: Forced browsing analysis results.

Application Priv. Vuln. FP Guarded
SCARF 4 1 0 3
Events Lister 2.03 3 2 0 10
PHP Calendars 1 1 0 2
PHPoll 0.97 3 3 0 0
PHP iCalendar 1.1 0 0 0 1
AWCM 2.1 44 1 1 48
YaPiG 0.95 3 0 0 6
Moodle 1.9.5 43 0 0 161
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Table 11.3: Precision rates and causes of failure of the link extraction algorithm.

Application Cause of failure Precision
SCARF – 100%
Events Lister Erroneous links (2) 100%
PHP Calendars – 100%
PHPoll ${_POST[prepoll]} 97%

${percorso_link}

PHP iCalendar ${BASE} 94%
${minical_view}

AWCM Erroneous links (2) 100%
YaPiG – 100%
Moodle Unresolved paths (13) 98%

${securewwwroot}

${wwwroot}

CALENDAR_URL

${path}

The “cause of failure” column reveals three different causes that prevent our algorithm from

resolving a link:

1. Erroneous links. These links are correctly processed by our algorithm, but point to

erroneous pages in the application. In other words, a user clicking on of these links

would get an “Error 404 – page not found” error. Erroneous links were not considered

to decrease the precision of our algorithm.

2. Variables and constants. Some links are dynamically generated using variables. Ta-

ble 11.3 shows the variables that prevented the resolution of some links by our algorithm.

The number of variables involved in the dynamic generation of links is very small; it

varies between 0 and 4 in the investigated applications.

3. Unresolved path. Some PHP scripts contain functions that generate HTML links with

“invalid” relative paths. In practice, PHP resolves the relative path of a link based on

the path of the caller script. Consequently, these “invalid” relative paths may become

valid at runtime, depending on the caller script.

Column “Precision” shows that, despite some unprocessed links, ACMA still extracts and

resolves links with a precision rate of 94% to 100% for the investigated applications.

Up to now, we showed how ACMA detected all the known forced browsing vulnerabilities

and how its link extraction algorithm is able to process the vast majority of links in the

investigated applications. However, the greatest strengths of our approach are speed and

scalability.
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Table 11.4 shows the execution times of our approach with and without I/O. The execution

times without I/O are indicated in parenthesis. ACMA is currently designed for flexibility

at the expense of a lot of I/O operations. Execution times without I/O represents the actual

computation time of ACMA.

The “Acceleration” column illustrates how much ACMA outperforms the approach in [156]

in term of execution time. For PHP iCalendar, we see that ACMA finds the forced browsing

vulnerabilities about 890 times faster. Accelerations were estimated based on the execution

times (without I/O) reported in [156]. Although the two experimental setups slightly differ

(quad-core CPU (2.40GHz) vs. dual-core CPU (3.0GHz), both with 4 GB of RAM), we

strongly argue that the reported accelerations provide fair estimates of the practical acceler-

ations.

Investigating Table 11.4, we see that the highest accelerations were obtained for YaPiG (223

times faster) and PHP iCalendar (890 times faster). These two applications count 4,801 and

8,276 LOC respectively. ACMA ran about 50 times faster on AWCM which counts 12,942

LOC.

On the one hand, ACMA scales linearly and has predictable performances. On the other hand,

the tool in [156] presents highly variable performances that seem application-dependent.

11.4.1 Current limitations and future work

Identification of access control routines

Access control routines are application dependent. It its current version, ACMA requires

the manual specification of the access control routines of an application. Some work by Son

et al. [152] addresses the problem of inferring the access control checks of an application.

However, their approach is heuristic and requires more than 6 hours to analyze a 13,862 LOC

application. We would be very surprised if it scaled to applications of the size of Moodle.

On the other hand, access control routines are usually easy to identify and syntactically

Table 11.4: Analysis times

Application
Time (s)

Parsing Model Vulnerability Total time Total time Acceleration
checking detection with I/O without I/O (× faster)

SCARF 1.393 (0.097) 2.930 (0.143) 0.259 4.582 0.499 12.06
PHP Calendars 1.147 (0.106) 2.528 (0.128) 0.204 3.879 0.438 11.62
Events Lister 1.03 1.102 (0.084) 2.830 (0.156) 0.193 4.125 0.433 8.87
PHPoll 0.97 1.100 (0.120) 2.796 (0.165) 0.224 4.120 0.509 8.37
YaPiG 0.95 2.09 (0.188) 7.847 (0.355) 0.390 10.327 0.933 223.34
PHP iCalendar 1.1 2.426 (0.246) 7.329 (0.321) 0.287 10.042 0.854 890.66
AWCM 2.1 2.913 (0.252) 6.509 (0.452) 1.086 10.508 1.79 49.99
Moodle 1.9.5 21.555 (3.046) 435.612 (4.921) 8.330 465.497 16.172 –
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similar from one application to the other. Indeed, while automatic approaches must consider

all variable comparisons and function calls as potential access control routines, humans are

very efficient in locating security-related variables and functions (e.g. the has_capability

function in Moodle or the admin variable in PHP Calendars). Consequently, the amount of

manual work required to analyze a new application with ACMA is fairly limited.

Specifically, ACMA currently identifies access control routines in the AST, with the help of

visitors [55]. The amount of manual work required to analyze new applications with ACMA

thus essentially boils down to the creation of application-specific visitors. To give the reader

an idea, the application-specific visitors used in this study are about 13 lines of “original”

code long and very easy to implement.

Compared to ACMA, the approach in [156] not only requires the manual specification of

access control routines, it also requires the manual identification of the application’s entry

points as well as the manual specification of “critical” function return, session, cookie, request

parameter, database record and variable values. Moreover, no indication is provided as to

how to identify those “critical” values. From our understanding, it seems that one must

have a thorough knowledge of the application in order to provide such information. Thus,

ACMA does not only requires less manual work, it also considerably mitigates the need for

a thorough comprehension of the software under study.

Link extraction algorithm

Our approach for link extraction is based on the matching of regular expressions against the

source code. Consequently, some links, that use variables and constants for example, cannot

be processed by our approach. However, Table 11.3 shows that this is a minor limitation

as ACMA currently processes 94% to 100% of the links in the investigated applications. In

a further release, we plan to extend ACMA with the inter-procedural pattern propagation

algorithm presented in [61] to enhance the resolution rate of dynamically generated links.

11.5 Analysis of benchmark applications

11.5.1 SCARF

SCARF stands for the Stanford Conference And Research Forum. Its access controls are im-

plemented with the is_admin and require_admin functions. Our tool detected a previously

reported vulnerability (CVE-2006-5909) concerning the generaloption.php page. This page

is only accessible through privileged links but is not guarded.

ACMA succeeded in processing all the links of the application.
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11.5.2 Events Lister

As its name suggests, Events Lister allows users to display and manage their events. The

current version is 2.04 and we had to use forced browsing to download the 2.03 version

containing the security flaw! Access checks are performed by calling the checkUser function.

Our tool detected previously reported forced browsing vulnerabilities for admin/user add.php

and admin setup.php pages.

While false positives were previously reported for this application, ACMA did not report any.

Another interesting consideration is the number of reported guarded pages. ACMA reported

10 guarded pages while only 5 guarded pages were reported in [156].

On the one hand, in [156], the authors claim that their approach reports a page as guarded

when: “the context-free grammar sizes of the two roles are different because of the different

HTML outputs that are presented.”. On the other hand, the checkUser function redirects

the user to the login page if the access check fails. Consequently, any script that invokes the

checkUser function renders HTML that differs in function of the user’s role. Since Events

Lister counts 10 scripts that invoke the checkUser function, their approach should have

reported 10 guarded pages. We therefore conclude that their approach erroneously reported

5 pages as unguarded. ACMA correctly reported all guarded pages.

From the link extraction perspective, ACMA processed all the valid links. The only two

links ACMA did not process were erroneous. One link points to a file that does not

exists and would thus generate an “page not found” error. The other link is literally:

<a href=events.php></a>. There is no anchor text and the link is therefore unusable!

11.5.3 PHP Calendars

PHP Calendars is one of the many calendar management systems available online. Ac-

cess checks are performed through the comparison $_SESSION["admin"] == "yes" in the

admin/access.php page. Our tool detected the known vulnerability (CVE-2010-0380) con-

cerning the install.php file. Like in [156], we had to manually add the install.php page to the

set of privileged pages in order to detect the vulnerability.

Interestingly, while ACMA correctly reported the two guarded pages: admin/import.php and

admin/index.php, the tool in [156] not only failed to report admin/index.php as guarded,

it also erroneously reported powerfeed.php as guarded. Since powerfeed.php is a library of

functions and displays no HTML by itself it should not have been reported as guarded.

Contrariwise, the admin/index.php generates HTML, has an access check and should have

been reported as guarded.

ACMA did process all the links of this application.
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11.5.4 PHPoll

PHPoll is an online poll application where access checks are performed by verify-

ing that the user provided correct values for $_COOKIE[$string_cook_login] and

$_COOKIE[$string_cook_password]. If the verification succeeds, the application sets the

$test_log variable to true. Otherwise, it is set to false. ACMA detected all known vulner-

abilities. The three privileged pages: modifica band.php, modifica configurazione.php and

modifica votanti.php are all vulnerable to forced browsing attacks.

Only two links were unprocessed in this application for an overall link extraction precision

rate of 97%.

11.5.5 PHP iCalendar

PHP iCalendar, like PHP Calendars, is a calendar management system. Access checks are

implemented by verifying the value of the HTTP_SESSION_VARS ["phpical_loggedin"] vari-

able. Our tool correctly identified the admin.php page as guarded but did not report it as a

privileged page since no link points to that page; it is an entry point of the application.

Some links were unprocessed due to the use of variables for dynamic link generation. ACMA

did process 94% of the links in this application.

11.5.6 AWCM

AWCM stands for Arabic Web Content Manager. Access checks are performed through the

comparison $_SESSION["awcm_cp"] == "yes" in the control/common.php page. ACMA

correctly identified a previously reported vulnerability (CVE-2010-1066) in the con-

trol/db backup.php file.

ACMA reported one false positive for this application. The control/logout.php file is privi-

leged but not guarded and thus reported as vulnerable to forced browsing attacks. However,

since the purpose of that page is simply to log out the current user, it does not qualify as a

security vulnerability.

The only two links that were unprocessed by ACMA are erroneous. One of them points to

a page that does not exist. The other one points to news_show..php. The double dots are

intentional. This is obviously a typo. ACMA thus achieved a precision rate of 100% for link

extraction.

11.5.7 YaPiG

YaPiG stands for Yet Another PHP Image Gallery and implements access checks through the

check_admin_login function. ACMA did not identify any forced browsing vulnerabilities in
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this application.

Our link extraction algorithm succeeded in processing all the links of the application.

11.6 Analysis of Moodle

Through the investigation of the previous applications, we showed how ACMA identifies

forced browsing vulnerabilities in a precise, fast and scalable way. We also demonstrated

how ACMA outperforms the existing forced browsing vulnerability identification tool with

accelerations up to 890 times faster.

ACMA, however, can identify several types of access control vulnerabilities, not just forced

browsing ones. ACMA also scales to medium-large applications. In this section, we inves-

tigate Moodle, a 400,000+ LOC application with a large access control model that presents

different types of access control vulnerabilities.

Moodle is a course management system written in PHP. The Moodle website reports a

total of 57,111,699 users across 219 countries [119]. Moodle implements access controls with

two functions: has_capability and require_capability. The has_capability function

returns a Boolean value indicating whether or not the user owns the privilege that is passed

as a parameter. The require_capability function stops the execution if the user does not

own the privilege.

Unlike the other investigated applications, that only had one privilege (admin), Moodle has

a more elaborate access control model. The investigated version of Moodle counts more than

200 distinct privileges. With the analysis Moodle, we show how ACMA not only scales to

larger application but also to larger access control models.

In order to provide a fair comparison with the other applications, in Table 11.4, we reported

the average model checking and vulnerability analysis times for one privilege. Our tool

requires around 40 minutes to perform the model checking phase on all of Moodle’s privileges

and around 6 minutes to perform the vulnerability analysis. The parsing step only needs to

be executed once, no matter the number of privileges.

