
Wayne State University Wayne State University

Wayne State University Dissertations

January 2019

Toward Energy Efficient Systems Design For Data Centers Toward Energy Efficient Systems Design For Data Centers

Bing Luo
Wayne State University

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Luo, Bing, "Toward Energy Efficient Systems Design For Data Centers" (2019). Wayne State University
Dissertations. 2328.
https://digitalcommons.wayne.edu/oa_dissertations/2328

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has
been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of
DigitalCommons@WayneState.

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_dissertations
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2328&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/2328?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2328&utm_medium=PDF&utm_campaign=PDFCoverPages

TOWARD ENERGY EFFICIENT SYSTEMS DESIGN FOR DATA CENTERS

by

BING LUO

DISSERTATION

Submitted to the Graduate School,

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2019

MAJOR: COMPUTER SCIENCE

Approved By:

———————————————————–
Advisor Date

———————————————————–

———————————————————–

———————————————————–

DEDICATION

To my beloved family.

ii

ACKNOWLEDGEMENTS

I would like to express my deep and sincere thanks to those who supported and en-

couraged me throughout my doctoral studies.

First and foremost, I am delighted to express my respectful gratitude to my advisor,

Prof. Weisong Shi for sharing his words of wisdom. His humor and insight encouraged me

to keep working on valuable research problems. Not only did he inspired me to think big

in academic research, but also he helped me in life.

I am also grateful to Dr. Nathan Fisher, Dr. Daniel Grosu, And Dr. Shaolei Ren for

serving as my committee members. Their professional suggestions on my prospectus and

dissertation familiarize myself with a broader range view of how to analyze and solve an

academic problem. This also helped to have a more comprehensive consideration and

review of problems.

I want to extend my thanks to Dr. Wensong Zhang, Dr. Ming Dian, Dr. Xiaozhong Li,

and their team, who provided me opportunities to cooperate with their team and solve real

data center challenges. Without their precious support, it would not be possible to conduct

these research. My special thanks also goes for former and present MIST and LAST group

members that I have had the pleasure to work with or alongside of.

Last but not least, I deeply appreciate the support and love from my parents and my

wife. Studying abroad is always tough but they provide me a warm harbor to eliminate

fatigue and continue to forge ahead.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgements . iii

List of Tables . viii

List of Figures . ix

Chapter 1 Introduction . 1

1.1 Problem Statement and Overview . 3

1.2 Server Customization for Power Efficiency of High-End Servers 5

1.3 Increasing Large-Scale Data Center Row Level Capacity by Statistical Power
Control . 7

1.4 Pelican: Power Scheduling for QoS in Large-scale Data Centers with Hetero-
geneous Workloads . 9

1.5 Summary of Contributions . 10

1.6 Outline . 11

Chapter 2 Background and Related Work . 12

2.1 Server Level Energy Efficient System Designs 12

2.2 Higher Level Energy Efficient System Designs 15

2.3 Energy Efficient System Designs for Heterogeneous System 18

Chapter 3 eCope: Workload-aware Elastic Customization for Power Efficiency of
High-End Servers . 21

3.1 eCope Design . 21

3.1.1 Pair training . 24

3.1.2 Analyzing . 25

3.1.3 Application . 27

iv

3.1.4 Discussing . 27

3.2 Case Study . 29

3.2.1 Basic components implementation 31

3.2.2 Process . 34

3.2.3 Evaluation . 36

3.3 Summary . 47

Chapter 4 Increasing Large-Scale Data Center Row Level Capacity by Statistical
Power Control . 48

4.1 Background on Data Center Power Provisioning 48

4.1.1 Data center power provisioning and job scheduling 48

4.1.2 Characteristics of data center power utilization 50

4.2 Ampere Design and Implementation . 52

4.2.1 Design choices and rationales . 53

4.2.2 Ampere architecture . 54

4.2.3 Power monitoring . 54

4.2.4 Interface to the job scheduler . 56

4.2.5 Controller . 59

4.2.6 Computing the percentage of frozen servers 59

4.3 Evaluation . 66

4.3.1 Experiment setup . 66

4.3.2 The effectiveness of Ampere’s control 72

4.3.3 Advantage over power capping approach 74

4.3.4 Factors that affect the TPW . 75

v

4.4 Summary . 80

Chapter 5 Pelican: Power Scheduling for QoS in Large-scale Data Centers with
Heterogeneous Workloads . 81

5.1 Review and Observation . 81

5.1.1 Rack power . 81

5.1.2 Power controlling . 82

5.2 Pelican Design and Implementation . 84

5.2.1 Architecture . 84

5.2.2 Power monitoring . 84

5.2.3 Resource agent and budget API . 84

5.2.4 Scheduler . 85

5.2.5 Computing the power budget for servers 86

5.2.6 Resource agent . 90

5.3 Evaluation . 91

5.3.1 Experimental setup . 91

5.3.2 The effectiveness of resource agent 92

5.3.3 The effectiveness of Pelican’s control 93

5.3.4 DVFS approach comparison . 96

5.3.5 Tuning for QoS . 98

5.4 Summary . 99

Chapter 6 Conclusion . 100

Chapter 7 Future Work . 102

References . 103

vi

Abstract . 118

Autobiographical Statement . 120

vii

LIST OF TABLES

Table 1 The average system idle power and the average TFS idle power 37

Table 2 The average system idle power and the average MySQL idle power . . 38

Table 3 The average system idle power and the average PHP/Apache idle power 40

Table 4 Fitting results for TFS . 42

Table 5 Fitting results for MySQL . 44

Table 6 Fitting results for PHP/Apache . 47

Table 7 Key notations in problem formulation. All power metrics used in the
problem formulation is normalized to PM 60

Table 8 Controller effectiveness under light / heavy workload. The experiment
runs for 24 hours and the measurements are taken every minute. umean
and umax are the mean/max freezing ratio. Pmean and Pmax are the
mean/max power draw. V iolations is the total number of power vio-
lations. 73

