1,364 research outputs found

    Transfer Learning-Based Crack Detection by Autonomous UAVs

    Full text link
    Unmanned Aerial Vehicles (UAVs) have recently shown great performance collecting visual data through autonomous exploration and mapping in building inspection. Yet, the number of studies is limited considering the post processing of the data and its integration with autonomous UAVs. These will enable huge steps onward into full automation of building inspection. In this regard, this work presents a decision making tool for revisiting tasks in visual building inspection by autonomous UAVs. The tool is an implementation of fine-tuning a pretrained Convolutional Neural Network (CNN) for surface crack detection. It offers an optional mechanism for task planning of revisiting pinpoint locations during inspection. It is integrated to a quadrotor UAV system that can autonomously navigate in GPS-denied environments. The UAV is equipped with onboard sensors and computers for autonomous localization, mapping and motion planning. The integrated system is tested through simulations and real-world experiments. The results show that the system achieves crack detection and autonomous navigation in GPS-denied environments for building inspection

    Integrating mobile robotics and vision with undergraduate computer science

    Get PDF
    This paper describes the integration of robotics education into an undergraduate Computer Science curriculum. The proposed approach delivers mobile robotics as well as covering the closely related field of Computer Vision, and is directly linked to the research conducted at the authors’ institution. The paper describes the most relevant details of the module content and assessment strategy, paying particular attention to the practical sessions using Rovio mobile robots. The specific choices are discussed that were made with regard to the mobile platform, software libraries and lab environment. The paper also presents a detailed qualitative and quantitative analysis of student results, including the correlation between student engagement and performance, and discusses the outcomes of this experience

    Development of modern methods for the diagnostics of murals in architectural monuments

    Get PDF
    The paper studies monitoring of the state of murals, retrieval of data pertaining to this state and management and storing of the said data. The possibility of integration of traditional methods of mural mapping and modern methods of data visualization, including new Google Project Tango device technology for fixation of complex textures of inner 3D volumes of architectural monuments has been investigated (for instance Assumption Cathedral). We further discuss the express-scanning of automated cartogramming for further comparison of states and methods of assessing the damage done to the mural. Results indicate that additional work is needed to improve the precision of the method.peer-reviewe

    Local Motion Planner for Autonomous Navigation in Vineyards with a RGB-D Camera-Based Algorithm and Deep Learning Synergy

    Get PDF
    With the advent of agriculture 3.0 and 4.0, researchers are increasingly focusing on the development of innovative smart farming and precision agriculture technologies by introducing automation and robotics into the agricultural processes. Autonomous agricultural field machines have been gaining significant attention from farmers and industries to reduce costs, human workload, and required resources. Nevertheless, achieving sufficient autonomous navigation capabilities requires the simultaneous cooperation of different processes; localization, mapping, and path planning are just some of the steps that aim at providing to the machine the right set of skills to operate in semi-structured and unstructured environments. In this context, this study presents a low-cost local motion planner for autonomous navigation in vineyards based only on an RGB-D camera, low range hardware, and a dual layer control algorithm. The first algorithm exploits the disparity map and its depth representation to generate a proportional control for the robotic platform. Concurrently, a second back-up algorithm, based on representations learning and resilient to illumination variations, can take control of the machine in case of a momentaneous failure of the first block. Moreover, due to the double nature of the system, after initial training of the deep learning model with an initial dataset, the strict synergy between the two algorithms opens the possibility of exploiting new automatically labeled data, coming from the field, to extend the existing model knowledge. The machine learning algorithm has been trained and tested, using transfer learning, with acquired images during different field surveys in the North region of Italy and then optimized for on-device inference with model pruning and quantization. Finally, the overall system has been validated with a customized robot platform in the relevant environment

    DeepTIO: a deep thermal-inertial odometry with visual hallucination

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordVisual odometry shows excellent performance in a wide range of environments. However, in visually-denied scenarios (e.g. heavy smoke or darkness), pose estimates degrade or even fail. Thermal cameras are commonly used for perception and inspection when the environment has low visibility. However, their use in odometry estimation is hampered by the lack of robust visual features. In part, this is as a result of the sensor measuring the ambient temperature profile rather than scene appearance and geometry. To overcome this issue, we propose a Deep Neural Network model for thermal-inertial odometry (DeepTIO) by incorporating a visual hallucination network to provide the thermal network with complementary information. The hallucination network is taught to predict fake visual features from thermal images by using Huber loss. We also employ selective fusion to attentively fuse the features from three different modalities, i.e thermal, hallucination, and inertial features. Extensive experiments are performed in hand-held and mobile robot data in benign and smoke-filled environments, showing the efficacy of the proposed model
    • …
    corecore