ACMA did process 98% of the links in Moodle. Of the 18 unprocessed links, 5 are dynamically

generated with variables. The remaining 13 links were unprocessed due to unresolved relative

paths.

11.6.1 Beyond forced browsing vulnerabilities

While previous applications only presented forced browsing vulnerabilities, they are not the

only kind of access control vulnerabilities. A manual review of the reported access control vul-

nerabilities in Moodle and other PHP applications revealed that access control vulnerabilities
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can be classified in three categories:

1. The undetected execution path. An access control is enforced to protect some part

of the application but an unexpected execution path allows unprivileged users to bypass the

access control routine. Forced browsing vulnerabilities fall into this category. None were

detected in Moodle.

2. The faulty control. The access control routine is correctly implemented but does not

check the proper privilege according to the logic or the documentation of the application.

Moodle presents vulnerabilities of this type, as described below.

3. The missing access control. A part of the application that should be protected by an

access control check is not. Moodle also has vulnerabilities of this type, as described below.

The approach proposed in this paper is geared towards the detection of forced browsing

vulnerabilities. By default, ACMA detects web pages that are improperly protected due

to undetected execution paths. However, the core of ACMA is based on a process that

has a much finer granularity. The model checker identifies the protected statements of an

application. This makes our tool suitable for the detection of finer, more subtle access control

vulnerabilities.

Access control vulnerability detection approaches that abstract web applications to files or

web pages lack the necessary precision for the identification of several types of vulnerabilities.

Indeed, none of the reported access control vulnerabilities in Moodle concern a page; they

are always related to specific statements of a PHP script.

For example, a permission escalation vulnerability (CVE-2010-1616) was identified in the

file backup/restorelib.php. This file is a library of functions. It does not display HTML

code and is thus not vulnerable to forced browsing attacks. However, one of its function

performs privileged operations without proper privilege verification. This vulnerability is of

the “missing access control” type. In order to identify such a vulnerability, we augmented

ACMA with supplementary rules to report unprivileged database access statements.

Another access control vulnerability (CVE-2010-1617) was found in the user/view.php file.

In that case, a privileged statement is protected by the wrong privilege. In fact, contrary

to guarded pages that present an error message or redirect unprivileged users, this page

customizes the displayed HTML in function of the user’s privileges. The page either displays

the name of all the registered students of a course (privileged version) or only the name of

the current user (unprivileged version).

A single statement differs between the privileged and the unprivileged version of the script.

ACMA correctly reports the (wrong) privilege that currently protects the privileged state-

ment. Only ACMA has the sufficient granularity to identify such statement specific vulner-

abilities. This vulnerability is of the “faulty access control” type.
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Similarly, the mod/glossary/showentry.php file also has a “faulty access control”

vulnerability (CVE-2009-4299). Originally, the script checked if the user had the

course:viewhiddenactivities privilege and redirected him to another page in case of fail-

ure. In the corrected version, the glossary:approve privilege is verified instead. In the

corrected version, if the check fails, privileged information is simply not displayed to the

user.

11.7 Related work

11.7.1 Taint analysis

In some respects, access control vulnerabilities detection approaches relates to taint analysis

when they are applied to access control models that contain only one Boolean privilege (e.g.

admin/user models).

Generally speaking, one refers to tainted variables do designate untrusted data that can flow

to security-sensitive code. Untrusted data are therefore tagged as tainted until some sanitizing

routine sanitizes them. Our approach implements a form of control flow taint analysis where

access control routines are analogous to sanitizing routines that sanitize tainted executions.

However, in contrast with classic taint analyzes, in which no distinction is made between

sanitizing routines, ACMA tags executions with precise sanitation information, in the form

of multiple and independent privileges.

Tripp et al. [163] implemented a static taint analysis for Java (TAJ). Their approach aims at

identifying security vulnerabilities in Web applications. The authors share our willingness to

provide a scalable approach, suited for industrial size applications. Their approach mainly

differs from ours from the language (Java vs. PHP) point of view.

Clause et al. [34] presented a framework (DYTAN) for conservative dynamic tainting. Their

framework takes a user supplied configuration file, describing the taint analysis to be per-

formed, and instruments x86 binaries accordingly. To our knowledge, they are among the

first authors to explicitly address the problem of control flow tainting.

Jovanovic et al. [88, 89] developed a static taint analysis for identification of cross-site

scripting (XSS) vulnerabilities in PHP Web applications. They used an inter-procedural and

context-sensitive data flow analysis enhanced with literal analysis to detect potential XSS

vulnerabilities in PHP scripts.

11.7.2 Vulnerability detection in web applications

Finding SQLi and XSS vulnerabilities. SQLi and XSS are data-flow vulnerabilities.

They occur when untrusted inputs from users can reach sensitive parts of a web application
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without proper sanitation. Several research papers have been devoted to the subject [105,

173, 83, 72, 92]. However, data-flow approaches are not well suited for the detection of access

control flaws, which are control-flow vulnerabilities.

Other researchers [168, 169] used string analysis to detect SQLi and XSS vulnerabilities.

Their approach is an extension of the string analyzer that was originally published by Mi-

namide [116]. String analysis is a powerful and interesting approach, but it does not seem to

scale well to large applications. In their previous work, Wassermann et al. reported that their

tool failed to analyze Drupal, a 43,000 LOC PHP application. This raises questions about

the scalability of their approach. In this paper, we showed how ACMA handles Moodle, a

400,000+ LOC PHP application.

Access control vulnerabilities as workflow violations. In [73], Hallé et al. proposed to

model web applications as state machine and dynamically verify that runtime operations don’t

violate some pre-defined temporal properties. Similarly, Dalton et al. proposed a tool, called

Nemesis [41] that takes a user specified access control model as input and dynamically detects

access control violations at runtime. These approaches suffer from the excessive amount of

manual work that is required by developers and from the runtime overhead introduced by

dynamic verifications of security properties.

Inferring the underlying security model. To alleviate the need of manual workflow

specifications, some researchers proposed techniques to automatically infer the security model

of an application. In [11], the authors present a semi-automated approach for the reverse-

engineering of SecureUML models from dynamic web applications. The task of performing

security verifications on the extracted model is left to the user.

Swaddler [38] automatically learns the relationships between an application’s critical execu-

tion points and internal states to infer a workflow. It then detects anomalous behaviors by

reporting executions that violate the workflow. In subsequent work [51] they enhanced their

tool to infer invariants of an application from its execution traces. Invariants violations are

then reported at runtime. The heuristic nature of their approach makes it subject to errors.

Recently, Son et al. [152] introduced RoleCast, a tool that is specifically designed for access

control vulnerabilities detection. Their tool infers the access control checks with static anal-

ysis. A vulnerability is reported if an execution path that lead to a sensitive operation misses

an access control check. Their tool assumes that the only sensitive operations of a web appli-

cation are: INSERT, UPDATE and DELETE database operations. In Moodle, ACMA identified

some vulnerabilities that involve the display of sensitive information through SELECT oper-

ations. Moreover, their tool assumes that different roles will usually execute different files.

This is not the case in Moodle as ACMA identified vulnerabilities in scripts that customize

the displayed HTML according to the user’s role. ACMA thus reports vulnerabilities that
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their approach would fail to detect.

Detecting forced browsing vulnerabilities. In section 11.4 we compared the perfor-

mances of ACMA against the tool published in [156] for the detection of forced browsing

vulnerabilities. Contrary to ACMA, that detects several types of access control vulnerabili-

ties, their approach only detects forced browsing ones. It uses and extends the string analyzer

of Wassermann et al. [168, 169]. Similarly to ACMA, their approach first identifies privileged

pages. It then detects forced browsing vulnerabilities by approximating the role-dependent

output of the privileged page. If the output of the privileged page is identical for two roles

A and B where A is more privileged than B, a vulnerability is reported.

Contrary to ACMA, their approach requires manual specification of the role-dependent entry

points of the application. In PHP applications, every file is a potential entry point. In the

absence of documentation or specifications about the entry points, as is the case for all the

investigated applications, manual identification of the role-dependent entry points is a tedious

task, especially for medium-large applications. To illustrate our point, Moodle counts about

eight times more files than AWCM, the largest application investigated in [156].

Furthermore, as mentioned in subsection 11.4.1 their approach requires the manual specifica-

tion of the application’s “critical states”, which include information such as: session, cookie,

request parameter, variable and function return values as well as database records [156]. To

give the reader an idea, Moodle defines approximately 19,000 functions. In that context,

asking developers to identify the “critical” functions and further specify their return values

seems unrealistic. Besides, this process must be repeated for session values, cookie values,

and so on.

11.8 Conclusions and future work

Access control vulnerabilities are on the rise [129] and pose serious threats to web applications.

In this paper, we presented ACMA, a tool for the detection and repair of access control

vulnerabilities in web applications. ACMA is anchored in inter-procedural analysis and model

checking theory and proved to be precise, fast and scalable.

In section 11.4, we showed how ACMA outperforms the existing tool for forced browsing

vulnerabilities detection both in terms of speed (up to 890 times faster) and scalability, with

positively comparable precision and false positive rates. We also showed how ACMA can

handle medium-large applications with large access control models by investigating Moodle,

a 400,000+ LOC application counting more than 200 distinct privileges.

Results demonstrated how ACMA can detect access control vulnerabilities of variable gran-

ularity: from vulnerable pages to ill protected statements. The finer granularity of ACMA
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allowed it to detect subtle access control vulnerabilities in Moodle that would have been

missed by other approaches.

In a further version, we plan to extend ACMA with an automatic access control vulnerabilities

repair module. Currently, when a vulnerability is identified, ACMA has information about:

the privilege that needs to be enforced, the routine to enforce the privilege and the statements

that need to be privileged. This vulnerability information, combined with the control-flow

information in the CFG, opens the door to automatic repair of access control vulnerabilities

through automated synthesis of missing access control checks.
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CHAPTER 12

CORRECTIONS FOR PAPER 4

The previous chapter contains the published version of the paper entitled: “Fast Detection

of Access Control Vulnerabilities in PHP Applications”. The current chapter addresses com-

ments and corrections by the jury regarding this paper.

This paper was about automatic detection of forced browsing vulnerabilities. In section 11.1,

we mentioned that the term “forced browsing” was introduced in 2011 by Sun et al. [156].

However, a member of the jury observed that while this type of flaw was not known as“forced

browsing” before 2011, they were already listed in the OWASP Top Ten of 2007 [128] as

“Insecure Direct Object Reference”. In fact,“Insecure Direct Object Reference”vulnerabilities

are a superset of forced browsing vulnerabilities as they are not limited to direct access to web

pages. Fortunately, the approach that we presented is perfectly suitable for the detection of

general “Insecure Direct Object Reference” since objects in web applications are also accessed

through hyperlinks and URLs.

In section 11.3, we presented the ACMA tool, that is based on the work that was presented

in chapter 5. The technique we used for the extraction of the CFG and its conversion of

to multiple model checking automata does not differ from that presented in chapter 5. We

extract as many automata as there are privileges and analyze each and every one of them

independently. For every automaton, the number of states equals 4× |VCFG| to represent all

possible combinations of Boolean privileges and security contexts (22 = 4) at every statement.

In subsection 11.3.4, we presented the technique we employed to extract privileged pages from

an application where one step requires to extract hyperlinks. Some members of the jury asked

how we could statically extract every hyperlinks from highly dynamic PHP applications. This

is indeed a limitation of the approach and we cannot guarantee that we statically extract

every hyperlinks from an application. In this context, dynamic analysis could be used to

complement static analysis and identify hyperlinks that are created at runtime.

Another promising line of research is to use the inter-procedural pattern propagation al-

gorithm that was presented in chapter 7 to statically resolve dynamically generated links.

