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Abstract
A novel optical signal processing scheme for multiplexing fibre segment
interferometers is proposed. The continuous-wave, homodyne technique combines
code-division multiplexing with single-sideband modulation. It uses only one
electro-optic phase modulator to achieve both range separation and quadrature
interferometric phase measurement. This scheme is applied to fibre segment
interferometry, where a number of long-gauge length interferometric fibre sensors
are formed by subtracting pairs of signals from equidistantly placed, weak back
reflectors. In this work we give a detailed account of the signal processing involved
and, in particular, explore aspects such as electronic bandwidth requirements, noise,
crosstalk and linearity, which are important design considerations. A signal
bandwidth of ±20 kHz permits the resolution of phase change rates of 2.5 ∙
10ସ rad sିଵ for each of the four 16.5 m long segments in our setup. We show that
dynamic strain resolutions below 0.2 nanostrain ∙ (Hz)ି.ହ at 2 m sensor gauge
length are achievable, even with an inexpensive diode laser. When used in
applications that require only relative strain change measurements, this scheme
compares well to more established techniques and can provide high-fidelity yet
cost-effective measurements.
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1. Introduction

In fibre segment interferometry (FSI), consecutive segments of fibre are separated by weakly back
reflecting nodes that act as interferometric signal sources. The phase signals from two neighbouring reflectors
can be subtracted, resulting in a measurement of the optical path difference (OPD) integrated over the whole
length of the fibre segment between the reflectors. The fibre segments can thus be thought of as long-gauge
length fibre sensors and any physical effect that changes the OPD such as strain and temperature can be
measured. Provided that reliable in-fibre reflectors can be integrated into the sensing fibre without much
effort, this type of sensor configuration has the potential to be very economical. This approach has been used
before in optical fibre hydrophone applications, where time-division multiplexing (TDM) [1] or a
combination of TDM and wavelength division multiplexing (WDM) [2] were employed to separate the
signals from different reflecting nodes.

However, FSI also has great potential for application in fibre optic strain measurement [3], an area
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currently dominated by localized sensors like fibre Bragg gratings (FBG) [4] or distributed techniques based
on Rayleigh and Brillouin scattering [5, 6]. Our paper provides a complementary approach aiming to bridge
the gap between fully localized and fully distributed techniques with a cost-effective solution for quantitative
and high-speed measurements of the OPD change of long-gauge length fibre sensors. As we will show, the
high intrinsic resolution of interferometric long-gauge length strain sensors allows for strain measurements
that can compete well with non-interferometric FBG sensors in terms of dynamic strain sensitivity. This can
be achieved even when using an inexpensive diode laser that has laser frequency noise levels orders of
magnitudes higher [7] than those lasers used in high-end interferometric optical fibre hydrophone
applications. Furthermore, it has been recognized that long-gauge length sensors can have advantages over
localized sensors when, for example, the presence of cracks should be detected [8]. However, unlike FBGs,
but common to all single-wavelength interferometric phase measurement techniques, there is no absolute
reference point. In practice, this restricts the proposed approach to the measurement of relative strain changes.
Potential applications for relative strain change measurements could be vibration based condition monitoring
[9], dynamic strain sensing for actuator control in smart wind turbines blades [10] or for active vibration
control of civil engineering structures [11]. Also, the technique presented in this work could be combined
with FBG sensors operating at other wavelengths to obtain both short-gauge and long-gauge length strain
information from the same sensing fibre.

Code-division multiplexing (CDM) is a group of multiplexing techniques that are widely used in
communications systems, where they are known as code-division multiple access (CDMA), allowing several
senders to transmit data simultaneously over one channel using modulation with a pseudo-random code.
CDMA has gained widespread use in areas such as wireless communications and global positioning systems
[12], however, in optical signal processing for metrology, there have only been a few reported applications of
CDM techniques [13-20]. CDM techniques for interferometric sensors can be grouped into intensity-
modulated [14-16] and phase-modulated schemes [17-20]. Phase-modulated schemes allow full quadrature
interferometric phase measurement, which is required for the applications we propose, while intensity-based
systems can only measure the real part of the interferometric phase.

In the novel scheme proposed here we combine phase–modulated CDM with single-sideband (SSB)
homodyne signal processing [21, 22]. SSB is a generic theory for determining the shape and scale of a
periodic phase modulation waveform so that it can be used to emulate a heterodyne carrier over a band-
limited frequency region. Unlike the widely used phase generated carrier method [23] for signal processing,
only one carrier frequency is used in SSB, which make it easier to adapt to CDM. By using CDM as a
multiplexing technique, the use of costly pulsed or wavelength-tuneable lasers can be avoided by employing a
simple continuous-wave, single-frequency laser diode. Also, by combining CDM with SSB homodyne signal
processing, both multiplexing and signal processing can be performed using only a single standard phase
modulator, thus eliminating the need for an additional Bragg cell [17] or having to use a more complicated
quadrature phase modulator [18] as in other phase-modulated CDM techniques.

In section 2 we outline the theory of combining SSB with CDM. A particular focus is given to the
requirements that are imposed by the use of anti-aliasing filtering necessary in digital signal processing. We
show that the effects of filtering on code separation can be simply analysed using the impulse response of the
anti-aliasing filter and that its influence can be mitigated by the introduction of guard times at the code
symbol transitions. In section 3 the experimental setup and signal processing are described in detail, while in
section 4 experimental results of quantitative noise, crosstalk and dynamic response measurements are
presented. Also a strain measurement that is expected to be exemplary of the applications we envisage for this
scheme is shown. Finally, key signal processing parameters, which, in future implementations, could be
improved to achieve a higher spatial resolution or higher signal bandwidth, are discussed before concluding
the paper in section 5.
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2. Theory

2.1 SSB signal processing

SSB homodyne signal processing [21, 22] is a theory describing the shape and scale that a periodic,
phase-modulated waveform must possess to emulate a heterodyne carrier of frequency .݂ This emulation can
be achieved when the phase modulation waveform of suitable shape is scaled until one of the two carrier
sidebands, either at positive +݂ or negative frequency − ,݂ disappears. It is then said to be in linear operation
and no cyclic error occurs. The well-known pseudo-heterodyne technique [24, 25] using serrodyne
modulation can also be described using the SSB equations. In general, when a periodic phase modulation is
applied, there will be a comb of carrier frequencies at harmonics of the repetition frequency ୵݂ of the phase
modulation waveform. Thus, equivalence to a heterodyne carrier can only be given for interferometric signals
in a limited frequency region between ±0.5 ୵݂ . Care has to be taken that no interferometric signals at higher
frequencies occur because these can be folded back into the signal band by the other carriers of the comb. In
principle, any harmonic of the carrier waveform can be chosen for the demodulation of the phase signal if the
linearity conditions can be met. Following the derivation in [21, 22], the detected interferometric signal ݁(ݐ),
expanded into a complex Fourier series and band pass filtered around the chosen carrier harmonics ±݊ ୵݂ 

with filter bandwidth ±0.5 ∙ ୵݂ , can be written in the form:

