23 research outputs found

    Ground-based ISAR imaging of cooperative and non-cooperative sea vessels with 3-D rotational motion

    Get PDF
    Includes bibliographical references (leaves 175-188).Inverse Synthetic Aperture Radar (ISAR) images of sea vessels are a rich source of information for radar cross section (RCS) measurement and ship classification. However, ISAR imaging of sea vessels is a challenging task because the 3-D rotational motion of such vessels often gives rise to blurring. Blurry ISAR images are not desirable because they lead to inaccurate parameter estimation, which reduces the probability of correct classification. The objective of this thesis is to explain how 3-D rotational motion causes blurring in ISAR imagery and to develop effective techniques for imaging cooperative and non-cooperative sea vessels for RCS measurement and ship-classification purposes respectively. Much research has been done to investigate the effect of 3-D rotational motion on an ISAR image under the assumption that an object's axis of rotation is constant over the coherent processing interval (CPI). In this thesis, a new quaternion-based system model is proposed to characterise the amount of blurring in an ISAR image when a sea vessel possesses 3-D rotational motion over a CPI. Simulations were done to characterise the migration of a scatterer through Doppler cells due to the time-varying nature of the Doppler generating axis of rotation. Simulation results with realistic 3-D rotational motion show substantial blurring in the cross-range dimension of the resulting ISAR image, and this blurring is attributed to the time-varying nature of the angle of the Doppler generating axis of rotation and the object's rotation rate over the CPI

    Temporal Characteristics of Boreal Forest Radar Measurements

    Get PDF
    Radar observations of forests are sensitive to seasonal changes, meteorological variables and variations in soil and tree water content. These phenomena cause temporal variations in radar measurements, limiting the accuracy of tree height and biomass estimates using radar data. The temporal characteristics of radar measurements of forests, especially boreal forests, are not well understood. To fill this knowledge gap, a tower-based radar experiment was established for studying temporal variations in radar measurements of a boreal forest site in southern Sweden. The work in this thesis involves the design and implementation of the experiment and the analysis of data acquired. The instrument allowed radar signatures from the forest to be monitored over timescales ranging from less than a second to years. A purpose-built, 50 m high tower was equipped with 30 antennas for tomographic imaging at microwave frequencies of P-band (420-450 MHz), L-band (1240-1375 MHz) and C-band (5250-5570 MHz) for multiple polarisation combinations. Parallel measurements using a 20-port vector network analyser resulted in significantly shorter measurement times and better tomographic image quality than previous tower-based radars. A new method was developed for suppressing mutual antenna coupling without affecting the range resolution. Algorithms were developed for compensating for phase errors using an array radar and for correcting for pixel-variant impulse responses in tomographic images. Time series results showed large freeze/thaw backscatter variations due to freezing moisture in trees. P-band canopy backscatter variations of up to 10 dB occurred near instantaneously as the air temperature crossed 0⁰C, with ground backscatter responding over longer timescales. During nonfrozen conditions, the canopy backscatter was very stable with time. Evidence of backscatter variations due to tree water content were observed during hot summer periods only. A high vapour pressure deficit and strong winds increased the rate of transpiration fast enough to reduce the tree water content, which was visible as 0.5-2 dB backscatter drops during the day. Ground backscatter for cross-polarised observations increased during strong winds due to bending tree stems. Significant temporal decorrelation was only seen at P-band during freezing, thawing and strong winds. Suitable conditions for repeat-pass L-band interferometry were only seen during the summer. C-band temporal coherence was high over timescales of seconds and occasionally for several hours for night-time observations during the summer. Decorrelation coinciding with high transpiration rates was observed at L- and C-band, suggesting sensitivity to tree water dynamics.The observations from this experiment are important for understanding, modelling and mitigating temporal variations in radar observables in forest parameter estimation algorithms. The results also are also useful in the design of spaceborne synthetic aperture radar missions with interferometric and tomographic capabilities. The results motivate the implementation of single-pass interferometric synthetic aperture radars for forest applications at P-, L- and C-band