Indeed, in chapter 7, we showed how our pattern propagation algorithm could be adapted

to resolve dynamic include statements that are built based on concatenations of strings and

string variables. Since several dynamically generated hyperlinks are built based on the same

concatenation logic, the same algorithm could be applied in a straightforward manner to

resolve several dynamically generated hyperlinks.
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In section 11.4, we mentioned that: “ACMA resolves links with a precision rate of 94% to

100%”. What we meant by that is that among all the hyperlinks that ACMA extracts,

between 94% and 100% of them are resolved to valid, complete URLs. Indeed, in some cases,

ACMA detects hyperlinks (e.g. strings that contain an href token) that it cannot resolve to

actual URLs. Table 11.3 shows unresolved hyperlinks and explicits the reason why ACMA

failed to resolve them. Unresolved hyperlinks were considered as false positives, hence the

precision measures.

In subsection 11.6.1, we mentioned that we: “augmented ACMA with supplementary rules

to report unprivileged database access statements”. To do so, we simply identified typical

routines that perform database access in PHP (e.g. mysql_query) and extended ACMA to

report any such statement that was left unprotected.
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CHAPTER 13

PAPER 5: SEMANTIC SMELLS AND ERRORS IN ACCESS CONTROL

MODELS: A CASE STUDY IN PHP

ABSTRACT

Access control models implement mechanisms to restrict access to sensitive data

from unprivileged users. Access controls typically check privileges that capture

the semantics of the operations they protect. Semantic smells and errors in access

control models stem from privileges that are partially or totally unrelated to the

action they protect.

This paper presents a novel approach, partly based on static analysis and in-

formation retrieval techniques, for the automatic detection of semantic smells

and errors in access control models. Investigation of the case study application

revealed 31 smells and 2 errors. Errors were reported to developers who quickly

confirmed their relevance and took actions to correct them. Based on the ob-

tained results, we also propose three categories of semantic smells and errors to

lay the foundations for further research on access control smells in other systems

and domains.

13.1 Introduction

Every day, millions of people communicate, shop, bank, gather information, and perform

numerous tasks using web applications. An increasing number of web applications now deal

with private or security sensitive information. Such applications must implement access

control mechanisms to protect the privacy of their users. Failure to do so results in access

control vulnerabilities.

Access control vulnerabilities can take several shapes. For example, several studies [62, 51,

152, 41] target the identification of missing access controls, where sensitive operations are

left unprotected. While missing access controls pose serious security threats, the focus of this

paper is the identification of a more subtle, but no less relevant type of access control vulnera-

bility: semantic smells and errors. Analogously to code smells [53] that reflect poor solutions

to implementation problems, semantic smells reflect poor implementations of the semantic

of an access control model. Semantic errors, on the other hand, are wrong implementations

that must be corrected.
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In the context of access control models, users are granted with privileges that allow them

to perform certain actions. As such, a privilege should capture the semantic of the action it

protects. In practice, however, the semantic of the privilege does not always clearly relates

to the semantic of the protected action. In some cases, the semantic relationship is only

partial and gives rise to semantic smells. In other cases, the absence of relationship leads

to semantic errors. Listing 13.1 shows a semantic error in Moodle where the user:update

privilege protects the download of user information instead of the update of a user account,

as specified in the documentation.

1 /∗∗
2 ∗ script for downloading of user lists

3 ∗/
4 require capability(’moodle/user:update’, CONTEXT SYSTEM);

5 . . .

6 function user download xls($fields) {
7 . . .

8 }

Listing 13.1: Semantic error in Moodle. The enforced update capability is semantically

unrelated to the download code it protects.

The focus of this paper is the automated identification of semantic smells and errors in access

control models. The key insight behind our approach is the following: semantically related

sections of source code usually perform similar actions and should therefore be protected by

similar privileges. Otherwise, these sections of code may be affected by semantic smells and

errors.

To our knowledge, we are the first to propose an approach for the automatic identification

of semantic smells and errors in access control models. The main contributions of this paper

are:

• A novel, statistically sound approach, based on static analysis, model checking and

information retrieval techniques, to identify semantic smells and errors in access control

models.

• A proof of concept that our approach can be applied to medium-size, open-source PHP

applications, as shown by our case study of Moodle.

• Identification and classification of previously unknown semantic smells and errors in

Moodle’s access control model. Semantic errors were reported to developers who swiftly

confirmed their relevance and took actions to correct them.
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13.2 Related Work

13.2.1 Detection of Access Control Vulnerabilities

In [41], Dalton et al. proposed an approach, called Nemesis, that takes a user specified access

control model as input and dynamically detects access control violations at runtime. From

our experience, few developers provide such specifications.

To alleviate the need of manual workflow specifications, some researchers proposed techniques

to automatically infer the security model of an application. In [51], Felmetsger et al. presented

a tool to detect invariants from execution traces and report invariant violations at runtime.

Semantic smells and errors induce erroneous invariants and cannot be detected with such

strategies.

Recently, Son et al. [152] introduced RoleCast, a tool that statically detects missing access

controls in Web applications. Their tool performs a control-flow taint analysis where un-

privileged INSERT, UPDATE and DELETE database queries are reported as potential security

flaws. From our experience, privileged actions in Web applications are not limited to database

queries. For example, work by Gauthier et al. [62] targets the detection of forced browsing

vulnerabilities, where no assumption is made about the nature of privileged actions.

All these approaches are solely based on static analysis and lack the necessary information

to detect semantic smells and errors in access control models.

13.2.2 Information Retrieval in Software Engineering

In recent years, information retrieval (IR) techniques have been used for a variety of software

engineering tasks.

In [15], Asuncion et al. presented an approach, based on Latent Dirichlet Allocation

(LDA) [26], to retrieve traceability links between software artifacts, such as documentation,

source code, tests, etc..

In [179], Zhou et al. proposed a novel IR technique, called revised Vector Space Model

(rVSM), for the identification of source code artifacts that are relevant to a particular bug

report, with good results.

In [69], Grant et al. proposed the use of LDA for the reverse engineering of co-maintenance

relationships. Their study revealed interesting co-maintenance patterns in several systems,

written in different languages.

While their goals differ, these studies share a common denominator: they show that IR can

efficiently identify code artifacts that are semantically related to text documents (e.g. a bug

description) or to other code artifacts (e.g. co-maintenance relationships). In the context of

this paper, we use LDA to report semantically related blocks of code for which the enforced
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privileges differ. To our knowledge, this is the first paper that addresses the detection of

security flaws using IR techniques.

13.3 Methodology

13.3.1 Analysis Overview

As previously mentioned, the key assumption behind our work is that semantically related

sections of source code usually perform similar actions and should therefore be protected by

similar privileges. Otherwise, we assume there might be semantic smells and errors. In order

to verify this assumption, we designed the following protocol:

1. Extract the mapping between privileges and source code using a model-checking based,

inter-procedural, static analysis [60]. As a result, we obtain the list the privileges that

are enforced at each statement of an application.

2. Perform unsupervised Latent Dirichlet Allocation [26] analysis to extract latent topics

in the source code. It is assumed that sections of code that belong to the same latent

topics are semantically related.

3. Identify the topics that are significantly associated to some privileges by the mean of

logistic regression.

4. Infer the privileges that should protect each block of code based on the topics obtained

at step 3. Report the blocks of code for which the enforced privileges differ from the

semantically inferred ones.

5. Submit the observed discrepancies to developers.

13.3.2 Step 1: Mapping Privileges to Source Code

As reported in [60] and [152], access control checks in Web applications are control-flow

constructs. Consider the following snippet of PHP code:

1 if (has capability(”user:update”)) {
2 mysql query($update query);

3 }

Listing 13.2: Privilege check in Moodle. The update query is executed only

if the check succeeds.
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In this case, the update query is only executed if the access control check succeeds. We thus

define the mysql_query statement as protected by the user:update privilege.

In previous work [62, 60], we presented a linear-time, inter-procedural approach to statically

map privileges to protected statements. In summary, a control-flow graph (CFG), annotated

with access control checks, is first extracted from the source code. The CFG is then converted

to multiple and independent model checking automata, each modeling one privilege. A

custom-built model checker then processes each automaton and identifies the statements that

are only reached by execution paths that contain an access control check for the corresponding

privilege. Statements that are reached by both privileged and unprivileged execution paths

are discarded. While similar results could have been obtained using regular data-flow analysis,

we consider that model checking formalism simplifies the definition and implementation of

our approach.

In this study, we post-processed the results to map privileges to blocks of protected state-

ments: consecutive statements, enclosed in braces, that are all protected by the same privi-

leges.

13.3.3 Step 2: Topic Extraction with LDA

Originally developed for the analysis of natural language documents, Latent Dirichlet Alloca-

tion (LDA) [26], has been shown an efficient tool for program comprehension, bug localization

and other software engineering tasks [15, 179, 69]. LDA probabilistically models text docu-

ments as mixtures of latent topics, where topics correspond to key concepts in the corpus of

documents [26].

The first step toward the extraction of an LDA model from the source code is to build a

collection of documents. Other studies usually define a document as a class in the source

code. We adopted a slightly different approach. Experience taught us that privileges rarely

protect entire classes. On the contrary, classes often comprise several blocks of code that

are protected by different privileges. In order to accurately map privileges to documents, we

defined documents as blocks of statements: consecutive statements enclosed in braces.

During LDA modeling, documents are treated as bags of words. The definition of “words” in

a source code artifact varies from one study to another. In the context of this study, the term

“word” refers to the identifiers (variable names, function names, etc.) in a block. Comments

were discarded as they generally refer to whole classes or methods, not to specific blocks.

Strings in Web applications often contain HTML, CSS or SQL code that mostly add noise

and were also discarded.

LDA modeling was performed with the GibbsLDA++ [174] tool with default parameters.

When the modeling completes, a document-topic probability matrix is produced, showing
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the probability that a given document (block) belongs to a given topic. We then combine

these block-topics probabilities with the previously extracted block-privileges mapping to

identify the topics that are strongly associated to some privileges.

13.3.4 Step 3: Associating Topics to Privileges

We now have two independent sources of information: on one hand, an exact mapping

between privileges and blocks of protected statements and on the other hand a probabilistic

mapping between blocks and latent topics. Our goal is now to identify those topics that

capture the semantic of some privileges. We did so by the mean of logistic regression.

Logistic regression models the relationship between a dependent binary variable and one

or more independent categorical or continuous variables. In its simplest form, a logistic

regression models the influence of a single independent variable on a binary outcome:

π(X) =
eβ0+β1X

1 + eβ0+β1X
(13.1)

where, (i) X is the independent variable, (ii) βi are the model coefficients and (iii) 0 ≤
π(X) ≤ 1 represents a value on the sigmoid regression curve. The closer π(X) is to 1, the

higher the likelihood that the outcome is true. In the context of this study, we investigated

the relationship between binary privileges (protected or not) and latent topics.

Training a logistic regression models involves estimating the values of the βi coefficients in

such a way to maximize the fit between the sigmoid regression curve and the observed out-

comes. By the end of the training phase, a p-value is associated to each independent variable,

representing the significance of the association between the variable and the outcome.

When performing logistic regression, one of the main pre-requisite is for independent vari-

ables to be uncorrelated. LDA, however, provides no strong guarantee about the correlation

between the extracted topics. In order to subtract our study from this statistical bias, we

modeled the relationship between each privilege and each latent topic with a separate logistic

regression model, resulting in 30,700 (100 topics × 307 privileges) logistic regressions.

On the other side, performing such a high number of statistical tests induces a higher prob-

ability of Type II errors, where totally random associations are misinterpreted as significant.

All the p-values were thus corrected for multiple testing using the Bonferroni correction,

where the p-value is multiplied by the number of statistical tests. Assuming a threshold of

0.05, it means that the original p-value, had to be < 1.63× 10−6 to be considered significant

after the Bonferroni correction.
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13.3.5 Step 4: Inferring Privileges Based on Topics

Once a logistic regression model is trained, it is possible to supply it with new observations

in order to determine the likelihood of the outcome. For each topic that was found to

be significantly associated to a privilege (corrected p-value < 0.05), we performed privilege

prediction on blocks, based on their topic probability.

The idea behind this procedure is to infer the privileges that should protect a block of code,

based on semantic information. The output of the prediction is a value between 0 and 1,

representing the probability that the block of code is protected by the privilege. In the

context of this study, we fixed the prediction threshold at 0.95. In order to identify faulty

access controls, we investigated the blocks of code for which the enforced privilege differs

from the semantically predicted one.