Table 9 GTPW under different over-provision ratio rO and workload condition.
Pmean and Pmax are the mean and max power of the control group,
respectively, which are good indicators of the power demand. umean is
the average freezing ratio. Bold rows represent results under typical
workload. 80

Table 10 Key notations in problem formulation. All power metrics used in the
problem formulation is normalized to PM 88

Table 11 Controller effectiveness under light / heavy workload. The experiment
runs for 24 hours and the measurements are taken every 10s. Rmean

and Rmax are the mean/max impact ratio. Pmean and Pmax are the
mean/max power draw. V iolations is the total number of power vio-
lations. 94

Table 12 Qos under different safe rack power Ps and workload condition. Bold
rows represent results under typical workloads. Gt is the throughput
gain. Pmean and Pmax are the mean and maximum power for the con-
trol group, which are good indicators of the power demand. Rmean is
the average impact ratio. 99

viii

LIST OF FIGURES

Figure 1 Power hierarchy in data center. 2

Figure 2 A high level overview of proposed research topics. 3

Figure 3 The outline of eCope. 22

Figure 4 The pair training process of eCope. 23

Figure 5 The workload distribution of TFS. 30

Figure 6 The structure of power monitor. 32

Figure 7 The system idle power over 3 periods. 36

Figure 8 Total system power when four jobs are executed sequentially with
same workload but different idle power. 37

Figure 9 TFS Static workload-power functions(when NIC is 1000Mbps and
disk is in normal mode). 41

Figure 10 The original workload-power relation and The optimized workload-
power relation for TFS. 41

Figure 11 MySQL Static workload-power functions(when NIC is 1000Mbps and
disk is in normal mode). 43

Figure 12 The original workload-power relation and the optimized Workload-
power relation for MySQL. 44

Figure 13 PHP/Apache Static workload-power functions(when NIC is 100Mbps
and disk is in normal mode). 46

Figure 14 The original workload-power relation and the optimized Workload-
power relation for PHP/Apache. 46

Figure 15 The CDF of the power utilization normalized to the provisioned power
budget on rack, row and data center levels. 50

Figure 16 Row power of five randomly chosen rows during a two-hour period.
The grayscale represents the power utilization. We can see both tem-
poral and spatial variations. 51

Figure 17 System architecture of Ampere. 55

ix

Figure 18 Power drops over time when a server is frozen. The figure shows the
average power normalized to the rated power of about 80 servers at
different time points after being frozen. The noises on the curve are
due to the randomness of the workload on the servers. 56

Figure 19 The effects of freezing ratio u on the power change f(u). We plot
the 25th, 50th and 75th percentile for f(u) under different u. f(u) is
rO-dependent, so we plot the normalized values. 58

Figure 20 The control function F from Pt to ut. The threshold rthreshold is defined
by PM − Et. Note the curve varies for different Et and kr. 64

Figure 21 The CDF of batch job durations in the production cluster. 67

Figure 22 The power of a row in 24 hours, normalized to the maximum power.
The values on the X-axis do not correspond to actual wall clock. . . . 68

Figure 23 The CDF of the power changes of the control group on various time
scales. For the k-minute scale, we compute a sequence of the maxi-
mum power for every k minutes, and then plot the CDF of the first
order differences of the power sequence. The power changes are nor-
malized to the provisioned power budget. 69

Figure 24 The freezing ratio ut and its effects on the power utilization, on both
light (a) and heavy (b) workload over 24 hours. The control group
does not have power control and thus the power differences between
the control group and experiment group are approximately the effects
of the power control. 72

Figure 25 The 99.9th percentile normalized latency of various operations in the
Redis-benchmark, using either power capping or Ampere as power
controller. 74

Figure 26 The effect of Ampere on power and throughput. The box highlights
the effect: the control actions effectively reduces both the power and
the throughput of the experiment row. Ampere only applies the con-
trol action when the power is above the threshold, leaving other re-
gions unaffected. 78

Figure 27 System Architecture of Pelican. 83

Figure 28 Average time for resource agent to reduce power under various work-
loads and given different reduce ratio. 93

x

Figure 29 Power utilization under light (a) and heavy (b) workload. Pelican is
deployed on Experiment group. And the control group is the base line
for comparison. 95

Figure 30 Latency comparison using either DVFS or Pelican as power controller.
Latency normalized to the Latency throughput in both case. 97

Figure 31 Throughput distribution using either DVFS or Pelican as power con-
troller. Throughput normalized to the maximum throughput in both
case. 97

xi

1

CHAPTER 1 INTRODUCTION

The continuous growth of numerous cloud services, along with the explosive emer-

gence of Internet of Things(IoT) and edge computing, has significantly fueled a surging

demand for data centers worldwide. Modem large-scale data centers(e.g Google and Face-

book) can consume megawatts of electricity and cause a growing concern over carbon

emission [62]. And 30% of the enterprise data center are expected to run out of power

capacity within 12 months according to an industry survey from the Uptime Institute [45].

As a result, the power consumption of data centers over the world is predicted to approach

1,000TWh within a decade(2013-2025), which is more than the combined total power

consumed by Japan and Germany for all purposes [47]. The huge power demands not

only imply significant electricity cost but also lead to tremendous carbon emission.

Power consumption of data centers has tremendous implications on both operating

and capital expense. The power infrastructure, along with the cooling system, incurs a

capital expense of US$10-25 per watt of IT critical power, which cost a multi-million or

even billion dollar project to add new data center capacities [6,21,67,95,101]. The power

infrastructure capEx even exceeds 1.5 times of the energy cost over a 15-year lifespan

[26,30]. Further, compounded by the rising electricity price, energy cost has been quickly

escalating and become a major fraction of data center’s operating expense. Cloud service

providers such as Microsoft and Google have been integrating green energy sources (e.g.,

wind or solar power) into data centers’ power supply to cut their energy cost and emission

[39]. Given the high cost, it is important to fully utilize the capacity of data centers to

reduce the Total Cost of Ownership(TCO).