݁(ݐ) ∝ ܴ {݁ ାܿexp[i(2݊ߨ ୵݂ ݐ+ [(ߠ + ܿି exp[i(−2݊ߨ ୵݂ ݐ+ {[(ߠ (1)

Here, ݊ is the index of the chosen carrier harmonic in regard to the waveform repetition frequency ୵݂ 

and ߠ is the interferometric phase to be measured. The complex coefficients ±ܿ are given by:

ܿ =
1

ߨ2
න (ݐ)݃

்౭ 
ଶ

ି
்౭ 
ଶ

exp[i(ݏ∙ ߮୵ (ݐ) − ݊ߨ2 ୵݂ ݐ݀[(ݐ (2)

(ݐ)݃ is an optional real amplitude modulation function, ݏ and ߮୵ (ݐ) are the phase scaling factor and

normalized modulation waveform respectively. Both (ݐ)݃ and ߮୵ (ݐ) are periodic with period ୵ܶ = ୵݂ 
ିଵ.

The scaling factor ݏ will be tuned until one of the coefficients ±ܿ vanishes and thus linear operation is
achieved. This is always possible when certain symmetry conditions on ߮୵ (ݐ) and (ݐ)݃ are met [21].

2.2 CDM and m-sequence pseudo-random codes

In code division multiplexing (CDM) the outgoing signal is encoded with a digital code, and the signal
returning from a particular range is recovered using a time delayed code version, the decoding function
−ݐ)݀ )߬ with a time delay ߬ equal to the time-of-flight of the signal. In this and in many other works on
CDM for optical sensing applications, a special class of pseudo-random sequence, known as maximal length
sequences or m-sequences [26] is used for the digital code. M-sequences exist only for lengths ݉ = (2 − 1),
where  is any positive integer. In CDM the autocorrelation function can be used to mathematically express
the expected code overlap between the code at encoding and a delayed version at decoding. The special
autocorrelation properties of m-sequences result in a constant autocorrelation value for any non-zero code
delay. The amplitude suppression ratio R is the ratio between autocorrelation values at zero and non-zero
code delays, i.e. between in-range and out-of-range signals. A bipolar (-1;1) m-sequence is derived from the
original unipolar (0;1) m-sequence by exchanging every 0 with a -1. It was first described in Kersey et al.
[15] that decoding a signal with a unipolar m-sequence that was encoded with a bipolar m-sequence or vice
versa will have an infinitely low amplitude suppression ratio resulting in theoretically zero crosstalk between
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range channels. This shall be referred to here as unipolar-bipolar coding with amplitude suppression ratio
ܴ୳ୠ. In contrast, other CDM schemes often use bipolar-bipolar coding with suppression ratio ܴୠୠ. Both ܴ୳ୠ
and ܴୠୠ in dBs for a m-sequence of length ݉ are given by [15]:

ܴୠୠ = −20 logଵ(݉ )

ܴ୳ୠ = −∞
(3)

2.3 Extended SSB equations for combining SSB and CDM

In this work, we combine SSB with phase-modulated CDM and incorporate the effects of anti-aliasing
filtering into the theory. This requires the SSB equations (1) and (2) to be extended. In the interferometric
setup used in this work the non-stationary signal ୮݁ୢ,(ݐ) at the photo detector that originates from the

interference between the local oscillator (LO) and the back reflection from source ݅can be written as:

୮݁ୢ ,(ݐ) = ∙ܣ ܴ {݁݃(t − (ݐ ∙ exp[i(ݏ∙ ߮ୡ(ݐ− (ݐ + {[(ߠ (4)

Here, =ܣ 2ඥ ܲ ܲ∙ ܴ ∙ ܸ is the interferometric signal amplitude for the signal originating from source

,݅ which depends on the LO power ܲ , reflected light power ܲ, responsivity ܴ of the photo detector and the
visibility ܸ. ܸ is related to mutual polarization overlap and coherence properties between the source ݅and the
LO. ݃(t − (ݐ is an optional periodic intensity modulation function. ݏ is the phase modulation scaling factor
and ߮(ݐ− (ݐ is the normalized phase modulation waveform, delayed by the time-of-flight ݐ to source ݅and
back. Finally, ߠ is the interferometric phase signal of source t݅hat is to be measured.

Note that, in order to incorporate CDM coding, the phase modulation waveform ߮ୡ(ݐ) now contains
many individual SSB waveforms that can be grouped into ݉ code symbols of length ୱܶ୷୫ ୠ, each containing ݇

individual SSB waveforms ߮୵ (ݐ) of length ୵ܶ . Note that ߮ୡ(ݐ) is now periodic with the repetition
frequency ୡ݂ = �ܶ ୡ

ିଵ of the whole code. Figure 1) shows an illustration of typical signals at each processing
step for the signal originating from one source .݅ The applied phase modulation is shown in figure 1a) and the
resulting signal recorded at the detector is shown in 1b) for an interferometer’s cosine-shaped transfer
function and an arbitrary phase angle of =ߠ 60°. In the following derivation the phase signal ߠ is assumed
to be stationary, an assumption also used in [21, 22] that will be further discussed at the end of this section.
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Figure 1. Illustration of typical signal shapes at the intermediate stages of signal processing for the combined SSD-
CDM waveform ߮ୡሺݐሻused in the later experiments. All signals are normalized and show how a sequence of unipolar

code 0, 1, 1, an excerpt of a longer code of length ୡܶ, is modulated, photo detected, filtered and finally decoded using the
bipolar code -1, 1, 1.

After detection the electronic signal is subjected to a filter with an impulse response ℎ(ݐ), figure 1c), that
is zero for any point in time outside the filter length�ܶ. Anti-aliasing filtering is necessary for the conversion
from continuous-time to discrete-time signals to satisfy the Nyquist–Shannon sampling theorem [18] and also
to limit the noise bandwidth. The filter ݄ሺݐሻ can be formed by a combination of analogue filtering with
additional digital filtering to optimize the shape of ݄ሺݐሻ and shorten the filter impulse response. For the
purpose of this treatment we remain in the analogue domain, assuming a straightforward conversion to the
digital domain as long as the sampling theorem is satisfied. The influence of the filter in the time-domain can
be described by a convolution of the measurement signal with ݄ሺݐሻ, shown in figure 1d).