13.4 Results

As a proof of concept, we applied this methodology to Moodle, an open-source PHP course

management system with an elaborate access control model. Moodle 2.3.2 counts 735,485

sLOC and 307 privileges.

Applying the proposed methodology, we obtained a list of 83 blocks for which the semantically

inferred privilege differed from the enforced one. After a post-filtering step to eliminate

embedded blocks of code, we obtained a list of 59 blocks.

Manual inspection of the results was completed in around two hours and revealed 31 smells

and 2 errors that were further classified in three categories. Reported smells and errors

were reviewed by a group of experts who assessed their significance. Table 13.1 details

the categories and numbers of semantic smells and errors that were identified. Errors were

reported to developers who quickly confirmed them and took actions to correct them. Overall,

we identified two types of semantic smells and one type of semantic error:

1. Implicitly granted privileges. This smell captures the fact that some privileges are

implicitly granted with other privileges. The lesson:edit and lesson:manage privileges are

recurring examples of this smell in Moodle. As expected, routines that manage lessons are

protected by the lesson:manage privilege and routines that edit lessons are protected by the

Table 13.1: Semantic smells and errors in Moodle’s access control model

Name # Occurrences

Smells
Implicitly granted privileges 15
Semantically related privileges 16

Errors Privileges used as a role 2
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lesson:edit privilege. However, edit routines often also perform manage related operations

without being explicitly protected by the lesson:manage privilege. In that perspective, it

seems that the lesson:manage privilege is implicitly granted with the lesson:edit privilege.

2. Semantically related privileges. In Moodle, this smell reflects a bad coupling between

privileges and components. Consider this example: Moodle counts 82 view-related privileges.

All of these privileges share a common semantic: they grant the right to “view”, but for

different components of the system. This coupling between privileges and components led

to a steady increase of the number of privileges as Moodle evolved. In approximately three

years, from version 1.9.5 to version 2.3.2, the number of privileges in Moodle grew from 217

to 307, mostly due to semantically related privileges.

3. Privileges verified in place of a role. This semantic error characterizes blocks

of code that are protected by semantically unrelated privileges in place of a proper role

verification. For example, in Moodle, the user:delete and user:update privileges are owned by

administrators only. According to Moodle’s documentation, these two privileges respectively

grant the rights to update and delete a user account. However, we observed that they also

protect semantically unrelated blocks of code that are responsible for the download of user

information (see Listing 13.1) and the display of private data. Those two cases were submitted

to developers (see [121] [122]) as potential bugs.

13.5 Discussion

Implicitly granted privileges qualify as bad smells because of the confusion they cause among

users, as shown by a discussion thread about the lesson:edit and lesson:manage privi-

leges [120]. Interestingly, there exists some theoretical access control models that can ex-

plicitly handle such constraints between privileges [1].

Semantically related privileges increase the complexity of the access control model. Inter-

estingly, semantically related privileges that are spread across several components can be

straightforwardly modeled as cross-cutting concerns. Aspect-oriented approaches [157] seem

well tailored to handle such type of semantic smells. Alternatively, since semantically related

privileges are often granted to a very limited number of roles, many of these privilege checks

could be replaced by a few proper role verifications.

Privileges used in place of a role suppose an equivalence relation between the privileges

and the role. While such a relation might exist in the default configuration of the access

control model, nothing prevents users from breaking it by altering the default model. Two

occurrences of privileges used in place of a role were identified in Moodle.

Both cases were submitted to Moodle’s bug tracker (see [121, 122]) as potential security



133

issues. In order to minimize bias toward acceptance or rejection, both bug reports were filled

in the most objective manner, deliberately omitting to mention university affiliation or the

use of a research tool. For both bug reports, we obtained a response in less than 2 weekdays.

A clarification discussion ensued and led to the acceptance of our claim that these pieces of

code were inadequately protected. In one case, developers agreed to correct the bug in the

next minor release. In the other case, they agreed to introduce a new, semantically related

privilege in the next major release.

13.6 Conclusion and Perspectives

Access controls enforce protection by checking privileges that capture the semantic of sensitive

operations. In this paper, we presented a novel approach for the identification of semantic

smells and errors that can hinder the comprehension, increase the complexity and threaten

the security of access control models.

The proposed methodology contrasts enforced privileges to semantically inferred ones and

report discrepancies. Investigation of Moodle’s access control model revealed 31 semantic

smells and 2 semantic errors, distributed in 3 categories. Semantic errors were reported to

developers who quickly confirmed their relevance and took actions to correct them.

The presented results are preliminary. In a further study, we plan to: (i) investigate several

systems and domains to validate the proposed categories of semantic smells and errors and

discover new ones, (ii) evaluate the accuracy of the logistic regression model through cross-

validation experiments and (iii) test alternative approaches for topic extraction.
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CHAPTER 14

CORRECTIONS FOR PAPER 5

The previous chapter contains the published version of the paper entitled: “Semantic Smells

and Errors in Access Control Models: A Case Study in PHP”. The current chapter addresses

comments and corrections by the jury regarding this paper.

In subsection 13.3.4 we explained that: “we modelled the relationship between each privilege

and each latent topic with a separate logistic regression model, resulting in 30,700 (100

topics × 307 privileges) logistic regressions” and a member of the jury remarked that this

needed more explanations. For the sake of clarity, here is the exhaustive list of steps that we

performed:

1. Model the program as a set of documents, where each document corresponds to a block

of code.

2. Label each document with the set of privileges that protect it. This information comes

from SPT analysis.

3. Model each documents as a distribution of latent topics using LDA.

4. Remove documents that are not protected by any privilege. The reason for this is

that we aim to identify documents that are protected by wrong privileges, not to find

documents that miss an access check.

5. For each privilege, partition remaining documents in two classes: protected and not

protected by the privilege. These two classes will become the outcome of the logistic

regression models.

6. For each privilege and each latent topic, train a logistic regression model where the

binary outcomes are the classes that were defined in the previous step and the inde-

pendent variable is the latent topic.

7. The previous step results in 30,700 (100 topics × 307 privileges) logistic regression

models.

Once the models are trained, our goal is to use them to infer wrong access checks in the

application on which they were trained. Consequently, contrary to standard machine learning

studies that aim to build models that generalize to other applications, we actually want our
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models to be specific to the application on which they were trained. For this reason, we

decided to maximize the cardinality of our training set by including the whole dataset. As a

consequence, test data is necessarily drawn from the training set.

While this is a limitation of the approach, experience revealed that it still yields interesting

results. The reason is that the vast majority of access checks in a system are correctly

implemented and wrong access check are the exception. Hence, the impacts of wrong access

checks in the training set are negligible. In theory, the best approach would be to perform

leave-one-out cross-validations on every regression model. However, given that the cardinality

of the training set corresponds to the number of protected blocks of code in the system,

the number of models to train and test would be very large (100 topics × 307 privileges

× number of protected blocks). Furthermore, the larger the number of experiments, the

more stringent the Bonferroni correction and the lesser the chances of reporting statistically

significant results.

On a similar line of thoughts, a member of the jury observed that we fixed the prediction

threshold at the rather high value of 0.95. The reason for this is simple. This study was the

first to target the identification of semantically wrong access checks. The concept had yet to

be validated by developers and we wanted to submit the most plausible cases only, hence the

stringent prediction threshold.
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CHAPTER 15

PAPER 6: UNCOVERING ACCESS CONTROL WEAKNESSES AND

FLAWS WITH SECURITY-DISCORDANT SOFTWARE CLONES

ABSTRACT

Software clone detection techniques identify fragments of code that share

some level of syntactic similarity. In this study, we investigate security-

sensitive clone clusters: clusters of syntactically similar fragments of code

that are protected by some privileges. From a security perspective,

security-sensitive clone clusters can help reason about the implemented security

model: given syntactically similar fragments of code, it is expected that they

are protected by similar privileges. We hypothesize that clones that violate this

assumption, defined as security-discordant clones, are likely to reveal weaknesses

and flaws in access control models.

In order to characterize security-discordant clones, we investigated two of the

largest and most popular open-source PHP applications: Joomla! and Moodle,

with sizes ranging from hundred thousands to more than a million lines of code.

Investigation of security-discordant clone clusters in these systems revealed sev-

eral previously undocumented, recurring, and application-independent security

weaknesses. Moreover, security-discordant clones also revealed four, previously

unreported, security flaws. Results also show how these flaws were revealed

through the investigation of as little as 2% of the code base. Distribution of

weaknesses and flaws between the two systems is investigated and discussed.

Potential extensions to this exploratory work are also presented.

15.1 Introduction

Software clones, that are blocks of code that share some level of syntactic similarity, have

attracted the attention of the research community for more than a decade. Many studies have

been dedicated to the development and enhancement of clone detection tools in such a way

that clone detectors now identify syntactically similar fragments of code in a fairly fast and

consistent manner. However, investigation and evaluation of ways to use clone information

to solve specific problems received comparatively little attention.

In this paper, we investigate a specific subset of software clones, called security-sensitive
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clones. Security-sensitive clones refer to cloned fragments that are protected by some priv-

ileges in the system. From a security perspective, security-sensitive clones are of particular

interest as they capture syntactically similar fragments of code that perform privileged ac-

tions. In the absence of security specifications, security-sensitive clones can help developers

reason about the implemented security model by supplying examples of similar pieces of code

together with their enforced privileges.

On the other hand, security-sensitive clones can also help reveal discrepancies in the imple-

mented security model. Intuitively, one expects syntactically similar fragments of code to be

protected by similar privileges. Security-sensitive clones that violate this assumption, defined

as security-discordant clones, will be the focal point of this paper. The primary goal of our

study is to investigate security-discordant clones in the context of access control models in

order to characterize them and evaluate whether they are symptomatic of security weaknesses

and flaws.

In order to attain this goal, we investigated security-discordant clones in two of the largest

and most popular open source PHP applications: Joomla! and Moodle. Our findings revealed

several recurring security weaknesses that can hinder the maintainability, understandability

and strength of security models. Investigation of security-discordant clones also revealed four

new, previously unknown, security flaws in the investigated systems as well as a number of

known flaws. The original contributions of this paper are many:

• To our knowledge this is the first study about security-discordant clones.

• Analysis of security-discordant clones, revealed several recurring categories of security

weaknesses that hinder the maintainability, understandability and strength of security

models.

• Our analysis also revealed four, previously unknown, security flaws in the investigated

systems.

15.2 Motivating example

In the context of this study, we investigated security-discordant clones in the light of access

control models. This section motivates the use of security-discordant clones in that context

with a concrete example from Joomla!.

Joomla! is popular content management system, used by millions of users, to build different

kinds of websites. It is divided in two parts: the front-end, that is publicly accessible, and

the back-end, where administrator functions are found. The back-end itself is further divided
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Figure 15.1: Privileges associated to different parts of the UI in Joomla!. Five privileges are
required to delete a user group, while similar actions elsewhere in the system only require two.
Requiring more privileges than necessary to perform an action violates the Least Privilege
Principle.

in several “components” that are equivalent to modules and that control specific parts of the

application. Privileges restrict access to back-end components in Joomla!.

Joomla! defines 6 basic privileges: admin, manage, create, edit, edit.state and delete. Each

of these privileges can be granted on a per-component basis. For example, in the context of

the “users” component, the following privileges can be granted: admin users, manage users,

create users, edit users, edit.state users and delete users.

From a syntactic point of view, components in Joomla! often share a high level of similarity.

For example, the code required to delete a user is syntactically similar to the code required

to delete a plugin and both code fragments form a clone cluster. From a security point of

view, these fragments are protected by the delete privilege and thus form a security-sensitive

clone cluster. In this case, the privilege that is enforced is consistent with the intuition that

syntactically similar fragments of code should be protected by similar privileges.

Security-discordant clones violate this intuition. For example, figure 15.1 shows an annotated

screenshot from Joomla!. It illustrates the privileges required to delete a “user group”: the
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equivalent of a role in RBAC models. Observation of similar functions (clones) elsewhere in

the system leads to the intuition that deleting a user group requires two privileges: man-

age users to access the back-end interface of the users component and delete users to delete

a member of the users component. Surprisingly, this is far from the truth.

Figure 15.1 shows that manage users and delete users are indeed required, but not sufficient.