2

Figure 1: Power hierarchy in data center.

Understanding the power hierarchy and power behavior in data center is the founda-

tion for managing the power infrastructure for maximum utilization and minimum Total

Cost of Ownership(TCO). Most data centers, including new constructions, rely on diesel

generators, uninterrupted power supplies (UPS), and power distribution unit (PDU). The

left side of Figure 1 illustrate the power architecture of a typical data center. A tree-type

power hierarchy is commonly found in today’s data centers. High-voltage grid power first

enters the data center through an automatic transfer switch (ATS), which selects between

grid power (during normal operation) and standby generation (during utility failures).

Then, power is stepped down and fed into the UPS, which outputs “protected” power to

multiple power distribution units (PDUs) each supporting a few tens of racks. These racks

3

Server Level

eCope: Workload-aware Elastic

Customization for Power Efficiency

of High-End Servers

Pelican: Power Scheduling for

QoS in Large-scale Data Centers

 with Heterogeneous Workloads

Ampere: Increasing Large-Scale

Data Center Capacity

by Statistical Power Control

Rack Level

Row Level

Figure 2: A high level overview of proposed research topics.

are some times called a row in data center. At the rack level, there is a power strip (also

called rack PDU) that directly connects to servers. Then servers are provisioned according

to the power budget at each level. The provisioning is often based on the maximum power

of a server. In some data centers, extra UPS may be deployed before row/rack PDU to

protect a row/rack, complementing the centralized UPS [95]. The UPS before ATS and

cluster-level PDUs handle power at a high or medium voltage and hence are expensive,

while the rack-level PDU and other UPSs have a lower voltage and is relatively cheap (e.g.,

20-50 US cents per watt) [4,67]. Note that redundancy (e.g., duplicating each non-IT unit

or “2N”) is also common in data centers to achieve a high availability.

1.1 Problem Statement and Overview

One of the most important challenges in our data centers is insufficient capacity given

the ever increasing demand on computation. There are multiple factors constraining the

capacity of a data center. The data center is designed with a space budget and power

budget. With the adoption of high-density rack designs such as Scorpio [79] and Open

4

Compute Project [65], the capacity of a modern data center is usually limited by the power

budget. So the core of the challenge is scaling up power infrastructure capacity. Upgrading

power systems is a radical solution that allows one to add more servers, racks, and other

supporting devices. However, resizing data center initial power capacity is similar to build

a new data center, which can be a great undertaking since conventional centralized power

provisioning scheme does not scale well [45]. On the other hand, increasing power utiliza-

tion means that more (powerful) servers can be deployed to deliver better performances

and higher user satisfaction without additional capital expense for capacity expansion. So

how to maximize the power utilization and optimize the performance per power budget is

critical for data centers to deliver enough computation ability.

There are several main problems in current data centers that preventing maximize the

performance per power budget. First of all, each server in data center is usually build

for general purpose computing and its configurations are not optimized for running work-

loads. While it is necessary to allow different services running on the same server, it is

also common that some server holds specific service for a long time. Further more, for the

same service, the load changes over time. A static configuration is usually not suitable for

changing load. Second, power utilization of data centers is often low and also limits the

performance of the data center. In other words, the performance per power budget is low.

Third, the already over-complicated scheduler in real production environment prevents

power control from integrating with job scheduler.

To explore and attack the challenges of improving the power utilization, we work on

different levels of data center, including server level, row level. Figure 1 shows an overview

of our system. For server level, we take advantage of modern hardware to maximize power

5

efficiency of each server. More specifically, given a specific application and a workload

range, we proposed a framework that can find a way to achieve energy proportionality

through hardware customization for a server. With eCope, we can find an optimized dy-

namic workload-power function and customize hardware according to both workload and

the related optimized configuration. For rack level, we investigate the behavior of power

and task in data centers and present Pelican, a new power scheduling system for large-scale

data centers with heterogeneous workloads. Instead of moving tasks on spatial dimension,

we tried to move tasks on temporal dimension. Based on the current power of a rack, we

will find an optimized power budget for each server and by limiting resources for tasks,

we can directly control the performance and power of a server. For row level, we present

Ampere, a new approach to improve throughput per watt by provisioning extra servers.

Ampere keeps the total power under the budget and brings zero performance disturbance

to the existing jobs. Different from existing approaches that react to an over-committing

event by capping the power draw, Ampere proactively reduces power violations by driving

the workload to other less utilized rows.

In the following several subsections, we will introduce briefly why and how we address

these research topics on each level to provide comprehensive system support for energy

efficiency in data centers.

1.2 Server Customization for Power Efficiency of High-End Servers

Hardware components, especially CPU and Memory, have made a lot of progress in

terms of energy efficiency in the last decade. The state-of-the-art servers in datacenters are

still far from being energy proportional [7]. Barraso and Hale report the CPU utilization

6

of more than 5,000 servers during a six-month period, and they propose an energy pro-

portional design for datacenter servers [7]. It means that “performance per watt“ should

be considered as the most important metric, particularly when the server is at the normal

utilization level. After that, many approaches [24,63,81,82,85,87] have been proposed to

improve energy-proportionality in datacenters, using both software and hardware. How-

ever, they do not consider the different workloads of a server. Reiss et al. notice that

workload characteristics are heterogeneous in resource types and their usage according to

their analysis of the first publicly available trace data from a sizable multi-purpose clus-

ter [76]. Furthermore, Voigt et al. find that workload characteristics are less steady and

less predictable because applications are more agile and flexible [93]. This makes energy

proportional design more difficult. Metri et al. try to understand how exactly the appli-

cation type and the heterogeneity of servers and their configurations impact the energy

efficiency of datacenters [61]. And they observe that each server has a different applica-

tion specific energy efficiency values based on the type of application running, the size of

the virtual machine, the application load, and the scalability factor.