Following the convolution we multiply the signal with the CDM decoding function ݀ሺݐെ ሻ߬, figure 1e)
which is also periodic with ୡܶ and dependent on the decoding delay .߬ Setting ߬ൌ willݐ ideally select the
signal from source .݅ Apart from the code information, ݀ሺݐെ ሻ߬additionally incorporates zero-valued grace
periods of length ܶ୰ୟୡୣ between the code symbols. This is intended to prevent symbol transition effects from

causing inter-symbol interference, which can lead to both crosstalk of signals between range channels and
non-linear SSB operation. For this to work ܶ୰ୟୡୣ has to be larger than the filter impulse response length ୦ܶ.

Using the distributivity property of the convolution the filtered and spatially decoded signal ሺ݁ݐǡ߬ ሻcan now
be described as:

,ݐ݁) )߬ = ݀ −ݐ) )߬ ∙ )ܣ )߬ ∙ ܴ {݁ℎ(ݐ) ∗ (݃ −ݐ) ߬) ∙ exp[i(ݏ∙ ߮ୡ(ݐ− ߬) + )ߠ )߬)])} (5)

The signal ሺ݁ݐǡ߬ ሻis also illustrated in figure 1f), where it can be seen that no symbol transition effects enter
the signal due to the inclusion a the sufficiently long grace period ܶ୰ୟୡୣ . However, if ܶ୰ୟୡୣ is not chosen

long enough, several signal sources could influence the signal in (5) and )ܣ )߬ and ሺ߬ߠ ሻare now a function of
߬to reflect this.

To derive the extended SSB equations we follow a similar complex Fourier series expansion of (5) as
described in [21, 22], employing the assumption of stationary phase .ߠ In our case this additionally requires
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using the distributivity property of the convolution and the assumption that the filter impulse response length

୦ܶ is smaller than the code repetition frequency ୡܶ. We can then conclude with the following extension of (1)
and (2), where the band pass filtered signal ݁(ݐ, )߬, filtered with bandwidth ±0.5 ∙ ୡ݂ around the chosen
carrier harmonic of order ,݊ is given by:

݁(ݐ, )߬ = )ܣ )߬ ∙ ܴ {݁ ܿ(τ) ∙ exp[i(2݊ߨ ୡ݂ݐ+ )ߠ )߬)] + ܿି (τ) ∙ exp[i(−2݊ߨ ୡ݂ݐ+ )ߠ )߬)]} (6)

The corresponding complex coefficients�ܿ±( )߬, which now incorporate the effects of the filter impulse
response, any optional intensity modulation and the decoding with the pseudo-random code, are given by:

ܿ( )߬ =
1

ߨ2
න −ݐ)݀ )߬ ∙ exp[−i2݊ߨ ୡ݂ݐ] ∙

ౙ்
ଶ

ି ౙ்
ଶ

න ℎ(ݐ− (′ݐ ∙ (ᇱݐ)݃ ∙ exp[i(ݏ∙ ߮ୡ(ݐ′)]

ౙ்
ଶ

ି ౙ்
ଶ

ݐ݀′ݐ݀ (7)

Here, the inner integral is the circular convolution with ℎ(ݐ) [27], which unlike the regular convolution is
periodic in ୡܶ. The transition between regular and circular convolution is straightforward in this case because

୦ܶ < ୡܶ. Note that both the final signal ݁(ݐ, )߬ and the coefficients ±ܿ( )߬ now depend on the decoding
delay τ.  If ߬= ݐ and no inter-symbol interference occurs then )ߠ )߬ = ߠ and )ܣ )߬ = ܣ and the desired
interferometric phase ofߠ source ݅can be demodulated from ݁(ݐ, )߬ via multiplication of a complex carrier
at frequency ୵݂ . If inter-symbol interference occurs a mixture of signals from different sources might be
demodulated and the sources cannot be completely separated. For the remainder of this paper the
demodulated signal based on (6) will be referred to as the quadrature signal.

It is worth noting that using (6) and (7) the effect of an anti-aliasing filter (if ୦ܶ < ୡܶ) on any type of
periodic phase and amplitude modulation function can be analyzed. This includes intensity modulation CDM
[14-16] by setting ߮ୡ(ݐ) = 0 and modulating (ݐ)݃ instead. Digitally enhanced heterodyne/homodyne
interferometry [17, 18] can also be analysed by modulating ∙ݏ ߮ୡ(ݐ) with the phase step coding used there. In
this case, if a heterodyne carrier is to be modelled, the phase shift by the heterodyne carrier has to be an
integer multiple of withinߨ2 ୡܶ.

It is important to keep in mind that the autocorrelation properties of m-sequence coding, described in
section 2.2, are not, in general, valid when the assumption of stationary phase ߠ is dropped. Also the Fourier
expansion of the SSB equations that was used to derive (6) and (7) from (5) made use of the assumption of a
stationary phase .ߠ While the general validity of (6) and (7) for regular low-frequency signal appears to be
given, it has been noted that interferometric high-frequency signals can be folded back into the base signal
band of other range channels by higher order carriers of the SSB carrier comb. This has been indicated by a
simple qualitative computer model that is not included here for brevity and is believed to be the reason for the
noise behaviour described in section 4.1. Further theoretical work will be needed to extend the theory to non-
stationary .ߠ
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3. Experimental Setup and Signal Processing

Figure 2. Optical setup in optical fibre based Mach-Zehnder interferometric configuration.

3.1 Experimental setup

Figure 2 illustrates the optical setup used for the experiments. Light from a 1550 nm single mode diode
laser (Eblana Photonics EP1550-NLW-B; Linewidth: 200 kHz; Power: 10 mW) enters a Mach-Zehnder
interferometer constructed using standard SMF-28 type optical fibre. In one arm, a polarization controller [28]
ensures that the light is linearly polarized and aligned with the principle axis of the electro-optic phase
modulator (Photline MPZ-LN-10; Bandwidth: 10 GHz). This is necessary because of the inherent dependence
of the voltage-to-phase-modulation transfer function on the polarization direction in lithium niobate
modulators [29]. An in-fibre polarizer, aligned to the same polarization axis, is inserted after the phase
modulator to filter out any remaining light from the unwanted polarization direction. We find that only the
combination of polarization controller and polarizer allows for drift free and stable operation. The
polarization direction is set by finding the operating point where linear operation is achieved, as will also be
discussed in section 4.1. The operating point is dependent on both polarization direction and scaling factor ݏ
of the phase modulation waveform ߮ୡሺݐሻ. The phase modulator is driven by a waveform generated by the
Field Programmable Gate Array (FPGA) followed by a digital-to-analogue converter (DAC), anti-aliasing
filter and driving amplifier, details of the signal generation are discussed further in section 3.2.