To delete a user group, one also needs the admin users privilege to see the “user group” tab,

the edit users to see the checkboxes that are required to select the groups to be deleted and the

edit.state users privilege to actually perform the deletion since the delete users privilege only

displays the “delete” button! In this context, administrators are forced to violate the Least

Privilege Principle by granting more privileges than necessary. Requiring counter-intuitive

combinations of privileges to perform seemingly simple actions also hinder the understand-

ability and maintainability of an access control model.

This case illustrates one of the many problematic situations that were brought to light by

security-discordant clones. Indeed, these discrepancies were revealed trough the investigation

of the clones of the “delete user group” function, which are themselves correctly protected.

Security-discordant clones also revealed several security weaknesses and four, previously un-

reported, security flaws.

15.3 Methodology

15.3.1 Clone detection

The syntactic clone detection technique used in this experiment was presented in [97]. It com-

putes a similarity distance using lexical features. Without providing the detailed algorithm,

we will cover the basic steps of the method and the chosen parameters for this experiment.

Using a custom PHP parser, we extract the tokens of each block of code. After parsing, blocks

are represented as strings of integers, where each integer conceptually represents a token of

the PHP language. These strings of integers are then post-processed in order to compute the

frequencies or their 2-grams, that are the ordered pairs of consecutive characters in the string.

After post-processing, each block is represented by the frequency vector of its 2-grams.

Afterwards, a metric tree is built with the set of all frequency vectors. A metric tree [97] is a

specialized data structure that optimizes the efficiency of several kinds of similarity queries.

In this paper, we use range-queries, that take an element and a radius as parameters and

return elements for which the distance to the queried element is below the specified radius.

In this experiment, we perform a range query with a radius 0.3 for each frequency vector

(block) in the metric tree. The resulting set contains the clones of the queried block. Clone

clusters are then computed with the union-find algorithm [37] by transitively merging sets of



140

clones that share at least one element. These clone clusters, become the input for the next

steps of the analysis.

15.3.2 Security pattern traversal

Security-sensitive clone clusters encompass syntactically similar fragments of code that are

protected by some privileges. In the context of this paper, we focus our attention on access

control models and define security-sensitive clones based on the access privileges that are

enforced in cloned fragments.

Access control models define privileges that protect pieces of code which perform specific

security-sensitive actions. Security-discordant clones thus reveal fragments of code that are

syntactically similar but that are not protected by the same access privileges.

Identification of security-discordant clones thus requires to identify the access privileges that

are enforced at every point of an application. To achieve this goal, we perform security pattern

traversal analysis (SPT), that is a static, inter-procedural and security-sensitive analysis. In

this section, we provide a brief overview of SPT. We implemented the algorithms presented

in [100, 61] and refer the interested reader to these papers for algorithmic details.

Control-flow graph extraction

Our experimental setup uses a PHP parser generated by JavaCC, a common parser generator

tool. The parser outputs a program Control Flow Graph (CFG), annotated with application-

specific access checks.

Identifying access control routines involves finding some syntactic patterns in the Abstract

Syntax Tree (AST). While these patterns are application-dependent, we observed that they

usually are very similar in their syntactic structures. In the investigated applications, access

check functions receive a string argument, representing the privilege, and return a Boolean

value asserting whether or not the user owns the privilege. In the context of this study, access

checks are detected at the AST level using visitors [37]. While the amount of effort required

for their implementation varies from one system to another, on average, approximately 100

lines of highly stereotyped Java code are sufficient to properly capture access control routines

in a system.

The access control routines that are identified at the AST level produce grant and revoke

edges in the CFG. For example, suppose an access check inside an if statement. If the

predicate evaluates to true, the control is transferred to a block in which the privilege pi

is granted until block end. Conversely, if the predicate evaluates to false, the control is

transferred to another block in which the privilege pi is revoked.
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Noteworthy is the fact that the extracted CFG is approximate. Indeed, the dynamic nature of

the PHP language prevents us from extracting sound and complete call graphs. Our approach

currently only considers direct function calls, in which the name of the called function appears

explicitly in the source code, similarly to [153]. Over time, however, SPT has proven to be

very accurate in reporting privileges that must be granted at execution time.

Conversion to model checking automaton

Prior to computing SPT analysis, the CFG produced by the PHP parser is transformed into

an automaton A suitable for model checking.

Conceptually, we model the granting and revoking of privileges as the activation and deacti-

vation of Boolean properties. To model these Boolean properties, each node x in the CFG is

duplicated in two states sx,0 and sx,1, where sx,0 represents that the property is false and sx,1

represents that the property is true. During the model extraction phase, grant edges become

transitions to sx,1 states and revoke edges become transitions to sx,0 states.

From the inter-procedural perspective, our tool performs a security-sensitive analysis. Unlike

context-sensitive analysis, that distinguishes every calling context, security-sensitive analysis

only distinguishes calling contexts with different security levels. At the automaton level, each

state is further duplicated in two versions, representing the two possible security contexts for

a given privilege. At the end of the model extraction phase, the number of states in the

automaton equals 4× |VCFG|.

Reachability analysis

Security pattern traversal (SPT) analysis is the process by which we determine what privileges

are enforced at each statement of an application. In the extracted automaton, access checks

are conceptually modeled as privilege granting patterns. Whenever a path in the automaton

passes through such a pattern, the associated privilege is granted and carried along the rest

of the path. By the end of the analysis, a report indicates the privileges that are enforced at

each statement.

Since the Boolean privileges and security contexts are directly encoded in the states of the au-

tomaton, SPT analysis can be expressed as a state reachability problem over the automaton.

More precisely, a statement stmtj is defined as protected by the privilege pi if the following

formula is verified:

♦stmtj ∧�( stmtj ∧ pi) (15.1)

meaning that the statement stmtj is eventually reached (♦stmtj) and always when stmtj is

reachable, the privilege pi is granted (�( stmtj ∧ pi)).
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Without going into details, the reachability analysis has a complexity that is linear in the

number of states in the automaton [100]. Consequently, SPT analysis is unbounded and does

not induce approximations other than the ones inherent to control-flow graph extraction.

15.3.3 Identification of security-sensitive clone

clusters

Given that clone clusters are available and that SPT analysis reported the privileges that are

enforced at every statement of the system, one can identify security-sensitive clone clusters.

Formally, given C = {c1, c2, . . . , cn} the set of clone clusters in a system, and ci =

{f1, f2, . . . , fn} | ci ∈ C the set of syntactically similar fragments of code contained in the

cluster ci, we want to identify Css ⊂ C, the subset of security-sensitive clone clusters.

Given P = {p1, p2, . . . , pn} the set of privileges, and S = {s1, s2, . . . , sn} the set of statements

in the system, SPT analysis reports Psi = {e1, e2, . . . , em} | ei ∈ P, si ∈ S, the set of privileges

that are enforced at each statement.

In that context, a security-sensitive clone cluster can be defined as a set of syntactically

similar code fragments where at least one fragment is protected by some privilege. Similarly,

a security-discordant clone cluster can be defined as a set of code fragments where the enforced

privileges differ between at least two fragments.

15.3.4 Investigation of security-discordant clones

Security-sensitive clone clusters report syntactically similar fragments that are protected by

some privileges. As defined earlier, security-discordant clones are security-sensitive clones for

which the enforced privileges differ. The fundamental assumption behind our work is that the

vast majority of fragments in a security-discordant clone cluster are correctly protected and

that security-discordant clones should therefore draw reviewers’ attention on the minority of

fragments that are inadequately protected.

Since we are the first to investigate security-discordant clone clusters, we had no expectation

about the security weaknesses they would reveal, if any. Consequently, in the first screening of

the results, we simply isolated security-discordant clone clusters that raised questions among

reviewers from those where the discordance seemed justified. In a second step, we re-visited

the first category of clusters and observed five recurring categories of security weaknesses. A

description of each category is presented in section 15.5.

In the context of this paper, we distinguish security weaknesses from security flaws. Security

weaknesses are defined as poor implementation choices that might induce security flaws.

Security flaws, on the other hand, stem from security weaknesses and can be readily exploited
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to gain unauthorized access to privileged resources. In the context of this study, we identified

several security weaknesses and four, previously unknown, security flaws.

15.4 Corpus

For this study, we investigated two of the largest and most popular open source PHP appli-

cations: Joomla! and Moodle. According to Ohloh1, a site that tracks open-source projects’

popularity in terms of active users, both applications rank in the top 20 most popular PHP

applications.

Table 15.1 shows characteristics of the investigated applications. The reported numbers of

lines of code include blank lines and comments and were calculated with the cloc.pl software2.

Joomla! and Moodle are all mature applications, their development dating back to 2005 and

2001 respectively, all have millions of active users and developers worldwide, and all have

dedicated security teams that are in charge of performing code reviews and repair security

flaws.

15.5 Results

Identification of security-discordant clone clusters can be summarized in three steps: identi-

fication of the clones in the system under study, Security Pattern Traversal (SPT) analysis,

and computation of security-discordant clones.

Table 15.2 shows the computation times of each step together with the numbers of PHP

lines of code and privileges, which are the two major factors impacting computation time.

Computation times are only provided as an indication since different steps of the analysis

were computed on different machines.

Figure 15.2 reports the percentages of LOCs and files that belong to some security-discordant

clone cluster. In Joomla!, approximately 8% of the files and 4% of the PHP code base belong

1See: http://www.ohloh.net/tags/php
2See: http://cloc.sourceforge.net

Table 15.1: Corpus of investigated applications

Application Version Release date Description Files
LOC

PHP Total

Joomla! 2.5.4 02-04-2012 Content management 2,286 266,458 403,222
system

Moodle 2.3.2 10-09-2012 Course management 7,480 1,245,417 2,049,301
system
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Table 15.2: Computation times for each step of the analysis together with numbers of privi-
leges and PHP lines of code.

Application
Computation times

Privileges PHP LOC
Clones SPT

Security-discordant
clone clusters

Joomla! 2.5.4 38m27s 4m26s 27s 81 266,458
Moodle 2.3.2 10h12m24 2h43m36s 7m26s 307 1,245,417

to a security-discordant clone cluster. In Moodle, 12% of the files but only 2% of the PHP

code base do.

Files LOC
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Figure 15.2: Percentages of files and PHP lines of code that belong to a security-discordant
clone cluster.

Five categories of security weakness emerged during the investigation of security-discordant

clones clusters: semantic inconsistency, shaky logic, weak encapsulation, least privilege vio-

lation, and missing privilege. In order to facilitate the comparison of our results with other

studies, we mapped our categories of security weakness to CWE weakness ids, provided by
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the Common Weakness Enumeration (CWE) organism3. Below, we provide a brief descrip-

tion of each category together with the corresponding CWE ids and their rank in the 2011

CWE/SANS Top 25 Most Dangerous Software Errors [40], when available.

1. Semantic inconsistency Clusters that fall in this category reveal fragments that are

protected by privileges which are semantically unrelated to the action they perform.

Determining the privileges that should protect a fragment of code fall within the area

of security specifications. When security specifications are not available, as is the case

for Joomla! and Moodle, identification of semantic inconsistency cases requires human

judgment. In some recent work, however, authors have tackled the problem of auto-

matically identifying semantic inconsistencies in the absence of security specifications

[63]. Semantic inconsistency is related to CWE-285: Improper Authorization.

L.P.V. W.E. S.L. S.I. M.P.

Distribution of security weaknesses in
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Figure 15.3: Distribution of security weaknesses in Joomla! and Moodle. Category names
were abbreviated for space considerations: Least privilege violation (L.P.V.), Weak encapsu-
lation (W.E.), Shaky logic (S.L.), Semantic inconsistency (S.I.) and Missing privilege (M.P.)

2. Shaky logic: The fragments that compose these clusters differ from a protection

perspective but the logic behind the enforced privileges is not clear. In the context

3See: http://cwe.mitre.org
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Figure 15.4: Distribution of the categories of security-discordant clone clusters in Joomla!
and Moodle. Category names were abbreviated for space considerations: Least privilege
violation (L.P.V.), Weak encapsulation (W.E.), Shaky logic (S.L.), Semantic inconsistency
(S.I.), Missing privilege (M.P.), Utility function (U.F.) and Legitimate (L.)

of this study, we defined shaky logic cases as fragments that intermix privilege checks

with external functions that are not related to access control. Shaky logic cases are

related to CWE-637: Unnecessary Complexity in Protection Mechanism and CWE-863:

Incorrect Authorization (15th).