Furthermore, Even for the same server and same application running on it, Dean and

Barroso notice that the latency variability is common, and the variability can be amplified

by the scale [18]. In fact, variability is not only limited to the latency, it exists in all

components of a server. Such dynamics and heterogeneity reduce the effectiveness of

traditional energy proportional schema because traditional energy proportional schemas

are usually optimized for a certain type of hardware or operating system or workload. So,

it is better to design an elastic customization schema for servers.

Motivated by the recent observations that the energy efficiency of hardware compo-

7

nents varies to a great extent depending on the workload characteristics, we propose

eCope, workload-aware elastic customization for power efficiency of high-end servers, to

reduce power consumption by workload aware and hardware customization for servers

in datacenters. Our unique contribution is that eCope platform can take advantage of

any configurable hardware that fits our assumption to improve the energy proportionality

for various kinds of services without knowing the details of the target service. We illus-

trate three case studies to show how can we apply our idea to typical real-world back-end

services(file system, database services and web-based services).

1.3 Increasing Large-Scale Data Center Row Level Capacity by Statis-

tical Power Control

The power budget in a data center is, unfortunately, often not fully utilized. As studies

[22,40,57] point out, the typical power utilization is around only 60% of the provisioned

power, which effectively doubles the cost of data centers. We found similar utilization

numbers in our own data centers.

The main reason for the under-utilization is conservative server provisioning. People

commonly ensure that the sum of the rated power1 of all equipment does not exceed the

power budget. However, with modern power saving mechanisms, actual power draw from

a server depends on its utilization, which seldom reaches the peak level [8, 27, 53]. The

low utilization is due to the variations in workload, as well as trying to guarantee the SLAs

for latency-critical services. In other words, servers are provisioned according to the worst

case power draw, while they operate at the average case.

1Following the definition in [22], we use the rated power, or the measured maximum power draw from
equipment, instead of the name plate power that is often higher.

8

To fully utilize power budget in data center, we proposed Ampere, a novel power man-

agement system for data centers to increase the computing capacity by over-provisioning

the number of servers. Instead of doing power capping that degrades the performance of

running jobs, we use a statistical control approach to implement dynamic power manage-

ment by indirectly affecting the workload scheduling, which can enormously reduce the

risk of power violations. Instead of being a part of the already over-complicated scheduler,

Ampere only interacts with the scheduler with two basic APIs. Instead of power control on

the rack level, we impose power constraint on the row level, which leads to more room for

over provisioning.

The approach is conceptually simple: by scheduling fewer jobs to rows with less unused

power or letting them wait in the scheduler queue, we can reduce the amount of power

increase and prevent power violations. However, we face several challenges implementing

this scheme into a production data center.

First, the data center job scheduler is a very complicated system. Different data cen-

ters use different scheduling policies to achieve diverse goals. It is hard to have a general

solution that directly adds power scheduling into these already-over-complicated policies.

To solve this problem, we limit our interface with the job scheduler to two simple opera-

tions: freeze a server and unfreeze a server. Freezing a server advises the scheduler not to

assign new jobs to the server (the existing jobs are unaffected), while unfreezing does the

opposite. By controlling the number of frozen servers on a row, we can statistically affect

the number of jobs scheduled there without changing the scheduling policy.

The second challenge is how to estimate the number of servers we need to freeze.

The goal is to freeze as few machines as possible to minimize the negative impact on

9

scheduling and overall computation capacity, while keeping the row-level power below

the budget. We solve this challenge with a data-driven approach. We collect data from

production data centers, and derive a statistical model on the effects of freezing servers on

the power consumption. We compute the number of servers to freeze at each time interval

based on the model. Obviously the model is not perfect, and we use Receding Horizon

Control (RHC) techniques [43] to continuously adjust the number of frozen servers to

compensate for the inaccuracy of the model.

1.4 Pelican: Power Scheduling for QoS in Large-scale Data Centers

with Heterogeneous Workloads

Conservative server provisioning along with the diurnal pattern [59,68], unfortunately,

lead to typical low power utilization in modern data centers [22, 32, 40, 57]. The Ampere

solution ake this opportunity to improve QoS. However, it is mainly suitable for offline

workloads. Furthermore, scheduling a task to a different server do not affect its perfor-

mance only when the task is location independent. Unfortunately, many offline workloads

require to run on the server where data is located because of the huge data size. This also

limits the type of workloads.

Combining online and offline services on the same set of servers can obviously increase

the power utilization but also introduce more challenges. 1) The number of online ser-

vices tasks is purely depending on user input, which data center manager cannot control.

Large power fluctuations are common and the duration for the increase in power is much

shorter than offline workloads. 2) To make heterogeneous workloads work harmoniously,

the complexity of job scheduler is ever increasing. Furthermore, we may rethink the rela-

10

tionship between job scheduler and power management.

To address the above limitations and challenges, we investigate the behavior of power

and task in data centers and present Pelican, a new power scheduling system for large-scale

data centers with heterogeneous workloads. Instead of moving tasks on spatial dimension,

we tried to move tasks on temporal dimension. Based on the current power of a rack, we

will find an optimized power budget for each server and by limiting resources for tasks,

we can directly control the performance and power of a server. We also find that task

priority is a good indicator when selecting target tasks to improve overall QoS. In this way,

our system can control power resource without modifying the task assignment. This work

is evaluated in a production data centers in Baidu, the largest search engine and one of

largest cloud service providers in China with millions of servers running billions of tasks

per day.

1.5 Summary of Contributions

By combining all these studies, we will provide:

1. A general workload-aware framework, eCope [55], is proposed to achieve energy

proportionality for various kinds of services in data centers. Energy proportionality

is able to be achieved by eCope without knowing the details about the service by

taking advantage of any configurable hardware that fits our assumption. The advan-

tage of eCope has been demonstrated in three typical back-end services: file system,

database service and web-based service.