From the phase modulator and in-fibre polarizer the light is guided to the measurement arm by an optical
circulator. Here, equidistantly placed weak reflectors provide the signals measured by this scheme, the
construction and placement of the reflectors is discussed in section 3.3. After the light has returned from the
reflectors in the measurement arm it is guided by the circulator to the photo detector where it is mixed with
light from the local oscillator (LO) arm and further signal processing, described in section 3.4 occurs. A
second polarization controller in the LO arm is inserted to prevent polarization-induced signal fading in the
interferometer. While, in principle, the scheme is insensitive to variations in signal strength because both
components of the quadrature signals will be affected equally, complete signal failure can obviously not be
dealt with and needs to be prevented. We assume that the light returning from the measurement arm remains
largely linearly polarized. In this case, if the polarization controller in the LO is set to obtain a circular
polarization state at the final coupler just before the photo detector, no complete fading can occur.

3.2 Signal generation

As shown in figure 2, the FPGA (Altera Cyclone IV on Terasic DE2-115 board), in conjunction with a
data acquisition daughter board containing the analogue-to-digital converter (ADC) and DAC, implements
both the signal generation and signal processing. Both the DAC and the ADC currently run at a clock
frequency ୡ݂୪ of ୡ݂୪= 150 MHz and are synchronous to each other, with appropriate anti-aliasing filters
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inserted on the analogue side of the converters. For signal generation the signal waveform that was
transmitted to the DAC was pre-shaped electronically to counteract the non-ideal frequency response of the
signal generation chain. This required the measurement of the combined impulse response of the analogue
filter and amplifier, but has proved to increase the fidelity of the output waveform markedly.

An individual SSB waveform ߮୵ (t) consists of ܽ ൌ ͺ samples and thus the SSB waveform frequency
f୵  is given by f୵ ൌ ୡ݂୪ήܽ

ିଵ = 18.75 MHz. In this implementation ߮୵ (ݐ) is chosen to be of the shape
߮୵ (ݐ) ൌ ሺ݂ܤ ୵ ݐሻή����ሺʹ ߨ ୵݂ ݐሻ, where (ݐ)ܤ is the Blackman window function [27]. This particular
waveform shape can also be inspected in figure 1a). The code symbol length ୱܶ୷୫ ୠ is then given by:

ୱܶ୷୫ ୠ = ݇ ∙ ୵ܶ = ݇ ∙ ܽ ∙ ୡ݂୪
ିଵ (8)

In this implementation a total of ݇ ൌ ͵ individual SSB waveforms form a single code symbol and

ୱܶ୷୫ ୠ = 160 ns. Using an m-sequence with ݉ ൌ ͳͷ code symbols allows the spatial separation of the same

number of range channels and leads to a code with a repetition frequency of ୡ݂ൌ ሺ݉ ή ୱܶ୷୫ ୠ)ିଵ = 417 kHz.

The required scaling factor ݏ for the phase modulation waveform ߮ୡ(ݐ) of the whole code, incorporating
the m-sequence coding and based on the individual SSB waveform ߮୵ (ݐ) defined before, can be found by
evaluating (7) at a harmonic index of ݊ ൌ ݉ ݇כ ൌ Ͷͷ. This corresponds to ݊ individual SSB waveforms that
make up one iteration of the code. The coefficients േܿସହ are plotted in figure 3a) and a scaling factor of
ൌݏ ͲǤͷߨ is chosen where coefficient ାܿସହ reaches zero and linear operation should occur. In practice, the
calculated value of canݏ only give a rough indication of the value and hasݏ to be manually tuned before the
experiment by increasing the amplitude of the waveform that is generated in the FPGA. However, as
described in section 3.1, when the polarization direction of the phase modulator was suitably stabilized, the
value of wasݏ robust enough not to require any further tuning after the initial setting.

Figure 3. The dependence of the coefficients േܿସହ on the scaling factor forݏ a delay ߬ൌ Ͳ of the phase modulation
function is shown in a). A working point of ൌݏ ͲǤͷߨ is chosen where ାܿସହ reaches zero. In b) the dependence of േܿସହ

on the decoding delay ߬ is shown for a fixed scaling factor of ൌݏ ͲǤͷߨ. The dashed versions to the left and right of the
graph are shifted by േ ୱܶ୷୫ ୠ to highlight that there is no signal overlap at the designed reflector separation.
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3.3 Construction and placement of reflectors in the measurement arm

In figure 3b) the dependence of the coefficients ±ܿସହ in regard to the decoding delay ߬ is shown. The
solid lines in figure 3b) show the coefficients for a reflector at a position corresponding to zero time-of-flight.
It can be seen that both coefficients ±ܿସହ are zero for decoding delays | |߬ > ୱܶ୷୫ ୠ. For comparison, the

dashed lines correspond to reflectors positioned at times-of-flights ±1 ∙ ୱܶ୷୫ ୠ. It can be seen that if the

reflectors are correctly positioned with an equidistant spacing, in theory, no signal energy will enter the
signals corresponding to other range channels. Also it can be observed that there is some tolerance in the
positioning of the reflectors. The standard segment length ୱ݈, corresponding to a time-of-flight of length

ୱܶ୷୫ ୠ, given by (8), to the reflector and back in fibre with a core index of refraction of ୡ݊୭୰ୣ = 1.45, will

then be given below and in our case this equates to a segment length of ୱ݈ = 16.5 m.

ୱ݈ =
ܿ

2 ∙ ୡ݊୭୰ୣ
∙ ୱܶ୷୫ ୠ = 1.03 ∙ 10଼ ∙ ୱܶ୷୫ ୠ (9)

In CDM, neighbouring reflectors need to be placed equidistantly on a grid with a separation
corresponding to the time-of-flight of one code symbol length Tୱ୷୫ ୠ, given by (8). In general, there exists a

common offset delay for all range channels that is caused by the time-of-flight in the lead length of the
measurement arm and by signal processing delays and which can easily be accounted for by adjusting the
decoding delays in the FPGA signal processing. It is assumed that there are no other fundamental limitations
influencing the minimally achievable reflector separation ୱ݈ in (9) apart from the signal processing clock
frequency ୡ݂୪in (8). The minimum reflector separation ୱ݈ is thus inversely proportional to ୡ݂୪when factors ݇
and ܽ are left unchanged in (8). The maximum number of reflectors that can be addressed in this scheme is
given by the length ݉ of the m-sequence used, where the maximum number of segments that can be
evaluated is then ݉ − 1. Range channels where no reflector is placed do not produce a signal and are of no
concern.