3. Weak encapsulation: Security sensitive functions that do not perform access checks

but that are always called from privileged contexts are considered weakly encapsulated.

Where classic object-oriented encapsulation strictly restricts access to the encapsulated

code, weak encapsulation relies on developers’ discipline. Weak encapsulation is often

found in administrator libraries where access checks are expected to be performed before

calling the library function. Weak encapsulation is most closely related to CWE-749:

Exposed Dangerous Method or Function and less specifically to CWE-863: Incorrect

Authorization (15th).

4. Least privilege violation: Least privilege violations occur when fragments are pro-

tected by privileges that are too elevated for the task at hand. Least privilege violations

are related to CWE-250: Execution with Unnecessary Privileges (11th).

5. Missing privilege: As its name suggests, this category encompasses clusters where
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some fragments miss a privilege check. Missing privileges are related to CWE-862:

Missing Authorization (6th).

Figure 15.3 shows the distribution of security weaknesses (true positives) in both systems.

Bars represent the percentage of a particular type of weakness with respect to all weak-

nesses in a system. For space considerations, category names were abbreviated in the plot:

Least privilege violation (L.P.V.), Weak encapsulation (W.E.), Shaky logic (S.L.), Semantic

inconsistency (S.I.) and Missing privilege (M.P.).

Two obvious differences can be observed between both systems. First, no least privilege

violations were identified in Moodle while they form a little more than 25% of the weaknesses

in Joomla!. Second, weak encapsulation weaknesses are about three times more frequent in

Moodle than in Joomla!. Percentages of other types of weaknesses are roughly comparable

between both systems.

Figures 15.4(a) and 15.4(b) show the distribution of the categories of security-discordant

clone clusters in the investigated applications. Security-discordant clusters that did not

reveal security weaknesses (false positives) were classified in two additional categories: utility

functions and legitimate. Security-discordant clusters of utility code fragments are classified

in the utility functions category, which is abbreviated as U.F. in the figures. The second

category encompasses security-discordant clone clusters for which the reported differences in

privilege enforcement are justified. Such security-discordant clone clusters are classified in

the legitimate category, which is abbreviated as L. in the figures.

Figures 15.4(a) and 15.4(b) show that 56% of security-discordant clusters in Joomla! and

16% security-discordant clusters in Moodle revealed security weaknesses (true positives). In

the following paragraphs we provide detailed code examples for some categories of security-

discordant clone clusters.

Listing 15.1 shows an example of a least privilege violation in Joomla!. Both cloned fragments

define the canDelete function. The fragment on the left correctly verifies the delete privilege.

The fragment on the right unnecessarily verifies the admin privilege, which ranks the highest

in the privilege hierarchy. The admin privilege allows a user to grant himself supplementary

privileges.

Listing 15.2 shows a shaky logic case from Moodle where both fragments contain complex

conditional statements intermixing privilege checks and external functions. The conditional

statement on the left only succeeds if the first three predicates are true and the user does not

have the mod/workshop:manageexamples privilege. The conditional statement on the right

succeeds if the first two predicates are true and the user does have the mod/workshop:submit

privilege but not the mod/workshop:manageexamples privilege.

Listing 15.3 shows an example of semantic inconsistency where two fragments that both grant
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access to a chat room in Moodle are protected by different privileges. The fragment on the

left correctly checks the mod/chat:chat privilege. The fragment on the right only checks that

the user is not a guest. As a consequence, users that do not have the mod/chat:chat privilege

are able to bypass access checks and enter chat rooms without authorization. We were the

first to report this flaw.

Listing 15.4 shows an example of missing access check. It shows three header files from

different administrator components in Joomla!. Observe that the header file on the right

misses an access check. This flaw was known at the time of the analysis but would have been

detected by our approach.

15.5.1 Security flaws

Investigation of security-discordant clone clusters revealed four, previously unknown, security

flaws in the investigated systems as well as five previously known flaws. Table 15.3 summarizes

the numbers of novel and known access control flaws that were detected by our approach.

Known flaws that were missed by our approach are located in fragments that do not belong

to a security-discordant clone cluster. Consequently, either these fragments do not share a

minimal level of syntactic similarity with other fragments in the system or the clone cluster

they belong to is not security-discordant. Both flaws that were missed in Moodle occurred

in fragments that did not share a minimal level of syntactic similarity with other fragments.

Known flaws that were detected by our approach fall in several categories. As shown in Listing

15.4, the one known flaw in Joomla! (CVE-2012-2747) is of the missing privilege type. In

Moodle, three of the previously known flaws that were detected (CVE-2012-6100, CVE-2012-

6098 and CVE-2013-1835) are of the shaky logic type. The other one (CVE-2012-5481) is of

the semantic inconsistency type.

Two novel access control flaws were identified in Joomla!. Both are of the missing privilege

type. The first one (CVE-2013-3056) allowed remote authenticated users to bypass intended

privilege requirements and delete the private messages of arbitrary users. The second one

(CVE-2013-3057) allowed remote authenticated users to bypass intended privilege require-

ments and list the privileges of arbitrary users.

Two novel access control flaws were also identified in Moodle. The first one (CVE-2013-2246)

is of the missing privilege type and allows remote authenticated users to bypass intended

privilege requirements and access reports they should be denied access to. The second one

(CVE-2013-2242) was presented in Listing 15.3 and allows remote authenticated users to

bypass intended privilege requirements and access a chat room without the mod/chat:chat

privilege. This flaw is of the semantic inconsistency type.
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1 protected function canDelete($record)

2 {
3 . . .

4 $user = JFactory::getUser();

5 return $user−>authorise(’core.delete’, ’

com menus.item.’.(int) $record−>id);

6 }
7 protected function canDelete($record)

8 {
9 . . .

10 $user = JFactory::getUser();

11 return $user−>authorise(’core.admin’, ’

com redirect’);

12 }
13

Listing 15.1: Example of a least privilege violation in Joomla. The fragment on the right

verifies a privilege that is too elevated in the privilege hierarchy.

1 if ($workshop−>useexamples and

2 $workshop−>examplesmode and

3 $phase−>isreviewer and

4 !has capability(’mod/workshop:

5 manageexamples’))

6 {
7 $task = new stdclass();

8 . . .

9 $phase−>tasks[’examples’] = $task;

10 }

11 if ($workshop−>useexamples and

12 $workshop−>examplesmode and

13 has capability(’mod/workshop:submit’) and

14 !has capability(’mod/workshop:

15 manageexamples’))

16 {
17 $task = new stdclass();

18 . . .

19 $phase−>tasks[’examples’] = $task;

20 }

Listing 15.2: Example of shaky logic in Moodle. Both fragments intermix privilege checks

with external functions in complex conditional statements.

1 require capability(’mod/chat:chat’, $context);

2

3

4 /// Check to see if groups are being used here

5 if ($groupmode = groups get activity groupmode(

$cm)) {
6 . . .

7 }

8 if (isguestuser()) {
9 print error(’noguests’, ’chat’);

10 }
11 /// Check to see if groups are being used here

12 if ($groupmode = groups get activity groupmode(

$cm)) {
13 . . .

14 }

Listing 15.3: Example of semantic inconsistency security flaw in Moodle. Both fragments

grant access to a chat room but the fragment on the right verifies a semantically inconsistent

privilege.
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1 defined(’ JEXEC’) or die;

2

3 if (!authorise(’core.manage’, ’

com plugins’))

4 //return an error

5

6 jimport(’joomla.application.

component.controller’);

7 defined(’ JEXEC’) or die;

8

9 if (!authorise(’core.manage’, ’

com weblinks’))

10 //return an error

11

12 jimport(’joomla.application.

component.controller’);

13 defined(’ JEXEC’) or die;

14

15

16 // Missing access check

17

18

19 jimport(’joomla.application.

component.controller’);

Listing 15.4: Example of a missing privilege security flaw (CVE-2012-2747) in Joomla!. The

header file of the finder component, on the right, misses an access control check, as highlighted

by the two other fragments.

15.6 Discussion

Investigating clones from a security perspective adds interpretive power to otherwise struc-

turally similar fragments of code. In the context of this paper, we investigated security-

discordant clone clusters in two major PHP systems and classified the weaknesses they re-

vealed in five categories: semantic inconsistency, shaky logic, weak encapsulation, least privi-

lege violation, and missing privilege. We showed how these weaknesses revealed 4, previously

unknown, security flaws in the investigated systems.

In section 15.2, we presented a motivating example from Joomla! showing how security

weaknesses can hinder the comprehension and usability of a system. In that specific case, we

showed how a seemingly simple task, deleting a user group, could require a counter-intuitive

combination of privileges and lead to multiple least privilege violations.

In Figure 15.2, we presented the ratios of files and lines of code that belong to some security-

discordant clone clusters. Since, in the context of this study, we only reviewed files and LOC

that belonged to a security-discordant clone cluster, Figure 15.2 also reflects the reduction

in code review effort when using our approach. Approximately 4% of Joomla! code base was

reviewed and that ratio drops to only 2% for Moodle. Two days of work were required to

perform code reviews of the security-discordant clones in both systems.

Table 15.3: Numbers of novel and known access control flaws that were revealed by security-
discordant clone clusters.

Application Novel flaws
Known flaws

Detected Missed
Joomla! 2.5.4 2 1 0
Moodle 2.3.2 2 4 2
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In the context of Joomla!, our analysis revealed two novel access control flaws. Considering

that only one other access control flaw had previously been reported at the time of the

analysis, it means that a review of 4% of the code base yielded a 200% increase of the

number of reported access control flaws. In the context of Moodle, reviewing 2% of the code

base yielded a 33% increase of the number of reported access control flaws. Considering that

these are very popular and widely used systems both with dedicated security teams, we are

very satisfied with these results.

In Figure 15.3, we compared the distributions of security weaknesses among the investigated

applications. As we underlined in section 15.5, two obvious differences can be observed

between both systems. First, no least privilege violations were identified in Moodle while

they form a little more than 25% of the weaknesses in Joomla!. This is due to different

implementation choices between both systems. In Joomla!, each component is protected by a

limited number of privileges: create, delete, configure, admin, edit and edit.state. However,

since no security specification or policy are available, the choice of what privilege to enforce in

specific cases is left to developers. As a consequence, similar actions in different components

end up being protected by privileges located at different levels in the privilege hierarchy,

inducing least privilege violations.

Moodle, on the other hand, is located at the opposite side of the privilege spectrum: each

component has its own set of privileges and each privilege is specifically designed to protect

one specific action. Since there practically is a one-to-one mapping between privileges and

actions, least privilege violations are rare. This implementation choice, however, has con-

sequences on the overall complexity of the access control model: as the number of features

grows, so does the number of privileges. Indeed, we observed a steady growth of the number

of privileges in the last versions of Moodle.

Weak encapsulation cases also greatly differ between Joomla! and Moodle. This is explained

by the fact that Moodle uses a larger number of administrator libraries that relies on external

checks than Joomla!. A higher proportion of security-sensitive functions are thus weakly

encapsulated in privileged portions of the Moodle system. Weak encapsulation can be a

problem in systems like Joomla! and Moodle, where third-party plugins are supported.

Weak encapsulation indeed relies on non-written rules and developers’ discipline to enforce

security in the system. Third-party plugin developers might not be aware of such non-

written rules and can easily break the access control model by inadvertently calling a weakly

encapsulated function without performing the expected access check first.

Figures 15.4(a) and 15.4(b) show the distribution of security weaknesses (true positives) as

well as legitimate and utility functions clusters (false positives) across both systems. In-

terestingly, these figures show that 56% of security-discordant clusters in Joomla! and 16%
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security-discordant clusters in Moodle revealed security weaknesses and flaws, for a difference

of 40% between the two systems. We attribute this important difference mainly to one factor:

defensive programming.