2. We proposed a new effective method to indirectly control the data center power by

statistically influencing the amount of jobs scheduled to a row. We implemented

11

a new system, Ampere [96], that increases the computation capacity in large-scale

data centers with fixed power budget by cultivating the otherwise unused power at

a large scale; Ampere suggests a simple yet powerful interface to connect the power

controller with the job scheduler, without modifying the job scheduler logic. And

we conduct a large-scale empirical evaluation in a real data center with production

workload, and detailed performance measurement using controlled experiments.

3. A new power scheduling system, Pelican [54], is proposed for QoS in large-scale

data centers with fixed power budget and heterogeneous workloads by improving

power utilization on a large scale; A two-level design is adopted to separate over-

all power scheduling and local power controlling for each server, which makes our

power scheduling system more flexible and efficient for heterogeneous workloads;

A simple and effective method is introduced that leverage task priority and hetero-

geneous workload property to improve QoS without modifying the task assignment;

A large-scale empirical evaluation of Pelican is conducted against production work-

loads in a real data center using controlled experiments to show the effectiveness

and performance of our system.

1.6 Outline

The rest of this document is organized as follows: Chapter 3 introduces an energy ef-

ficient framework, eCope, for server level. A row level power controlling system, Ampere,

will be described in Chapter 4. A rack level power scheduling system for heterogeneous

workloads, Pelican, is proposed in Chapter 5. Finally, Chapter 6 concludes the dissertation

and describes future work.

12

CHAPTER 2 BACKGROUND AND RELATED WORK

As we discussed in Chapter 1, the key of delivering more computation ability given

existing power infrastructure is how to practically maximize the power utilization and

optimize the performance per power budget.

The problem can be divided to different levels because of the nature of the power

hierarchy in data center. In this chapter, we describe the background and state of the art

energy efficient system designs for data center.

2.1 Server Level Energy Efficient System Designs

On server level, researchers usually try to improve energy efficiency from two different

aspects of view: the service itself or the available hardware. So previous studies in this

area generally fall into two ways: One way is to understand how a specific service is

running and the using these information to do optimization. The other way is to utilize

new features of hardware or design new hardware or device.

Characteristics of a service or application is helpful to do fine-grained optimization.

Xu et al. [103] propose an energy-aware query optimization framework, PET, enables the

database system to run under a DBA-specified energy/performance tradeoff level via its

power cost estimation module and plan evaluation model. They also introduce a power-

aware online feedback control framework for energy conservation at the DBMS level based

on rigorous control-theoretic analysis for guaranteed control accuracy and system stability

[104]. Both work are built as a part of the PostgreSQL kernel.

Zheng et al. [108] notice that storage servers consume significant amounts of energy

and are highly non-energy-proportional. So they propose a storage system, called Log-

13

Store, that enables two-speed disks to achieve substantially increased energy proportion-

ality and, consequently, lower energy consumption. Psaroudakis et al. [71] argue that

databases should employ a fine-grained approach by dynamically scheduling tasks using

precise hardware models and so they propose a dynamic fine-grained scheduling for DBMS

memory accessing. Lang et al. [44] focus on designing an energy-efficient clusters for

database analytic query processing. They explore the cluster design space using empirical

results and propose a model that considers the key bottlenecks to energy efficiency in a par-

allel DBMS. Amur et al. [2] focuses on large-scale cluster-based storage and data-intensive

computing platforms that are increasingly built on and co-mingled with such storage. They

propose Rabbit, which is a distributed file system that arranges its data-layout to provide

ideal power-proportionality down to very low minimum number of powered-up nodes.

On the other hand, using new hardware design can also reduce the power directly

for different kinds of services. Malladi et al. [56] observed that currently DDR3 memory

in servers is designed for high bandwidth but not for energy proportionality. Mobile-

class memory, however, addresses the energy efficiency challenges of server-class memory

by forgoing more expensive interface circuitry. Therefore they take advantage of mobile

DRAM devices, trading peak bandwidth for lower energy consumption per bit and more

efficient idle modes. Zhang et al. [107] believes that current fine-grained DRAM architec-

ture incurs significant performance degradation or introduces large area overhead. So they

propose a novel memory architecture called Half-DRAM. In this architecture, the DRAM

array is reorganized that only half of a row can be activated. Hu et al. [33] focused on

how energy-saving mechanisms through the design of Internet transmission equipment

e.g. routers, and green reconfigurable router (GRecRouter). they mainly contribute to the

14

design and manufacture of some core components of a green Internet like energy-efficient

routers. Lo et al. [51] present PEGASUS, a feedback-based controller that using new fea-

ture of current available CPU, called Running Average Power Limit (RAPL) to improves the

energy proportionality of WSC systems.

Yong et al. [23] present a practical and scalable solution, Cloud- PowerCap, for power

cap management in a virtualized cluster. It is closely integrated with a cloud resource man-

agement system, and dynamically adjusts the per-host power caps for hosts in the cluster.

Chen et al. [12] try to address challenges of reliability and energy efficiency of resource-

intensive applications in an integrated manner for both data storage and processing in

mobile cloud using k-out-of-n computing. Kazandjieva et al. [38] take the advantages of

different classes of devices and put the application running on the best location. Their

implementation , called Anyware, provides desktop-class performance while reducing en-

ergy consumption through a combination of lightweight clients and a small number of

servers. Recently, it is suggested that we can halt the system when the it is idle, and

using a static rate when it is busy. This strategy performs almost as good as an optimal

speed scaling mechanism [99]. Wong et al. [100] present Knight Shift that presents an

active low power mode. By the addition of a tightly-coupled compute node, their system

enables two energy-efficient operating regions. Liu et al. [49] present a runtime power

management tool called SleepScale, which is designed to efficiently exploit existing power

control mechanisms. Pillai and Shin [69] present real-time DVS algorithms that modify the

OS’s real-time scheduler to provide energy savings while maintaining real-time deadline

guarantees.

