10,225 research outputs found

    Toward Energy Efficient Systems Design For Data Centers

    Get PDF
    Surge growth of numerous cloud services, Internet of Things, and edge computing promotes continuous increasing demand for data centers worldwide. Significant electricity consumption of data centers has tremendous implications on both operating and capital expense. The power infrastructure, along with the cooling system cost a multi-million or even billion dollar project to add new data center capacities. Given the high cost of large-scale data centers, it is important to fully utilize the capacity of data centers to reduce the Total Cost of Ownership. The data center is designed with a space budget and power budget. With the adoption of high-density rack designs, the capacity of a modern data center is usually limited by the power budget. So the core of the challenge is scaling up power infrastructure capacity. However, resizing the initial power capacity for an existing data center can be a task as difficult as building a new data center because of a non-scalable centralized power provisioning scheme. Thus, how to maximize the power utilization and optimize the performance per power budget is critical for data centers to deliver enough computation ability. To explore and attack the challenges of improving the power utilization, we have planned to work on different levels of data center, including server level, row level, and data center level. For server level, we take advantage of modern hardware to maximize power efficiency of each server. For rack level, we propose Pelican, a new power scheduling system for large-scale data centers with heterogeneous workloads. For row level, we present Ampere, a new approach to improve throughput per watt by provisioning extra servers. By combining these studies on different levels, we will provide comprehensive energy efficient system designs for data center

    Server-Centric PON Data Center Architecture

    Get PDF
    Over the last decade, the evolution of data center architecture designs has been mainly driven by the ever increasing bandwidth demands, high power consumption and cost. With all these in mind, a significant potential to improve bandwidth capacity and reduce power consumption and cost can be achieved by introducing PONs in the design of the networking fabric infrastructure in data centers. This work presents a novel server-centric PON design for future cloud data center architecture. We avoided the use of power hungry devices such as switches and tuneable lasers and encouraged the use of low power passive optical backplanes and PONs to facilitate intra and inter rack communication. We also tackle the problem of resource provisioning optimization and present our MILP model results for energy efficient routing and resource provisioning within the PON cell. We optimized the selection of hosting servers, routing paths and relay servers to achieve efficient resource utilization reaching 95% and optimum saving in energy consumption reaching 59%

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Hybrid Approach for Resource Provisioning in Cloud Computing

    Get PDF
    Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort or service provider interaction. Elasticity of resources is considered as a key characteristic of cloud computing using this key characteristic; internet services are allocated the only-needed resources. This allocation of resources however should not be at the expense of the services’ performance. Allocation of resources without degrading performance is called resource provisioning. Resource provisioning does not only support the elasticity of resources, but also enhances cost efficiency and sustainability. The goal of this work is to investigate resource provisioning to increase the percentage of resources utilization without degrading the performance so that the power consumption of the cloud data centers is reduced. To achieve this goal, a hybrid-approach for resource provisioning is developed. In this approach, a list of virtual machines is requested, passed to a selection algorithm, sorting the machines according to their load, compute the threshold of the machines’ load, and combining the high load with low load from two different virtual machines on one super virtual machine. The approach was implemented in a simulator called CloudSim. It was used to run two sets of experiments. The first is to measure the power consumption of the data center as whole and hosts as well. And the second is concerned with the processing times and memory usage.  The results have shown that this approach outperforms traditional counterparts in resource provisioning. The results showed that the hybrid approach achieved reduction of (5.85 MW/s) in power consumption compared with the traditional counterparts for the whole data center, as well as reduction of (2.48 MW/s) in power consumption for the hosts

    SLA-Oriented Resource Provisioning for Cloud Computing: Challenges, Architecture, and Solutions

    Full text link
    Cloud computing systems promise to offer subscription-oriented, enterprise-quality computing services to users worldwide. With the increased demand for delivering services to a large number of users, they need to offer differentiated services to users and meet their quality expectations. Existing resource management systems in data centers are yet to support Service Level Agreement (SLA)-oriented resource allocation, and thus need to be enhanced to realize cloud computing and utility computing. In addition, no work has been done to collectively incorporate customer-driven service management, computational risk management, and autonomic resource management into a market-based resource management system to target the rapidly changing enterprise requirements of Cloud computing. This paper presents vision, challenges, and architectural elements of SLA-oriented resource management. The proposed architecture supports integration of marketbased provisioning policies and virtualisation technologies for flexible allocation of resources to applications. The performance results obtained from our working prototype system shows the feasibility and effectiveness of SLA-based resource provisioning in Clouds.Comment: 10 pages, 7 figures, Conference Keynote Paper: 2011 IEEE International Conference on Cloud and Service Computing (CSC 2011, IEEE Press, USA), Hong Kong, China, December 12-14, 201

    Load Balancing and Virtual Machine Allocation in Cloud-based Data Centers

    Get PDF
    As cloud services see an exponential increase in consumers, the demand for faster processing of data and a reliable delivery of services becomes a pressing concern. This puts a lot of pressure on the cloud-based data centers, where the consumers’ data is stored, processed and serviced. The rising demand for high quality services and the constrained environment, make load balancing within the cloud data centers a vital concern. This project aims to achieve load balancing within the data centers by means of implementing a Virtual Machine allocation policy, based on consensus algorithm technique. The cloud-based data center system, consisting of Virtual Machines has been simulated on CloudSim – a Java based cloud simulator
    • …
    corecore