In the context of access control models, defensive programming consists in performing access

control checks sooner than later. In other words, given a PHP script that performs security-

sensitive operations, defensive programmers will immediately perform an access check and

redirect the user to an error page if it fails.

In a defensive programming paradigm, privileges therefore often protect far more code than

is strictly necessary for security purposes. While, on the one hand, we are totally in favor of

defensive programming, on the other hand such a practice significantly increases the number

of false positives. Indeed, several cloned fragments that do not perform security-sensitive

operations in Moodle are legitimately protected by different privileges.

In the context of this study, we investigated how security-discordant clones could reveal

access control weaknesses and flaws in the absence of security specifications. Results shown

how, without any input from developers, our approach can drastically reduce code review

efforts and reveal novel security flaws. In its current form, however, our approach suffers

from high false positive rates. A simple while convenient solution to this problem might be

to ask developers to supply a “white list” of files and functions that are known not to perform

security-sensitive operations. From our observations, we would expect false positive rates to

decrease significantly.

The false negative rate, on the other hand, is a lot harder to estimate as it would imply

knowing the total number of weaknesses and flaws (known and residual) in a system. In

the context of our study, we can only estimate the false negative rate based on known flaws.

Table 15.3 shows that our approach has an estimated false negative rate of 0% for Joomla!

and 25% for Moodle. Overall, the estimated false negative rates suggest that, in practice,

our approach is suitable for uncovering access control flaws.

15.7 Related work

15.7.1 Clone detection

Clone detection state of the art includes different techniques. For type-1 (identical) and type-

2 (parametric) clones, AST-based detection has been introduced in [22]. Other detection

methods for type-1 and type-2 clones include metrics-based clone detection as in [112], suffix

tree-based clone detection as in [65], and string matching clone detection as in [47]. For a

detailed survey of clone detection techniques, a good portrait is provided in [141].

Any of these clone detectors could have been used in the clone detection step of our analysis
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and are expected to produce similar results. However, all of them would need to be adapted

to the PHP language.

Using clones to detect errors and bugs is not a new idea. Recent work by [103], [175] and

[86] extensively used clones to detect inconsistencies in programs and suggest potential bugs.

In all cases, the clone detector leverages information from a defective piece of code to detect

latent bugs. The main limitation of these approaches lies in the fact that a defective chunk of

code is required a priori. Our approach works without such knowledge as it relies on inferred

security specifications and privilege granting patterns extracted from the source code. From

a security point of view, our approach has the advantage of detecting security flaws before a

“day zero attack”.

Interesting empirical work about the use of clones for security tasks has also been conducted

by Dang et al. [42]. Of particular interest is their visualization interface that allows developers

to explore and review code clones in a convivial manner.

15.7.2 Security analysis of access control models

Security analysis of access control models at the source code level is an emerging field and few

research papers have been dedicated to the subject. One of the main challenge for security

analysis of access control models is to compensate for the lack of specifications. Prior to our

work, four main strategies have been explored: structural and behavioral based, security-

sensitive statements based, hyperlink based, dynamic analysis based specification inference.

In recent work, Alalfi et al. proposed an approach based on structural information and

dynamically recovered behavioral models to recover access control models from PHP appli-

cations [11]. Based on the recovered access control model, they design test scenarios that

exercise typical access control flaws [5].

In 2011, Son et al. introduced RoleCast [152], a data-flow based approach that infer access

control checks based on the values that are typically checked prior to executing security-

sensitive statements. Security flaws are reported when some unprotected execution paths

can reach security-sensitive statements.

Access control specifications have also been inferred based on the protection level of hyper-

links [156? ]. The assumption behind these studies is the following: if all the hyperlinks that

point to a page are privileged, direct URL access to the page should be denied. Otherwise,

a forced browsing vulnerability is reported.

Other researchers also developed approaches to learn access control specifications based on

dynamic analysis [19, 20]. Applying data-mining techniques to access logs that are collected

over a certain period of time, their approach identifies access control misconfigurations, that

are small differences between the privileges of a group of users.
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On a similar line of thoughts, Das et al. developed the Baaz tool [45] to automatically detect

misconfigurations in access control models. Contrary to the approach by Bauer et al. that

is based on dynamic analysis, Baaz detects misconfigurations based on static access control

policies.

In [57], authors proposed an approach to mine security-sensitive operations from legacy code

using a mix of static and dynamic analysis. They first extract static code patterns and

dynamic side-effects of operations that are known to be security-sensitive. Both static code

patterns and dynamic side-effect constitute the fingerprint of an operation. Then, their tool

automatically mitigate security flaws by protecting operations that share similar fingerprints

with security-sensitive operations.

What distinguishes our work from all these studies mainly lies in two crucial points. First,

our approach requires very little pre-requisites. Apart from the identification of access control

patterns and implementation of routines to detect them, our tool is fully automated. Other

approaches require developers to supply extensive access control policy specifications, or run

an instrumented version of the application for weeks to collect access logs.

Second, our tool is agnostic to the types of access control flaws to be detected. Where other

approaches make assumption about security-sensitive statements or specialize in the detection

of a specific type of access control flaws, our tool simply reports security discrepancies at the

implementation level. This flexibility allowed us to identify several types of flaws: information

leaks, privilege escalation attacks and improper authorization cases.

15.8 Conclusion

In this exploratory study, we investigated security-discordant clone clusters, that are clusters

of syntactically similar fragments of code which differ from a protection perspective. Our goal

was two-fold: to characterize security-discordant clone clusters and to assess whether they

might be symptomatic of security weaknesses and flaws. The characterization step revealed

five recurring and application-independent categories of security-discordant clone clusters.

Further investigation revealed that security-discordant clone clusters are often symptomatic

of security weaknesses and flaws. We showed how some of these weaknesses can hinder the

comprehension and usability of an access control model and induce security flaws. Investiga-

tion of security-discordant clone clusters indeed revealed four novel security flaws in Joomla!

and Moodle.

The strength of our approach lies in the power of combining two orthogonal components:

syntactic information from code clones and static security information from SPT analysis.

Based on our promising results, we plan to investigate additional systems and application
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domains and extract invariants for each category of weaknesses and flaws. Category-wise in-

variants will help automate the classification of security-discordant clone clusters and further

simplify analysis of the results.
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CHAPTER 16

CORRECTIONS FOR PAPER 6

The previous chapter contains the published version of the paper entitled: “Uncovering Ac-

cess Control Weaknesses and Flaws with Security-Discordant Software Clones”. The current

chapter addresses comments and corrections by the jury regarding this paper.

In section 15.5, we presented shaky logic clones and defined them as: “fragments that intermix

privilege checks with external functions that are not related to access control”. A member

of the jury rightly observed that software clones are not part of this definition and asked

how were clones necessary to detect such cases. The answer is simple. In the context of this

study, software clones were used as a way to highlight discordances in the protection level

of syntactically similar fragments of code. However, the vulnerabilities that are detected are

not necessarily related to software clones. In other words, shaky logic vulnerabilities were

revealed through the use of security-discordant clones.

A limitation of the current approach is that shaky logic vulnerabilities are only reported if

they belong to some security-discordant clone cluster. Now that we revealed the existence of

shaky logic vulnerabilities, it would be interesting to design approaches that are specifically

tailored for their detection. Doing so would enable us to detect shaky logic vulnerabilities

that do not necessarily belong to some security-discordant clone cluster.
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CHAPTER 17

GENERAL DISCUSSION

In this thesis, we adopted a reverse-engineering approach to the problem of investigating and

detecting vulnerabilities in access control models. Chapters 5 and 7 detailed our technique

to extract privilege protection from source code. Chapter 9 showed how Formal Concept

Analysis can help developers detect design flaws and/or refactoring opportunities in their

RBAC and privilege protection models. Finally, chapters 11 to 15 presented three different

approaches for the detection of vulnerabilities in access control models.

Each of these topics has been extensively discussed in their respective chapters and the goal

of this section is not to repeat these discussions here. Instead, we will discuss how the

presented work can be integrated into the software development cycle and suggest potential

lines of research to enhance application security in general.

17.1 Secure software development

Securing software is a notoriously difficult task. Security spans all aspects of software de-

velopment, from design to deployment. In this section, we put the presented work in the

perspective of a global secure software development approach and show how it can be inte-

grated to the software development cycle.

In [113], McGraw et al. suggest seven software security best practices, called touchpoints and

show how various touchpoints apply to various software artifacts, that are produced at each

step of the software development cycle. Figure 17.1 summarizes their idea. In the figure, the

software development cycle is illustrated with light gray arrows, artifacts are represented as

boxes and touchpoints, that are numbered from 1 to 7, map to specific artifacts. According

to McGraw, the seven touchpoints are:

1. Code review (tools)

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security tests

5. Abuse cases
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Figure 17.1: This figure was taken from Software Security: “Building Security In”by McGraw
et al.. It shows how security touchpoints can be applied to various software artifacts.

6. Security requirements

7. Security operations

In the context of this discussion touchpoints will help us illustrate how the presented work

can be integrated in a secure software development process.

According to McGraw et al., code review aims at finding bugs while architectural risk analysis

aims at identifying flaws. They indeed make a distinction between bugs, defined as an

“implementation-level software problem” and flaws, that are “problems at a deeper level”.

For example, according to their definitions, buffer overflow, SQLi, and XSS attacks stem

from bugs while bad error handling and broken access controls are flaws. Penetration testing

is the process by which an external entity, the penetration tester, plays the role of an attacker

trying to break into the system. Risk-based security testing is very similar to penetration

testing, with the exception that it occurs earlier in the software development process. While

penetration testing operates on a functional system, risk-based testing can take place at the

unit test level. Abuse cases and security requirements are the two sides of the same coin. On

the one hand, abuse cases work from the outside in, describing attack scenarios against the

system. On the other hand, security requirements, work from the inside out, describing how

assets should be protected from external attacks. Finally, security operations encompass the

security mechanisms that are put in place once the system is deployed.

Interestingly, while the work we presented in chapters 5 to 15 obviously works at the source
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code level (code review touchpoint), its aim is to identify flaws in access control models

(architectural risk analysis), often in the absence of security specifications (security require-

ments). This might seem counter-intuitive at first sight. Traditional approaches to soft-

ware development (e.g. waterfall model [142] or spiral development [27]) strongly encourage

forward-engineering approaches where requirements drive architectural design that in turn

drive how the code is written, leaving little to no space to reverse-engineering approaches. In

the last decade, however, strong arguments have been raised in favor of more flexible software

development processes, often tagged as agile development methods [109], that favor shorter

development cycles and encourage refinement of software design and architecture based on

code reviews, test cases and feedback from the field. Examples of agile development pro-

cesses include Scrum [146], eXtreme Programming [23], Feature-Driven Development [132]

and others. The presented work is clearly more suited for these modern software development

processes.

It is important to clarify, however, that we do not advocate against traditional forward-

engineering approaches. Although much of the work that was presented in this thesis works

in the absence of security requirements or architectural design documents, we strongly argue

that it is advisable to take security into account at every step of the software development

process. In fact, much of the work presented here would benefit from security requirements

or architectural design documents. Indeed, given that such documents are available, the

techniques presented in chapters 5 to 9, that reverse-engineer access control models from

source code, could be adapted to verify the conformance between access control models and

their implementations and detect even more vulnerabilities. Furthermore, the techniques

presented in chapters 11 to 15 could be used highlight wrong or missing security requirements

as well as weak design decisions that hinder the security of Web applications.

17.2 Improving application security

Tools that automatically detect security flaws are great and useful to the whole software

community. However, a major drawback of vulnerability detection tools is that they can

induce a false sense of security. Indeed, the fact that a code review tool does not find any

vulnerability sometimes get wrongly interpreted as a certification that the application does

not contain any more flaws.

As security researchers, our goal is not only to release tools to patch vulnerable applications,

it is also to encourage practices that will help build secure applications right from the start.

Similarly to the authors of [113], who coined the expression“building security in”, we strongly

advocate that security is a concern that should be addressed at all the stages of the software
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development process, just like scalability, user experience, performance, testability, and so on.

We are deeply convinced that building security in has the potential to significantly improve

the security of applications in general and, more importantly, provide better protection to

end-users.