Compared with previous work, our work is looking for a general workload-aware

15

framework that can improve energy proportionality without knowing the details about

the target service. So that we do not need to modify the current service, and thus can sup-

port various kinds of services. On the other hand, although we use DVFS as an example

of the configurable hardware in our case study, our framework can take advantage of any

configurable hardware (even for future hardware) that fits our assumption. For example,

in MySQL and PHP/Apache case studies, the optimized configuration includes the NIC

configuration.

2.2 Higher Level Energy Efficient System Designs

On a higher level, Fan et al. did the first quantitative study on large-scale data center

power consumption [22]. They showed that there were wide gaps between the average

power utilization on rack, PDU, and cluster levels. They pointed out the potential oppor-

tunities of using power over-provisioning to increase data center capacity, and proposed

a theoretical approach to implement over-provisioning with power capping mechanisms.

Wang et al. [94] further characterized the power utilization. In particular, they focused on

the power peaks and valleys. Many projects on power optimization, including ours, con-

firmed the observations in these work, and designed control mechanisms based on these

observations.

There are two major approaches to manage power: using hardware features like DVFS,

and using power-aware workload scheduling [64,66]. We introduce related work in both

categories and describe the uniqueness of our approach.

First main approach is controlling power by hardware power capping. Simple mech-

anisms directly control the hardware power states (sleep, off, on). PowerNap [58] and

16

Anagnostopoulou et al. [3] target to minimize idle power and transition time within dif-

ferent power states. PowerNap turns several components into power saving states when

the server is idle, and wakes them up upon a user request. Given the time it takes to switch

between states, people have proposed different ways to minimize the impact to SLAs dur-

ing transitions [60]. Liu et al. showed that it is possible to exploit the best power policy

for a given SLA constraint on a single node, and proposed SleepScale, a runtime power

management tool to efficiently apply power control [50].

More advanced mechanisms use hardware features like power scaling. Power capping

by DVFS imposes an effective power control over CPU and DRAM [22]. The challenge is

to lower the system speed while keeping the job SLA violations as few as possible. Sharma

et al. implemented a feedback-based power management protocol that can provide some

SLA guarantees when DVFS is enabled [80]. Lo et al. [52] proposed a more general ver-

sion called PEGASUS, which works on a data center level. Raghavendra et al. proposed

a theoretical power management proposal [73] with provable correctness, stability, and

efficiency. This proposal is hard to implement in real data centers, as it requires highly

coordinated control on both hardware and software layers, which is costly to achieve in

realtime.

On the other hand, workload scheduling and power management Many approaches

use server consolidation. They transition idle servers into low-power or power-off states

when the utilization is low [9, 15, 36, 42, 46, 48, 70, 77, 83, 98]. IBM proposed a real-

time power management algorithm for parallel computers, which uses workload history

to predict short-term workload fluctuations and then decides which servers to turn on and

off [10]. Xu et al. [102] proposed a technique by adjusting the number of active nodes

17

using workload information under certain time intervals. However, turning off servers is

a complex process that requires process migration or restarts, and thus it is very hard to

guarantee the SLA requirements [52]. Freezing servers in Ampere is different, as it just

rejects new jobs and does not affect existing ones.

Researchers have also proposed ideas on how to integrate power management into the

job scheduler to achieve better power usage pattern. Chase et al. used a dynamically re-

configurable switch to control the routing of requests, so they would use a server that could

optimize energy consumption while satisfying the SLA [11]. Verma et al. built a power-

aware application placement controller for high performance computing clusters [91].

Facebook built Autoscale to keep all active servers above a moderate CPU utilization, in

order to achieve better power efficiency [5]. It was tightly coupled with the job scheduler,

who chose a subset of servers as the active pool and automatically adjusted the pool size.

On the other hand, Power aware scheduling policies can also be integrated into other QoS-

aware cluster management systems [19,20,53,90,92,105], which will further complicate

the design and implementation of the cluster schedulers. Instead of a tight coupling with

a scheduler designed for a simple workload pattern or a scheduler which has been over-

complicated, our loose coupling with scheduler allows Ampere to integrate with complex

data-center-level job schedulers with unknown custom policies and job patterns. Govindan

et al. used workload power profiles and implemented dynamical power provisioning on

the PDU-level using DVFS [25]. They implemented their technique in a data center proto-

type and showed the improvement of the Computation per Provisioned Watt (CPW) for a

few types of applications (e.g. TPC-W). For multi-tenant data centers, Niangjun Chen et al.

analyze the supply function bidding in the context of demand response [13], which find

18

the difference between the tenants’ performance cost minimization problem and another

problem that characterizes market outcome. Qihang Sun et al., on the other hand, study

the fair demand response in multi-tenant data centers based on max-min fairness [86].

Commercial data center power management solutions focus on power monitoring, vi-

sualization and reporting. Some tools provide an interface to implement power capping.

At low level, most tools, including ours, use the IPMI specifications to communicate with

the Baseboard Management Controller (BMC), to monitor power draw, among other in-

formation, from individual servers. The software tools integrate the power at rack, row or

data center level.

Common tools include Intel DCM Energy Director [35], IBM PowerExecutive [34], HP

Thermal Logic [31], and Cisco Unified Computing System [16]. Most of the tools are

vendor specific, and do not handle data centers of our scale, and thus we build our own

power monitoring solution.

2.3 Energy Efficient System Designs for Heterogeneous System

The major risk of using over-provisioning is power outage so power scheduling be-

comes the core part of using it. It can be classified into two directions: scheduling on the

spatial dimension like power-aware workload scheduling and scheduling on the temporal

dimension like task resource management [64,66].