The scheme relies on the assumption that the reflectivities of the reflectors are sufficiently small not to
substantially reduce the incident light of other reflectors or cause interference effects between light from
different reflectors. When these assumptions cannot be maintained and a large number of reflectors need to be
multiplexed, a more detailed power budget and reflectivity analysis as in [2] needs to be employed, which is
beyond the scope of this paper. It should be noted, however, that in a Mach-Zehnder setup such as the one
used here, the reflected signals are interferometrically amplified by the LO and thus the reflectivity of the in-
fibre mirrors can be relatively low. Nevertheless, apart from signal-to-noise consideration, the signals from
the reflectors also need to be considerably stronger than the underlying, distributed Rayleigh scattering in the
fibre for the scheme to work. As can be seen from the experimental results shown in figure 7a), which are
further discussed in section 4.1, the scheme in its current implementation can be expected to work well down
to reflectivities of at least -45 dB (3 ∙ 10ିଷ%).

In this experiment, we use pairs of FC/PC connectors that are slightly detuned to achieve weak back
reflections. This approach is only feasible in a lab environment due to its instability and the extensive tuning
it requires. For future implementations, we propose using weak, broadband FBGs that are all centred at the
same wavelength or in-fibre reflectors. In-fibre reflectors have been produced in the past by etching an air
cavity in a fibre tip before resplicing the fibre [30] or by laser writing of Fabry-Perot cavities [31] into the
fibre core. Furthermore, laser drilling of holes [32] and laser writing of microvoids [33] should also be
adaptable to produce suitable in-fibre reflectors. In our opinion, laser writing techniques have potential to
produce reflectors for sensing fibres in a roll-to-roll production process and without the need to break,
resplice and recoat the fibre. This would permit very cost-effective and mechanically stable sensing fibre
leads.
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3.4 Signal processing

The signal processing is illustrated in figure 4). After photo detection, the electronic signal is filtered with
an anti-alias filter, digitized using an ADC and transmitted to the FPGA. Here further digital filtering results
in the combined analogue and digital filter response ݄ሺݐሻ, which is designed to have the characteristic of a
band pass filter centred at the SSB waveform frequency f୵ . Additionally, ℎ(ݐ) is required to have a length ୦ܶ

that is smaller than the grace period of length ܶ୰ୟୡୣ ൌ ʹή ୵ܶ  to prevent inter-symbol interference, as shown

in figure 1e) and described in section 2.3. To obtain a close approximation of the desired filter impulse
response in practice, the actual impulse response of the analogue filter was measured and the digital part of
the filter additionally pre-shaped to compensate for the non-ideal analogue filter frequency characteristics.

Figure 4. Outline of signal processing illustrated for three range channels. After hardware processing the incoming
digital signal enters the FPGA. Here, decoding, demodulation and final low-pass filtering occurs for each of the three

range channels R1 to R3. After being transmitted from the FPGA to a PC, the quadrature signals of R1 to R3 are subject
to a complex division and phase unwrapping, which results in the phase difference signals οߠ for segments S1 and S2.

As can be seen in figure 4), the digitised and filtered signal is multiplied with delayed versions of the
decoding function ݀ሺݐെ ሻ߬, discussed in section 2.3. Each delay corresponds to the time-of-flight to a
specific reflector. As discussed in section 2.2, in unipolar-bipolar m-sequence coding the autocorrelation for
code iterations with different delays is zero and out-of-range signals will cancel. Thus, in theory, only the
signal energy from the reflector at the desired range, i.e. with the correct delay, will accumulate in each range
channel. This spatially decoded signal corresponds to the signal shown in figure 1f) and the signal ݁(ݐǡ߬ )
given by (6).

Following this spatial decoding, the phase signals of each range channel are demodulated by
multiplication with the complex carrier at the frequency of the SSB waveforms f୵  and subsequent digital
low-pass filtering with quadrature signal cut-off frequency ୯݂ǡୡ୭. Care has to be taken to demodulate a positive

carrier harmonic ାܿ with a positive complex frequency and vice versa to obtain meaningful results. To
prevent down-conversion of the signal from higher-order harmonics of the SSB carrier comb to the base band,
the maximally permissible quadrature signal cut-off frequency ୯݂ǡ୫ ୟ୶, using ୱܶ୷୫ ୠ given in (8), is limited to:

୯݂,୫ ୟ୶ = 0.5 ∙ ୡ݂ = 0.5 ∙ (݉ ∙ ୱܶ୷୫ ୠ)ିଵ (10)
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Thus ୯݂,୫ ୟ୶ = 208 kHz is the theoretical maximum frequency that can be resolved with the current

signal processing parameters. However, due to noise, which can cause spurious phase unwrapping, a much
lower value of ୯݂,ୡ୭ = 20 kHz has been chosen as the filter cut-off frequency to provide enough noise

averaging. This will further discussed in section 4.1.

In our current implementation the filtered quadrature signals are transferred from the FPGA to a PC at
this point, where a choice of evaluating reflector or segment data is made, however this could also be
performed by the FPGA. For evaluating segment data the phases of two range channels are subtracted by
complex division of the quadrature signals. Only then is the phase unwrapping [34] performed and the final
phase difference Δߠ�along each fibre segment found.
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4. Results and Discussion

4.1 Linearity, noise and measurements

To analyse the linearity and noise properties of the system, the measurement arm configuration,
illustrated in figure 5a) for evaluating range channel R3, was used. In this case, the connectors at range
channels R1 and R2 are in contact and do not give a back reflection, while at range channels R4 no reflector is
present. Thus, only the signal from the fibre-end reflection at range channel R3 is present and the linearity of
its signal and its contribution on to the noise levels in the other range channels is examined in this experiment.
The location of the fibre-end reflector can also be varied accordingly from range channel R1 to R4. The test
signal for this experiment is produced by laser injection current modulation of the source.

Figure 5. Measurement arm configurations used for the measurement of a) noise and linearity, b) cross-talk, c)
dynamic response and d) strain measurement. e) illustrates how the sensors of configuration d) are attached to a vibrating
metal pipe as test strain measurement object. Range channels, separated by s݈ = 16.5 m are labelled using the notation

Rn and the corresponding fibre segments using Sn.

To analyse the linearity of the measurements the quadrature signals of a given range channel can be
plotted in the complex plane. The resultant shape corresponds to a Lissajous ellipse which converges into a
circle if linear operation is achieved [35]. Typical Lissajous figures for reflectors at range channels R1 to R4
are shown in figure 6). The scatter plots track the end point of all complex phasors that occur over the course
of a measurement. The continuous line is the angular average of all the points within 120 angular sectors.
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Figure 6. Scatter plot of the real and imaginary part for reflectors at range channels R1 to R4. The mean radius in
each plot is normalized and the continuous line is the angular average over 120 angular sectors.

