10 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    BẢO MẬT LỚP VẬT LÝ TRONG MẠNG KHÔNG DÂY

    Get PDF
    In this paper, we present an approach for wireless security based on physical layer. The basic principle of physical layer secrecy (PHY Secrecy) is ensuring secure information transmission in the the system that consists of illegal receiver without using any coding solution on application layer. Applying this approach, we evaluate the physical layer secrecy performance of MISO (Multi Input-Single Output) system that consists of double antennas transmitter and single antenna receiver in the presence of a single antenna passive eavesdropper’s over heterogeneous fading channels Rayleigh/Rician. We evaluate, analyse secrecy capacity, existence probability of secrecy capacity and secrecy outage probability and verify the numerical results with Monte-Carlo simulation results. Our results have presented the utility of using physical layer secrecy to enhance the secrecy performance of wireless networks.Trong bài báo này, chúng tôi trình bày cách tiếp cận để giải quyết vấn đề bảo mật trong mạng không dây ở lớp vật lý. Để áp dụng các cách tiếp cận này, chúng tôi xét mô hình mạng truyền thông không dây MISO (Multi Input-Single Output) có nhiễu giả và sử dụng kênh truyền không đồng nhất Rayleigh/Rician. Để đánh giá hiệu năng bảo mật của mô hình, chúng tôi phân tích, đánh giá các yếu tố: dung lượng bảo mật, xác suất bảo mật, xác suất dừng bảo mật của hệ thống và kiểm chứng kết quả tính toán với kết quả mô phỏng theo phương pháp Monte-Carlo. Kết quả nghiên cứu này cho thấy tính khả thi của việc triển khai bảo mật ở lớp vật lý trong mạng không dây và đánh giá được hiệu năng bảo mật của mô hình đề xuất

    Enable Reliable and Secure Data Transmission in Resource-Constrained Emerging Networks

    Get PDF
    The increasing deployment of wireless devices has connected humans and objects all around the world, benefiting our daily life and the entire society in many aspects. Achieving those connectivity motivates the emergence of different types of paradigms, such as cellular networks, large-scale Internet of Things (IoT), cognitive networks, etc. Among these networks, enabling reliable and secure data transmission requires various resources including spectrum, energy, and computational capability. However, these resources are usually limited in many scenarios, especially when the number of devices is considerably large, bringing catastrophic consequences to data transmission. For example, given the fact that most of IoT devices have limited computational abilities and inadequate security protocols, data transmission is vulnerable to various attacks such as eavesdropping and replay attacks, for which traditional security approaches are unable to address. On the other hand, in the cellular network, the ever-increasing data traffic has exacerbated the depletion of spectrum along with the energy consumption. As a result, mobile users experience significant congestion and delays when they request data from the cellular service provider, especially in many crowded areas. In this dissertation, we target on reliable and secure data transmission in resource-constrained emerging networks. The first two works investigate new security challenges in the current heterogeneous IoT environment, and then provide certain countermeasures for reliable data communication. To be specific, we identify a new physical-layer attack, the signal emulation attack, in the heterogeneous environment, such as smart home IoT. To defend against the attack, we propose two defense strategies with the help of a commonly found wireless device. In addition, to enable secure data transmission in large-scale IoT network, e.g., the industrial IoT, we apply the amply-and-forward cooperative communication to increase the secrecy capacity by incentivizing relay IoT devices. Besides security concerns in IoT network, we seek data traffic alleviation approaches to achieve reliable and energy-efficient data transmission for a group of users in the cellular network. The concept of mobile participation is introduced to assist data offloading from the base station to users in the group by leveraging the mobility of users and the social features among a group of users. Following with that, we deploy device-to-device data offloading within the group to achieve the energy efficiency at the user side while adapting to their increasing traffic demands. In the end, we consider a perpendicular topic - dynamic spectrum access (DSA) - to alleviate the spectrum scarcity issue in cognitive radio network, where the spectrum resource is limited to users. Specifically, we focus on the security concerns and further propose two physical-layer schemes to prevent spectrum misuse in DSA in both additive white Gaussian noise and fading environments

    Cost-Effective Signal Processing Algorithms for Physical-Layer Security in Wireless Networks

    Get PDF
    Data privacy in traditional wireless communications is accomplished by cryptography techniques at the upper layers of the protocol stack. This thesis aims at contributing to the critical security issue residing in the physical-layer of wireless networks, namely, secrecy rate in various transmission environments. Physical-layer security opens the gate to the exploitation of channel characteristics to achieve data secure transmission. Precoding techniques, as a critical aspect in pre-processing signals prior to transmission has become an effective approach and recently drawn significant attention in the literature. In our research, novel non-linear precoders are designed focusing on the improvement of the physical-layer secrecy rate with consideration of computational complexity as well as the Bit Error Ratio (BER) performance. In the process of designing the precoder, strategies such as Lattice Reduction (LR) and Artificial Noise (AN) are employed to achieve certain design requirements. The deployment and allocation of resources such as relays to assist the transmission also have gained significant interest. In multiple-antenna relay networks, we examine various relay selection criteria with arbitrary knowledge of the channels to the users and the eavesdroppers. Furthermore, we provide novel effective relay selection criteria that can achieve a high secrecy rate performance. More importantly they do not require knowledge of the channels of the eavesdroppers and the interference. Combining the jamming technique with resource allocation of relay networks, we investigate an opportunistic relaying and jamming scheme for Multiple-Input Multiple-Output (MIMO) buffer-aided downlink relay networks. More specifically, a novel Relaying and Jamming Function Selection (RJFS) algorithm as well as a buffer-aided RJFS algorithm are developed along with their ability to achieve a higher secrecy rate. Relying on the proposed relay network, we detail the characteristics of the system, under various relay selection criteria, develop exhaustive search and greedy search-based algorithms, with or without inter-relay Interference Cancellation (IC)

    A Critical Review of Physical Layer Security in Wireless Networking

    Get PDF
    Wireless networking has kept evolving with additional features and increasing capacity. Meanwhile, inherent characteristics of wireless networking make it more vulnerable than wired networks. In this thesis we present an extensive and comprehensive review of physical layer security in wireless networking. Different from cryptography, physical layer security, emerging from the information theoretic assessment of secrecy, could leverage the properties of wireless channel for security purpose, by either enabling secret communication without the need of keys, or facilitating the key agreement process. Hence we categorize existing literature into two main branches, namely keyless security and key-based security. We elaborate the evolution of this area from the early theoretic works on the wiretap channel, to its generalizations to more complicated scenarios including multiple-user, multiple-access and multiple-antenna systems, and introduce not only theoretical results but practical implementations. We critically and systematically examine the existing knowledge by analyzing the fundamental mechanics for each approach. Hence we are able to highlight advantages and limitations of proposed techniques, as well their interrelations, and bring insights into future developments of this area

    Practical Secrecy using Artificial Noise

    No full text
    corecore