Ideal power scheduling on temporal dimension reduces power draw of a task when

the power budget is not enough and assigning more resources after there are available

power resources in order do not affect the performance of the task. Sharma et al. pro-

posed a real-time power management protocol in the Linux kernel mainly designed for

19

web service [80]. Lo et al. proposed a feedback system that learns from request latency

statistic and adjusts hardware limits to provide just fast enough server power for data

center [52]. Luo et al. designed a general platform for back-end workloads to achieve

energy proportionality by finding the best hardware configuration for given workload and

service properties [55]. Zheng et al. explored the combination of power capping using use

four kinds of DVFS algorithm and power shaving by UPS batteries [109]. On the other

hand, utilizing other configurable hardware or software resource can be found in recent

works. Sun et al. proposed performance-equivalent resource configuration(PERC) to re-

duce power usage while keeping the same performance [84]. Kontorinis et al. introduced

an architecture that equips each server with a UPS so that the server can discharge the

battery hen power budget is low and charge the battery otherwise [41].

Wrong task placement is one of the reasons why the power budget of a subsystem is not

enough while global power budget is still enough. Scheduling task for energy or power has

been widely studied. One of the simple ideas is place tasks together and turn off unused

servers, which is called server consolidation. By reducing the idle power, researches tried

to improve the overall energy efficiency of a data center [9,15,36,42,46,48,70,77,83,98].

PowerNap [58] and Anagnostopoulou et al. [3] leveraged hardware power states to change

the power usage of a server according to the current workload. One key problem to do so

is the long transition time [60] so SLAs or QoS is usually taken into consideration.

The core reason for wrong task placement is usually considered as the fault of Job

scheduler. Nevertheless, many researchers tried to integrate power management into the

job scheduler or combine power scheduler with QoS-aware cluster management systems

[11,19,91]. Yao et al. proposed a framework called TS-BatPro to rearrange batching jobs

20

to save energy for multi-core servers in data center [106]. It studies the performance and

power characteristics of a server and schedules global batching jobs based on the model.

Tesfatsion et al. introduced a dynamic resource management and scheduling system to

improve energy efficiency for cloud services [88]. Cheng et al. proposed heterogeneity-

oblivious task assignment method, E-Ant, which can improve overall energy efficiency

without hurting the performance of a heterogeneous Hadoop cluster [14]. Petrucci et

al. proposed a QoS-aware task management solution that learns from existing tasks map

efficient device to meet the QoS requirements [68]. These systems work well on its own

but it is hard to integrate into real data center job scheduler because there have been

tremendous factors for it to decide where to place task.

21

CHAPTER 3 ECOPE: WORKLOAD-AWARE ELASTIC CUSTOMIZATION
FOR POWER EFFICIENCY OF HIGH-END SERVERS

In this Chapter, we try to find a general workload-aware approach to achieve energy

proportionality for servers in a datacenter. What we propose is called eCope, Workload-

aware Elastic Customization for Power Efficiency of High-End Servers, aiming to improve

energy-proportionality by workload-aware hardware customization for servers in data cen-

ters. More specifically, given a specific application and a workload range, we want to pro-

vide a framework that can find a way to achieve energy proportionality through hardware

customization for a server. With eCope, we can find an optimized dynamic workload-

power function and customize hardware according to both workload and the related opti-

mized configuration.

3.1 eCope Design

Although Barraso and Hale propose energy proportional design for datacenter servers

[7], there is no precise definition of how we can describe energy proportionality. The

workload-power relation functions for current servers are still much higher than linear

relation function [7], especially in the regular workload interval. To improve the energy

proportionality, we want to reduce the power for the same workload. So, we use workload
power

to describe the energy proportionality. If the power is reduced for the same workload, this

metric becomes larger. The aim of eCope is to find a general method and framework to

improve energy proportionality for servers within a datacenter. The servers that we focus

on should satisfy the following assumptions:

• It is dedicated to run a particular application.

22

Workload

Hardware

configurability

Experiment data

Dynamic workload-power

function

Measure

Analyze

Improve energy proportionality

eCope
Meas

Customize

Figure 3: The outline of eCope.

• Components of the server should be configurable to different states.

• For each configuration, the workload-power relation does not change over time.

There are two key observations behind our methodology. First, if we can fix the work-

load, different hardware configurations may result in different power behavior. There must

be an optimal hardware configuration for this particular workload, so that we can do cus-

tomization to improve energy proportionality. Second, for different workloads, the optimal

hardware configuration may be different. Thus we need to have an elastic customization.

In short, our goal is to identify the best hardware configuration under different workloads.

Figure 3 shows the outline of eCope. The main input of eCope is workload character-

istics and hardware configurability. Workload characteristics refer to the metric of instant

performance such as network throughput, request per second, CPU utilization and so on.

It can be measured by monitoring the NIC, CPU or the service. User needs to choose a

suitable metric to describe the workload for their service. In our case studies, we choose

23

Workload

simulator

Workload

monitor

Power

monitor

Hardware

controller

Controller

Trainer Agent Analyzer

Hardware

configuration table

Trainer Server

Workload

simulator

Workload

monitor

Power

monitor

Hardware

controller

Controller

Trainer Agent Analyzer

Hardware

configuration table

Target Server

Simulated

Requests

Recorded

Data

Optimized

configurations

Figure 4: The pair training process of eCope.

the network throughput. Hardware configurability means what and how components can

be configured (i.e. CPU can be switched into different frequencies, the hard disk can be

set to different modes and so on). Although every configurable hardware can be included,

it’s better to choose the ones that can affect power effectively.

The basic eCope process consists of three phrases:

(1)Pair training. We do training to get the relationship

between the workload and the power for a

given environment.

(2)Analyzing. We then fit measuring data to get an

optimized dynamic workload-power function.

(3)Application. We apply the customization to improve

energy proportionality.

24

3.1.1 Pair training

The first phase is to do the training. Figure 4 shows the process of training as well as the

structure of the eCope framework. Two servers are paired to train each other sequentially.

The server that we want to optimize energy proportionality is the target server, and the

other one that simulate requests and do analysis is the trainer server. eCope is deployed

on both trainer server and target server.

The trainer component on both trainer sever and target server are active in this phase.