Using a Fourier transform over the averaged angular sector data, a quick measure of the degree of non-
linearity or ellipticity is given by the amplitude of the second harmonic in the transform. This was also the
quantity used to experimentally tune the scaling factor ofݏ the phase modulation function ߮ሺݐሻdescribed in
section 3.2. The shapes of the ellipses shown in figure 6) were fitted to the coefficient ratio േܿସହ in equation
(6). The extracted values for the coefficient ratios are 1.5%, 2.0%, 0.9% and 2.5% for R1, R2, R3 and R4
respectively. Further analysis employing a simple computer simulation reveals that these coefficient ratios
correspond to cyclic error amplitudes of 15 mrad, 20 mrad, 9 mrad and 25 mrad for R1, R2, R3 and R4
respectively.

As well as providing a measure of linearity, the Lissajous figure also yields information about the noise
in the quadrature signals. From figure 6) it can be seen that amplitude noise is present and that it varies
considerably depending on the position of the reflector in range channels R1 to R4. Furthermore, the
observation has been made that spurious phase unwrappings are likely to occur when the scatter due to the
amplitude noise is higher than the means radius and the hole in the Lissajous figure scatter plot starts being
obscured. A single spurious phase unwrapping can lead to a permanent error in the phase signal of േ ߨʹ that
cannot be corrected. If the noise levels are high enough that spurious phase unwrappings occur, the quadrature
signals have to be averaged further to reduce the amplitude noise sufficiently. As was already discussed in
section 3.4, this was the reason that the measurement bandwidth had to be reduced more than tenfold
to ୯݂ǡୡ୭ = 20 kHz.

In addition to the variation of the amplitude noise with reflector position when a single source is present,
as evident in the Lissajous figures in figure 6), it was also observed in other experiments with multiple signal
sources that the amplitude noise level in any one range channel is dependent on the signal strength of sources
present in other range channels. This leads to the conjecture that there is also some leakage of amplitude noise
from the originating source to other range channels.

To thoroughly investigate the origin of the amplitude noise and any possible leakage in the quadrature
signals a series of single reflector measurements with adjustable return signal levels was conducted. This
experiment was also performed using the setup shown in figure 5a) and employs a single fibre-end reflector at
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range channel R3 as the signal source. In this experiment, the effective reflectivity of the signal source was
successively lowered by inducing bend loss in the fibre lead, ranging from −15 dB (3.3%) for the fibre-end
Fresnel reflection without additional attenuation to -57 dB (2 ∙ 10ିସ %) effective reflectivity. The spatial
variation of the average root-mean-square (rms) signal amplitude over an 80 m range at each of the four
reflectivity levels was recorded and is shown in figure 7a).

It can be observed in figure 7a) that for each reflectivity level, outside of the range window surrounding
the reflector, there is a mostly flat baseline of noise leakage. By additionally evaluating the amplitude noise in
the Lissajous figure of the peak signal, it was verified that the level of rms amplitude noise there is the same
as the level of rms amplitude noise in the baseline in figure 7a). Thus the amplitude noise appears to be
evenly distributed over all range channels. All the plots were normalized to the corresponding peak
amplitude. For the measurements from −15 dB to −45 dB, the ratio between peak amplitude and baseline can
be seen to remain largely constant. Only at -57 dB does this relationship start to break down. This indicates
that the strength of noise leakage is proportional to the strength of the signal source that causes the leakage.
Most noise sources like LO shot noise, laser intensity noise, detector and signal processing noise would be
expected to contribute a constant noise level regardless of the level of reflectivity. Any constant noise
contribution of this kind would quickly increase in magnitude compared to the main peak when the
reflectivity level of the main peak is lowered. Such behaviour is only starting to become visible at very low
reflector strengths, i.e. -57dB. This leaves only noise sources that are proportional to the source signal
amplitude as a plausible cause for the observed amplitude noise. These types of noise could be shot noise
from the reflector signal, direct signal crosstalk or laser phase noise that is outside the signal band and can
thus be redistributed into other range channels as discussed in section 2.3.

Figure 7. a) shows measurements of the average rms signal amplitude originating from one reflector kept at
the same location for four different reflectivities. b) shows four rms amplitude measurements all taken at a
constant reflectivity of −15 dB, but for four different locations at range channels R1 to R4 with varying distance from
the LO balancing point. All measurements in a) and b) were normalized to the corresponding peak amplitude.

To further differentiate between the possible types of noise another experiment with the same single-
reflector setup of figure 5a) was used. This time the reflector location was varied in respect to the LO
balancing point, while the reflectivity was kept constant at -15 dB. Figure 7b) shows the graphs for four
reflectors in range channels R1 to R4. It can be noted that the height of the baseline is dependent on the
distance of the signal source from the LO balancing point. Reflectors in range channels R2 and R3, which are
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placed close to the LO balancing point, produce a noise floor approximately half that of reflectors in range
channels R1 and R4, which are located further away. This result also agrees well with the perceived noise
level in the Lissajous figures shown in figure 6). This leads to the conclusion that the bulk of the observed
amplitude noise is dependent on the distance to the LO balancing point of the source that causes the leakage.
Of the three possible types of noise mentioned previously only laser phase noise that was redistributed into
other range channels would show this type of behaviour. The options available to mitigate the amplitude noise
are further discussed in section 4.4.

While it has been established that direct signal crosstalk from one range channel to the other is not the
main cause of the amplitude noise observed, we nevertheless measured the signal crosstalk levels in the
quadrature signals in order to compare the different m-sequence coding arrangements that were discussed in
section 2.2. To this end we used the setup shown in figure 5b), where a piezoelectric fibre stretcher (PZT)
produces a sinusoidal test signal of frequency 70 Hz. The quadrature signals corresponding to this phase
signal are a series of Bessel harmonics. The test signal is measured by evaluating the signal from the fibre-end
reflector located in range channel R2. Signals registered at range channels R1 and R3, which are located at a
distance corresponding to one segment length േ ୱ݈ = 16.5 m, from the fibre-end and that possess no signal
source of their own, are evaluated for the existence of signal crosstalk from R2.

Figure 8. Measurement of signal crosstalk in quadrature signals from range channel R2 into neighbouring
range channels R1 and R3. a) unipolar-bipolar m-sequence coding with ݉ ൌ ͳͷ. b) bipolar-bipolar m-sequence
coding with ݉ ൌ ͳͷ. In both a) and b) the graphs on the right show an enlarged version of the peaks at 1.41 kHz.

