6,862 research outputs found

    Miniature photonic-crystal hydrophone optimized for ocean acoustics

    Full text link
    This work reports on an optical hydrophone that is insensitive to hydrostatic pressure, yet capable of measuring acoustic pressures as low as the background noise in the ocean in a frequency range of 1 Hz to 100 kHz. The miniature hydrophone consists of a Fabry-Perot interferometer made of a photonic-crystal reflector interrogated with a single-mode fiber, and is compatible with existing fiber-optic technologies. Three sensors with different acoustic power ranges placed within a sub-wavelength sized hydrophone head allow a high dynamic range in the excess of 160 dB with a low harmonic distortion of better than -30 dB. A method for suppressing cross coupling between sensors in the same hydrophone head is also proposed. A prototype was fabricated, assembled, and tested. The sensitivity was measured from 100 Hz to 100 kHz, demonstrating a minimum detectable pressure down to 12 {\mu}Pa (1-Hz noise bandwidth), a flatband wider than 10 kHz, and very low distortion

    Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications

    Get PDF
    A novel optical signal processing scheme for multiplexing fibre segment interferometers is proposed. The continuous-wave, homodyne technique combines code-division multiplexing with single-sideband modulation. It uses only one electro-optic phase modulator to achieve both range separation and quadrature interferometric phase measurement. This scheme is applied to fibre segment interferometry, where a number of long-gauge length interferometric fibre sensors are formed by subtracting pairs of signals from equidistantly placed, weak back reflectors. In this work we give a detailed account of the signal processing involved and, in particular, explore aspects such as electronic bandwidth requirements, noise, crosstalk and linearity, which are important design considerations. A signal bandwidth of ±20 kHz permits the resolution of phase change rates of 2.5 × 104 rad s-1 for each of the four 16.5 m long segments in our setup. We show that dynamic strain resolutions below 0.2 nanostrain Hz-0.5 at 2 m sensor gauge length are achievable, even with an inexpensive diode laser. When used in applications that require only relative strain change measurements, this scheme compares well to more established techniques and can provide high-fidelity yet cost-effective measurements

    Digital Demodulation of Interferometric Signals

    Get PDF

    Contactless measurement of electric current using magnetic sensors

    Get PDF
    We review recent advances in magnetic sensors for DC/AC current transducers, especially novel AMR sensors and integrated fluxgates, and we make critical comparison of their properties. Most contactless electric current transducers use magnetic cores to concentrate the flux generated by the measured current and to shield the sensor against external magnetic fields. In order to achieve this, the magnetic core should be massive. We present coreless current transducers which are lightweight, linear and free of hysteresis and remanence. We also show how to suppress their weak point: crosstalk from external currents and magnetic fields

    Design and fabrication of a long-life Stirling cycle cooler for space application. Phase 3: Prototype model

    Get PDF
    A second-generation, Stirling-cycle cryocooler (cryogenic refrigerator) for space applications, with a cooling capacity of 5 watts at 65 K, was recently completed. The refrigerator, called the Prototype Model, was designed with a goal of 5 year life with no degradation in cooling performance. The free displacer and free piston of the refrigerator are driven directly by moving-magnet linear motors with the moving elements supported by active magnetic bearings. The use of clearance seals and the absence of outgassing material in the working volume of the refrigerator enable long-life operation with no deterioration in performance. Fiber-optic sensors detect the radial position of the shafts and provide a control signal for the magnetic bearings. The frequency, phase, stroke, and offset of the compressor and expander are controlled by signals from precision linear position sensors (LVDTs). The vibration generated by the compressor and expander is cancelled by an active counter balance which also uses a moving-magnet linear motor and magnetic bearings. The driving signal for the counter balance is derived from the compressor and expander position sensors which have wide bandwidth for suppression of harmonic vibrations. The efficiency of the three active members, which operate in a resonant mode, is enhanced by a magnetic spring in the expander and by gas springs in the compressor and counterbalance. The cooling was achieved with a total motor input power of 139 watts. The magnetic-bearing stiffness was significantly increased from the first-generation cooler to accommodate shuttle launch vibrations
    corecore