To be practically useful, modern static analyzers must precisely model the
effect of both, statements in the programming language as well as frameworks
used by the program under analysis. While important, manually addressing these
challenges is difficult for at least two reasons: (i) the effects on the
overall analysis can be non-trivial, and (ii) as the size and complexity of
modern libraries increase, so is the number of cases the analysis must handle.
In this paper we present a new, automated approach for creating static
analyzers: instead of manually providing the various inference rules of the
analyzer, the key idea is to learn these rules from a dataset of programs. Our
method consists of two ingredients: (i) a synthesis algorithm capable of
learning a candidate analyzer from a given dataset, and (ii) a counter-example
guided learning procedure which generates new programs beyond those in the
initial dataset, critical for discovering corner cases and ensuring the learned
analysis generalizes to unseen programs.
We implemented and instantiated our approach to the task of learning
JavaScript static analysis rules for a subset of points-to analysis and for
allocation sites analysis. These are challenging yet important problems that
have received significant research attention. We show that our approach is
effective: our system automatically discovered practical and useful inference
rules for many cases that are tricky to manually identify and are missed by
state-of-the-art, manually tuned analyzers