Figure 8a) and 8b) show the results of the crosstalk measurements for a frequency region between
1.3 kHz and 1.8 kHz. In figure 8a), the measurement for unipolar-bipolar m-sequence coding with ݉ ൌ ͳͷ
code symbols is shown, which is the coding arrangement that was used throughout this work. For all Bessel
harmonics present, a nearly constant crosstalk level of −32 dB for range channel R1 and of −35 dB for R3
can be observed. In measurements not shown here, the crosstalk levels for range channels that are േʹ݈ ୱ or
further from the signal source was found to be approaching −48 dB. This indicates that the length of the anti-
aliasing filter impulse response ୦ܶ exceeds ܶ୰ୟୡୣ in the current implementation of the signal processing, and

the theoretically very high level of crosstalk amplitude suppression given in (3) for ܴ୳ୠ has not yet been fully
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realized. Figure 8b) shows the signals for bipolar-bipolar m-sequence coding with ݉ ൌ ͳͷ. The crosstalk
levels are found to be −23 dB, which is exactly as predicted for ܴୠୠ in (3). Since the crosstalk for the same
number of code symbols is higher in bipolar-bipolar m-sequence coding, there is a clear advantage when
using unipolar-bipolar coding instead. This gain should be higher if the filter properties of the system can be
improved in future implementations.

To determine the signal crosstalk and noise in the unwrapped phase signals, as opposed to the crosstalk
and noise in the quadrature signals, the experimental setup shown in figure 5c) was used. Here, the two PZTs
in segments S1 and S3 provide sinusoidal test signals at 370 Hz and 570 Hz respectively, while segment S2 is
not excited. In figure 9a) the time traces of the phase difference signals ȟߠ along fibre segments S1 to S3 are
shown, while figure 9b) shows the corresponding spectra. In figure 9b) the base of the two main peaks are
enlarged to highlight that no direct signal crosstalk higher than the noise floor is visible. Thus, crosstalk levels
in the phase signals are found to be lower than −60 dB, which are therefore of the same magnitude as those
found in Wuchenich et al. [20]. The fact that crosstalk levels lower than −60 dB can be realized in the phase
signal, while previously crosstalk levels up of −32 dB were determined in the quadrature signals is a
consequence of the non-linear migration properties of noise and crosstalk from the quadrature signals to the
phase signals. This is because the contribution of a given noise or crosstalk phasor to the measured phase
angle is non-linearly dependent on the length of the signal phasor to which it is added. Any crosstalk
measurement in phase data is thus highly dependent on the source signal strength and is not an objective
measure of crosstalk without further details on the source strength configuration. Only crosstalk
measurements in the quadrature measurements provide an easy comparison of crosstalk levels between
different coding arrangements and anti-aliasing filter settings. The exact mathematical description of the non-
linear noise migration behaviour of noise from quadrature into phase signals is subject to active research [36]
and is beyond the scope of this paper.

Figure 9. Measurement of the dynamic response of the system. a) shows the time traces of the phase signals of
three fibre segments S1 to S3, where segments S1 and S3 were excited with sinusoidal waveforms at 370 Hz and 570 Hz
respectively. b) shows the corresponding phase signal spectra with logarithmic frequency scale, where the region at the
base of the main peaks is enlarged. c) shows the spectra of the corresponding quadrature signals for the first and last
range channels used in this experiment.

To evaluate the resultant noise in the phase difference along a fibre segment�ȟߠ, a series of measurements
with the PZTs switched off show that the typical rms phase noise level present in the segment data is
2.3 mrad HzିǤହ in all segments regardless of segment position. These measurements are not shown here
because similar noise characteristics are also evident in the results shown for segment S2 in figure 9a) and b).
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In figure 9b) segment S2 shows a mainly white noise spectrum apart from a small noise increase at very low
frequencies.

4.2 Dynamic response measurements

For the low-frequency, high-amplitude phase signals that this scheme is designed to measure, the spectral
requirements of the quadrature signal for a given phase signal are best described by the rate of phase change
that needs to be resolved. The maximum rate of change of the phase signals in segment S1and S3 can be
extracted from figure 9a) to be 3.2 ∙ 10ସ rad sିଵ for segment S1 and 7.2 ∙ 10ସ rad sିଵ for segment S3. The
furthest away range channel R4 carries contributions from all signal sources present in the experiment, as can
be seen in figure 5c). Thus, the signal of range channel R4 has to resolve a maximum rate of phase change of

୫ߠ̇ ୟ୶ = 1.0 ∙ 10ହ rad sିଵ at points in time when the highest rates of phase change of both sinusoidal signals

from the two PZTs coincide. As a first estimate of the spectral requirement the rate of phase change ୫ߠ̇ ୟ୶ is
equated to the maximum frequency requirement of the quadrature signal to yield a spectral requirement of

୫ߠ̇� ୟ୶ ∙ ଵି(ߨ2) = 16 kHz. Figure 9c) plots the spectrum of the quadrature signals of range channels R1 and
R4. The spectrum of the first range channel R1, which does not experience any test signal, is inserted here as
a measure of the noise floor and shows a mainly white noise behaviour with contributions from what is
believed to be laser phase noise at the low-frequency end of the spectrum. At the high-frequency end of the
spectrum for range channel R4, it can be seen that the spectral content does indeed begin to drop at a
frequency of around 16 kHz. To allow for the full slope visible in figure 9c) to be resolved an additional
safety factor of 25% of the spectral requirement seems reasonable. It can thus be summarized that the chosen
quadrature signal bandwidth of ୯݂,ୡ୭ = 20 kHz that is used in this implementation allows the resolution of

phase change rates of ୫ߠ̇ ୟ୶ = 1.0 ∙ 10ହ rad sିଵ.

4.3 Strain measurement

Finally, the system was used to make exemplary strain measurements. The sensor configuration for this
experiment is shown in figure 5d). Here, for each segment S1 to S4 a section of gauge length l = 2 m out of

the total segment length ୱ݈ is used as a strain sensor, while the remainder of each fibre segment is rolled up.
The strain sensing sections of the four segments are attached to four sides of a metal pipe that is fixed at one
end but is free to vibrate on the other. The arrangement of the sensors on the pipe is also illustrated in figure
5e). This experiment is designed to obtain test signals of low frequency but with high signal amplitudes.
Signals of these characteristics are expected to be encountered in many real applications of dynamic strain
sensing on large engineering structures.
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Figure 10. This graph shows a typical low-frequency, high-amplitude strain measurement for four long-gauge
length strain sensors. The inset shows a zoomed region at the time of excitation over a time period of 60 ms and a phase
range of ±100 rad. The secondary axis shows the strain that is equivalent to this phase signal at a sensor gauge length of
2 m.

An exemplary measurement using this configuration with a horizontal excitation of the metal pipe is
shown in figure 10). It can be clearly seen that both sensors in segments S1 and S2 attached to the left and
right side of the pipe show a high amplitude vibration, while the sensors at segments S3 and S4 attached to
the top and bottom of the pipe show only little reaction to this excitation. The high measurement quality can
be inspected in the zoomed inset. The strain of the fibre that these phase changes correspond to is shown on
the secondary axis. The strain canߝ be calculated from the measured phase difference οߠ using the following
equation adapted from Kirkendall et al. [7]:

=ߝ
ߠ∆ ∙ ߣ

2 ݈ ∙ ߨ2 ∙ ୡ݊୭୰ୣ ∙ ݇
(11)

Here ߣ is the wavelength of the laser light and ݇ is the strain sensitivity factor of the fibre. We take ݇ to
be ݇ ൌ �ͲǤͻͷ, which is the value given by Roths et al. [37] for SMF-28 type fibre. An additional factor of
two in the denominator is included here because in our setup the light passes the sensor gauge length ݈ twice.