Building security in, however, requires deep cultural changes in the software community. In

the following paragraphs, we discuss several avenues of research that could be investigated

to attain this goal.

17.2.1 Education

Traditionally, computer security and software engineering were considered distinct disciplines.

On the one hand, computer security experts were in charge of developing security policies,

cryptographic algorithms, trust models, etc. On the other hand, software engineers were in

charge of building software that is scalable, reliable, maintainable, usable, etc. Consequently,

application security, that lies at the intersection between the two disciplines, received very lit-

tle attention from both communities, resulting in applications that are plagued with security

vulnerabilities that must be patched post-release.

In our opinion, the first step to produce more secure applications is to ensure that software

developers receive better computer security training. Over the years, we had the occasion

to exchange with several open-source software developers about our security findings. Apart

from a few exceptions, we were astonished to observe how many software developers have little

to no notions of application security. Fortunately, more and more computer science/engineer-

ing programs include computer security courses in their curriculum. We are deeply convinced

that the prevalence of several simple security flaws will drastically diminish as more and more

developers receive basic training in computer security.

17.2.2 Liability

Liability for software security is a topic that attracted a lot of attention in recent years, both

from the software and legal communities. Traditionally, software companies have protected

themselves from liability lawsuits by selling customers a license to use their software rather

than the actual product and by requiring customers to sign lengthy and complicated End-

User License Agreements (EULA) [39]. As a result, software companies often do not consider

security as a top priority and release applications that still contain several vulnerabilities.

Interestingly, some researchers explored how liability policies might encourage software com-

panies in investing more time and money to better secure their software [16].
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17.2.3 Secure coding standards

Software developers are usually accustomed to coding standards that define naming conven-

tions, comment policies and general code style guidelines. Similarly, secure coding standards

define best coding practices aimed at reducing the number of vulnerabilities in an application.

In our opinion, enforcing secure coding standards is the easiest way to introduce software

developers to application security and increase general security awareness in the software

community. In the context of Web applications, a good starting point is the Open Web

Application Security Project (OWASP) Secure Coding Practices document [130].
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CHAPTER 18

CONCLUSION AND FUTURE WORK

In this thesis, we tackled the problems of reverse-engineering RBAC and privilege protection

models, analyzing them and automatically detecting access control flaws. In chapters 5 and

7 we presented a reverse-engineering approach that extracts privilege protection from source

code. Specifically, in chapter 5, we presented the Security Pattern Traversal analysis (SPT),

that extracts the privilege protection model of an application. We further showed how SPT

could help locate sensitive parts of an application and reason about the relative importance

of privileges, based on the number of statements they protect.

SPT analysis drastically differs from related approaches. Typical inter-procedural program

analysis approaches either sacrifice performance in favor of precision (context and flow-

sensitive approaches) or precision in favor of performance (context and flow-insensitive ap-

proaches). SPT analysis, on the other hand, sacrifices neither precision nor performance.

By focusing on a specific class of problems, that is the propagation of pattern-based security

properties, we were able to develop an analysis that is fast, scalable and precise. SPT analysis

also served as the cornerstone over which the rest of this work was built.

In chapter 7, we presented an extension to SPT that allows to track the inter-procedural

propagation of privilege checks through variables and parameters. We showed how this

extension could significantly increase the recall of SPT without hindering its precision. We

also discussed how the same algorithms can be used to resolve dynamic include statements

and improve the precision of call graphs in PHP applications.

Static analysis of highly dynamic languages is extremely difficult. However, increasing

amounts of research tend to show that it is possible to achieve good precision/perfor-

mance trade-offs in static analysis of dynamic languages through careful approximations

[107, 50, 170]. The analysis we presented in chapter 7 follows this line of thinking. We ob-

served how security patterns are used and propagated in practice and devised an algorithm

that captured these usage patterns. Results showed how well our algorithm performed with

precision rates between 96% and 100%.

Chapter 9 was dedicated to the investigation of RBAC models with formal concept analysis

(FCA). In summary, we showed how FCA could reveal the implicit role hierarchy of an access

control model and highlight the impacts of modifying the RBAC model. We also showed how

FCA of the privilege protection model could reveal implications between privileges that are

invisible to administrators and that can induce misunderstandings and vulnerabilities.
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Access control model specifications or documentation are rarely available in the context of

open source Web applications and this work aimed at helping developers and administrators

getting a portrait of the implemented access control model. We strongly believe that em-

powering administrators and developers with relevant security information has the potential

to drive down the number of security flaws in a system. This reason alone illustrates the

relevance of this work. If formal access control specifications are available, however, then

this work is even more relevant. Testing the conformance between access control models as

specified and as implemented has the potential to uncover even more security flaws.

Chapters 11 to 15 presented three different strategies for the identification of access control

vulnerabilities in Web applications.

Chapter 11 was dedicated to the detection of forced browsing vulnerabilities, where an at-

tacker directly accesses the URL of an unprotected resource. We first showed how we could

use SPT to infer the privileged resources of a system through the investigation of hyper-

links, the idea being that if all the hyperlinks that point to a resource are privileged, the

resource is also privileged. We then showed how SPT statically computes the resources that

are protected at runtime and reports forced browsing vulnerabilities for all resources that

were inferred as privileged but that are not protected at runtime. A comparison with previ-

ous work, that was based on string analysis, revealed how this approach achieves equivalent

precision levels with accelerations up to 890× faster.

Forced browsing vulnerabilities, also referred to as“Insecure Direct Object References”by the

OWASP, are among the most prevalent flaws in Web applications. While dynamic approaches

such as penetration testing have the potential to uncover these kind of flaws quite easily, we

strongly argue that they should be used in conjunction with static approaches, such as the

work presented in chapter 11. Indeed, in a security context any flaw is a flaw too many

and dynamic approaches, by their very nature, usually only exercise a subset of system,

potentially missing some flaws. Static approaches, on the other hand, typically consider

every possible execution paths and more easily detect flaws in parts of an application that

can otherwise be difficult to exercise dynamically. Moreover, given the very limited amount

of manual work that is required, the significant speed gains and the high precision and recall

levels that were achieved, we see no significant limitation to the adoption of this approach in

a real-world context.

In chapter 13, we presented a strategy for the identification of access control flaws that is

based on information retrieval techniques. In this work, we tackled the problem of identifying

semantically wrong privilege checks, where the privilege is semantically unrelated to the

action it protects. We showed how this approach was able to identify several semantic

smells and errors in the investigated system. Detecting semantically wrong privilege checks,
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however, is not an easy task. In order to detect wrong privilege checks, one must have

an understanding of the underlying security specifications, which are rarely documented.

We showed how we could partly overcome this difficulty by leveraging a natural language

processing technique called Latent Dirichlet Allocation.

To our knowledge, we were the first to tackle the problem of identifying semantically wrong

privilege checks. Most researchers indeed strive to identify missing privilege checks. While

searching for missing privilege checks is very relevant from a security point of view, we strongly

argue that searching for wrong privilege checks is at least as relevant. Wrong privilege checks

indeed give rise to a lot more subtle but no less dangerous kind of security flaw. For example,

if a privilege check wrongly verifies a privilege that is too low in the privilege hierarchy, it

opens the door to privilege escalation attacks.

Finally, in chapter 15, we investigated yet another strategy for the identification of access

control vulnerabilities that is based on clone analysis. In this work, we explored the idea

that code clones that are protected in different ways, called security-discordant clones, might

be symptomatic of access control vulnerabilities. We hypothesized that code clones usually

perform similar operations in a system and that clones should thus be protected by similar

privileges. Investigation of security-discordant clones indeed revealed several security flaws

in the systems under study.

This work drastically differs from other clone-based vulnerability detection techniques in the

sense that, contrary to previous approaches, our technique can detect day zero vulnerabilities.

Indeed, clone based approaches for vulnerability detection typically start from a vulnerability

report or a patch and try to identify pieces of code that are similar to the buggy or patched

code. Our approach instead leverages discrepancies in the protection level of code clones to

identify vulnerabilities, without a priori information.

Overall, this thesis focused on the development of static analysis approaches for the inves-

tigation of access control models and the identification of security vulnerabilities. Several

research paths however remain unexplored.

18.1 Future work

Mixed static/dynamic analysis: Web applications are dynamic by nature and constructs

like sessions, cookies and dynamic features of languages like PHP or JavaScript are very

difficult to analyze statically. It would be interesting to investigate how dynamic analysis

approaches, such as those presented in Alalfi et al. [7, 9, 10], could complement our work.

Model-based secure engineering: Model-based engineering approaches have been pro-

posed in the literature for the design and deployment of access control models. I would like
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to investigate how existing ad-hoc access control models can be adapted to this paradigm in

order to facilitate their maintenance and refactoring. Investigating the evolution of security

models in Web applications also seems a promising line of research.

Security testing: Security testing presents particular challenges that are not addressed

by “classic” testing approaches. For example, classic coverage metrics are not well suited to

measure the coverage of access control models, as underlined in Alalfi et al. [10]. It would be

interesting to explore how static and dynamic analysis approaches (white-box testing) and

model-based approaches (model-based testing) could be used to define novel security metrics

and enhance testing of access control models. Investigating how existing test suites could be

re-used and extended to test access control models also seems a promising research avenue.

Access control models in the perspective of semantic Web: As mentioned earlier,

privileges in access control models are expected to be semantically related to the action they

protect. However, this semantic relation is sometimes broken, giving rise to semantic errors.

I would like investigate how semantic Web technologies (RDF, OWL, etc.) could help define

and investigate security ontologies to identify semantic errors in access control models.
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[24] BERNDL, M., LHOTÁK, O., QIAN, F., HENDREN, L. et UMANEE, N. (2003).

Points-to analysis using BDDs. Proceedings of the ACM SIGPLAN 1993 Conference

on Programming Language Design and Implementation, 38, 103–114.

[25] BINKLEY, D. et HARMAN, M. (2004). A survey of empirical results on program

slicing. Advances in Computers, 62, 105–178.

[26] BLEI, D., NG, A. et JORDAN, M. (2003). Latent dirichlet allocation. Journal of

machine Learning research, 3, 993–1022.

[27] BOEHM, B. W. (1988). A spiral model of software development and enhancement.

Computer, 21, 61–72.

[28] BOLLIG, B. et WEGENER, I. (1996). Improving the variable ordering of OBDDs is

NP-complete. Computers, IEEE Transactions on, 45, 993–1002.

[29] BRAVENBOER, M. et SMARAGDAKIS, Y. (2009). Exception analysis and points-to

analysis: Better together. Proceedings of the 18th International Symposium on Software

testing and analysis. ACM, 1–12.

[30] CHANDRA, A. et HAREL, D. (1985). Horn clause queries and generalizations. The

Journal of Logic Programming, 2, 1–15.

[31] CHEN, H. et WAGNER, D. (2002). MOPS: an infrastructure for examining secu-

rity properties of software. Proceedings of the 9th ACM Conference on Computer and

communications security. ACM, 235–244.

[32] CHRISTENSEN, A., MøLLER, A. et SCHWARTZBACH, M. (2003). Precise analysis

of string expressions. Static Analysis, 1076–1076.

[33] CLARKE, E. (1997). Model checking. Foundations of Software Technology and Theo-

retical Computer Science, Springer Berlin / Heidelberg, vol. 1346 de Lecture Notes in

Computer Science. 54–56.



169

[34] CLAUSE, J., LI, W. et ORSO, A. (2007). Dytan: a generic dynamic taint analysis

framework. Proceedings of the 2007 International Symposium on Software Testing and

Analysis. ACM, 196–206.

[35] COLANTONIO, A., DI PIETRO, R. et OCELLO, A. (2008). A cost-driven approach

to role engineering. Proceedings of the 2008 ACM Symposium on Applied computing.

ACM, 2129–2136.

[36] CORDY, J. R., HALPERN-HAMU, C. D. et PROMISLOW, E. (1991). TXL: A rapid

prototyping system for programming language dialects. Computer Languages, 16, 97–

107.

[37] CORMEN, T. H., STEIN, C., RIVEST, R. L. et LEISERSON, C. E. (2009). Introduc-

tion to Algorithms. McGraw-Hill Higher Education, troisième édition.
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