    The University Defence Research Collaboration In Signal Processing

    Get PDF
    This chapter describes the development of algorithms for automatic detection of anomalies from multi-dimensional, undersampled and incomplete datasets. The challenge in this work is to identify and classify behaviours as normal or abnormal, safe or threatening, from an irregular and often heterogeneous sensor network. Many defence and civilian applications can be modelled as complex networks of interconnected nodes with unknown or uncertain spatio-temporal relations. The behavior of such heterogeneous networks can exhibit dynamic properties, reflecting evolution in both network structure (new nodes appearing and existing nodes disappearing), as well as inter-node relations. The UDRC work has addressed not only the detection of anomalies, but also the identification of their nature and their statistical characteristics. Normal patterns and changes in behavior have been incorporated to provide an acceptable balance between true positive rate, false positive rate, performance and computational cost. Data quality measures have been used to ensure the models of normality are not corrupted by unreliable and ambiguous data. The context for the activity of each node in complex networks offers an even more efficient anomaly detection mechanism. This has allowed the development of efficient approaches which not only detect anomalies but which also go on to classify their behaviour

    Active and Passive Multi-Sensor Radar Imaging Techniques Exploiting Spatial Diversity

    Get PDF
    The work here presented reports several innovative SAR and ISAR radar imaging techniques exploiting the spatial diversity offered by multi-sensor systems in order to improve the performance with respect to the conventional, single channel cases. Both the cases of dedicated transmitters and exploitation of opportunity transmitters are considered

    Active and Passive Multi-Sensor Radar Imaging Techniques Exploiting Spatial Diversity

    Get PDF
    The work here presented reports several innovative SAR and ISAR radar imaging techniques exploiting the spatial diversity offered by multi-sensor systems in order to improve the performance with respect to the conventional, single channel cases. Both the cases of dedicated transmitters and exploitation of opportunity transmitters are considered

    The University Defence Research Collaboration In Signal Processing: 2013-2018

    Get PDF
    Signal processing is an enabling technology crucial to all areas of defence and security. It is called for whenever humans and autonomous systems are required to interpret data (i.e. the signal) output from sensors. This leads to the production of the intelligence on which military outcomes depend. Signal processing should be timely, accurate and suited to the decisions to be made. When performed well it is critical, battle-winning and probably the most important weapon which you’ve never heard of. With the plethora of sensors and data sources that are emerging in the future network-enabled battlespace, sensing is becoming ubiquitous. This makes signal processing more complicated but also brings great opportunities. The second phase of the University Defence Research Collaboration in Signal Processing was set up to meet these complex problems head-on while taking advantage of the opportunities. Its unique structure combines two multi-disciplinary academic consortia, in which many researchers can approach different aspects of a problem, with baked-in industrial collaboration enabling early commercial exploitation. This phase of the UDRC will have been running for 5 years by the time it completes in March 2018, with remarkable results. This book aims to present those accomplishments and advances in a style accessible to stakeholders, collaborators and exploiters

    Coding of synthetic aperture radar data

    Get PDF

    Three Dimensional Bistatic Tomography Using HDTV

    Get PDF
    The thesis begins with a review of the principles of diffraction and reflection tomography; starting with the analytic solution to the inhomogeneous Helmholtz equation, after linearization by the Born approximation (the weak scatterer solution), and arriving at the Filtered Back Projection (Propagation) method of reconstruction. This is followed by a heuristic derivation more directly couched in the radar imaging context, without the rigor of the general inverse problem solution and more closely resembling an imaging turntable or inverse synthetic aperture radar. The heuristic derivation leads into the concept of the line integral and projections (the Radon Transform), followed by more general geometries where the plane wave approximation is invalid. We proceed next to study of the dependency of reconstruction on the space-frequency trajectory, combining the spatial aperture and waveform. Two and three dimensional apertures, monostatic and bistatic, fully and sparsely sampled and including partial apertures, with controlled waveforms (CW and pulsed, with and without modulation) define the filling of k-space and concomitant reconstruction performance. Theoretical developments in the first half of the thesis are applied to the specific example of bistatic tomographic imaging using High Definition Television (HDTV); the United States version of DVB-T. Modeling of the HDTV waveform using pseudonoise modulation to represent the hybrid 8VSB HDTV scheme and the move-stop-move approximation established the imaging potential, employing an idealized, isotropic 18 scatterer. As the move-stop-move approximation places a limitation on integration time (in cross correlation/pulse compression) due to transmitter/receiver motion, an exact solution for compensation of Doppler distortion is derived. The concept is tested with the assembly and flight test of a bistatic radar system employing software-defined radios (SDR). A three dimensional, bistatic collection aperture, exploiting an elevated commercial HDTV transmitter, is focused to demonstrate the principle. This work, to the best of our knowledge, represents a first in the formation of three dimensional images using bistatically-exploited television transmitters
    corecore