4.4 Discussion

In the experiments presented here we had to use the polarization control arrangement shown in figure 2
and discussed in section 3.1, using a polarization controller and an additional in-fibre polarizer, because no
polarization-maintaining phase modulator was available. However, for future implementations we strongly
recommend using polarization-maintaining fibre for the section connecting the laser diode to the phase
modulator. This would eliminate the need for the polarization controller and the in-fibre polarizer and should
prevent any drifts in polarization direction influencing the phase modulation strength and thus the linearity of
the measurements. We also recognize that in a real-life application the absence of polarization-induced signal
fading in the measurement arm cannot be guaranteed by simply using a polarization controller in the LO as
discussed in section 3.1. Further options to mitigate polarization-induced signal fading in future
implementations include using polarization-diversity detection [38] or employing polarization-maintaining
fibre throughout the interferometer and the measurement arm.
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In section 4.1 the typical rms noise levels in the measured phase change along a fibre segment Δߠ were
found to be 2.3 mrad Hzି.ହ, which according to (11) leads to a dynamic strain sensitivity of 0.12 nε Hzି.ହ

at a sensor gauge length ݈ = 2 m. While the sensor gauge length characteristics between the sensing schemes

might be different, the measured dynamic strain sensitivity of this scheme compares well with those for non-
interferometric, short-gauge length FBG strain sensors, which are typically on the order of 0.5 to
10 nε Hzି.ହ [39]. The maximum cyclic error was found to be 0.025 rad in the current implementation.
Using (11) and realizing that the systematic error in the range channel data can enter the segment data twice,
the maximum systematic phase error can be given as 2.7 nε. Because the magnitude of the cyclic error cannot
exceed ߨ0.5 and is non-cumulative, this systematic error is bounded in magnitude to below 0.17 με even in a
worst case scenario, however, the given values for the systematic errors obviously require the total absence of
spurious phase unwrappings. It is also worth noting that strain noise and systematic errors scale inversely with
the sensor gauge length, leading to even higher strain sensitivities for longer sensor gauge lengths. As in all
fibre strain sensors there is a strong inherent sensitivity to temperature [40] that can negatively affect strain
measurements and which has not been addressed so far in this scheme.

In section 4.2, a maximum phase change rate of ୫ߠ̇ ୟ୶ = 1.0 ∙ 10ହ rad sିଵ that can be resolved in the
current implementation was calculated. This rate is shared by all the sensors present in the system, thus the
total phase change rate has to be divided by the number of sensors if all sensors are expected to have similar
strain signal characteristics. In the strain measurement configuration in figure 5d) with four strain sensors this

equates to ୫ߠ̇ ୟ୶,ୱ = 2.5 ∙ 10ସ rad sିଵ for each sensor. Again, using (11) for ݈ = 2 m, this results in a

permissible strain change rate of ሶ୫ߝ ୟ୶,ୱ�= 1.3 mε sିଵ per sensor.

While the noise levels in the strain measurement were found to compare well with standard
techniques used for strain measurement applications such as FBGs, the more important consequence of phase
noise from the laser source is the reduction of the achievable quadrature signal cut-off frequency ୯݂,ୡ୭ and

thus ultimately the reduction of the permissible strain change rate ሶ୫ߝ ୟ୶,ୱ. As discussed in section 4.1, the
reduction is due to noise leakage originating from strong reflectors that can overshadow weak reflectors in
other range channels and lead to spurious phase unwrappings there. In order to maintain practical reflectivity
tolerances and polarization-induced fading allowances for the reflector setup,�݂୯,ୡ୭ had to be lowered

sufficiently to reduce the noise to an acceptable level through averaging, in this implementation by a factor of
more than 10. Other steps to mitigate this noise behaviour without reducing ୯݂,ୡ୭ are using laser diodes with

narrower line widths or lowering the average distance to the LO of the reflectors present in the system. In the
setup shown in figure 5d) the average distance to the LO could be lowered if the segment length ୱ݈ given by
(10) could be reduced from its current value of ୱ݈ = 16.5 m, ideally down to the sensor gauge length ݈ =

2 m.

In order to reduce the fibre segment length, either for improving the spatial resolution or for lowering
the average LO distance, the speed of the signal processing would need to be increased. Because the analogue
bandwidths of both DAC and ADC are limited by analogue filters in a well-known fashion in this
implementation, conclusions about the scaling of the signal processing parameters can be drawn. If the
current clock frequency ୡ݂୪of 150 MHz is scaled up by a factor of ݔ to ୡ݂୪ = ݔ� ∙ 150 MHz, ୱ݈ will reduce to

ୱ݈ =
ଵ.ହ�୫

௫
according to (10). The theoretically possible maximum quadrature signal frequency ୯݂,୫ ୟ୶ of (9)

will also increase when the signal processing is scaled up by ݔ to ୯݂,୫ ୟ୶ = 3.125 MHz ∙
௫


, where the m-

sequence length ݉ determines the maximum number of range channels that can be separated. In this context,
signal generation and processing at many GHz clock speeds is state of the art in optical communications
technology and has been demonstrated for optical measurement applications [41] as well.
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5. Conclusions

A novel signal processing scheme that combines code-division multiplexing with single-sideband
homodyne signal processing scheme has been presented. The equations governing the scheme as well as the
signal processing parameters have been described in detail. The scheme has been applied to fibre segment
interferometry for strain sensing applications, where four long-gauge length strain sensors of gauge length

݈ = 2 m have been successfully multiplexed and dynamic strain sensitivities of 0.12 nε Hzି.ହ have been

achieved.

The main limitation of the scheme in its current implementation is the leakage of high-frequency laser
phase noise from the signal source into other range channels in the system. This has reduced the permissible
strain change rate by more than a factor of ten to 1.3 mε sିଵ per sensor. The dynamic parameters of the
scheme could be improved using laser diodes with narrower line widths, or by lowering the average distance
to the LO of the reflectors present in the system by scaling the clock frequency.

However, as the combined cost of all the equipment used in this prototype was less than $10k the
possibility of a cost-effective, relative strain change measurement system has been demonstrated. Finally, the
possibility exists to combine this technique with FBG sensors operating at other wavelengths to obtain both
short-gauge and long-gauge length strain information from the same sensing fibre.
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