They cooperate to call the hardware controller on target server so as to set the hardware

to every possible configuration. And for each configuration eCope will do the following:

1)The power monitor on the target server measures the idle power. 2)The workload sim-

ulator on trainer server trigger requests to target server at different levels to generate

necessary workload. Meanwhile, the power monitor and the workload monitor on target

server record the real workload and related power dissipation on target server.

The workload simulator, power monitor, and workload monitor and hardware con-

troller involved in these processes are the basic components of eCope and may varies for

different hardware or services. For example, we can use NodeManager to monitor system

power, or we can use wattsup to monitor system power. It depends on what kind of devices

are available. So, in our design, we use plugin mechanism to makes it flexible. Each of

these components has a selector to determine which one to use at run time. So that we can

implement both NodeManager based monitor and wattsup based monitor as plug-ins and

the power monitor selector will choose the right one to use according to the user input.

25

3.1.2 Analyzing

After all the data described are collected, the target server sends them to trainer server.

In the second phase, the Analyzer on the trainer server is responsible to analyze the mea-

sured data and sends the optimized configuration table to target server. To do so, we first

need to find a proper function to do curve fitting for workload-power relation. After the

curve fitting for each configuration, we can get a set of static workload-power functions

{f1,f2,...,fn}.

The static workload-power function is the workload-power relation function associated

with just one configuration. If a workload-power relation is achieved by using more than

one configuration (which means in different workload intervals the power may be related

to different configurations), then we refer it as the dynamic workload-power relation. Its

function is called the dynamic workload-power function. We denote dynamic workload-

power function as ({f1,f2,...,fn}, {x1,x2,...,xn}), where f1 to fn are static workload-power

functions and x1 to xn are intervals that f1 to fn are effective on respectively. The union of

all xi should be the whole possible workload interval, and xi should be pair-wise disjoint.

Formally, ({f1,f2,...,fn}, {x1,x2,...,xn}) means:

f(x) =

f1(x), if x ∈ x1

f2(x), if x ∈ x2

...

fn(x), if x ∈ xn

(3.1)

In this way, we can mix different configurations on one graph. For simplicity, we can

treat static workload-power function as a special dynamic workload-power function that

26

has only one function and one interval. Among all possible dynamic workload-power func-

tions that can be constructed by a certain set of static workload-power functions, there

must exist an optimal dynamic workload-power function that achieves the best energy

proportionality under every possible configuration and also meets the performance re-

quirement and energy condition(which we will discuss in detail in Section 2.4). We refer

it as the optimized dynamic workload-power function. So the aim of this phase is to find

the optimized dynamic workload-power function.

Generally, we can obtain all the intersection points to separate the workload interval

and find the functions that have the lowest power in each interval and meet the perfor-

mance limitation. Then combine these functions together with the interval that is between

two neighboring intersection points. In this way, the complexity is O(n3).

Since obtaining optimized dynamic workload-power function only need to be done

once, and there are not too much hardware configurations on current servers, such com-

plexity is acceptable. In fact, in our case study, the calculation spends less than 1 second.

Even though, For most particular fitting functions, we may have better ways to get the op-

timized dynamic workload-power function. These methods are not mainly for improving

performance, but for easier programming. We will see an instance of how to do so in the

case study part.

Here, the analyzing process is done on the trainer server. However, since both trainer

server and target server have an analyzer component, the analyzing process can be done

on target server as well. User can choose which one to use for their convenience.

27

3.1.3 Application

After the optimized dynamic workload-power function for both servers are obtained,

these servers can just work on its own(not paired), and customization can be achieved

according to this function. In other words, when the service is running, the agent com-

ponent monitors the workload and applies the configuration related to the interval where

the current workload is. For example, if the optimized dynamic workload-power function

is ({f1,f2,f3}, {(10,30],[0,10),[30,50]}) and the current workload is 20, then configuration

1 will be applied.

3.1.4 Discussing

Our methodology can be applied to any applications running on the server that meet

our assumptions. We do not limit the type of hardware or application in our method.

Currently, we can modify CPU frequency, network speed, hard disk mode. In the future,

we may be able to change the memory frequency. User can choose any hardware that

satisfy our assumption.

According to our definition, we try to increase energy proportionality = workload
power

. And

Energy =
∫ t
0

power dt

=
∫ t
0

workload
workload
power

dt

=
∫ t
0

workload
Energy proportionality

dt.

We can see that if the workload can be fixed or the workload does not change too much,

then only when energy proportionality increases, the energy decreases. And the workload

is determined by the user, which means it is independent to the configuration. Thus to

28

improve energy proportionality is equivalent to reducing the energy. On the other hand, if

the workload is allowed to change with in a performance requirement, we need to know

how much energy proportionality improvement is required to ensure energy saving.

To do so, we need to have a performance limitation to prevent too much performance

loss. Assume the maximum performance loss could be α(percentage), after we change the

configuration, denote the new workload as workload′, and denote the new execution time

as t′. Then

workload′ ≥ (1− α) · workload

So that

t′ = 1
workload′

≤ 1
(1−α)·workload = 1

1−α · t

Then,

Energy =
∫ t′
0

workload′

Energy proportionality
dt

≤
∫ 1

1−α ·
0

workload
Energy proportionality

dt

≈ 1
1−α ·

∫ t
0

workload
Energy proportionality

dt.

This means that if energy proportionality increase more than (1
1−α) times, it can ensure

energy saving, otherwise, otherwise, the configuration should not be considered. This is

called energy condition in our paper. Since it is deduced by performance requirement,

when we say performance requirement in this paper, it also includes energy condition.

We find that the dynamic workload-power relation is a good tool to show the effect

of hardware configuration. Not only because we can easily compare energy proportion-

ality under different workload-power relations on the graph, but also because it provides

a uniform method to calculate the optimized configuration. We can also use it to do cus-

tomization. Therefore, the dynamic workload-power relation is the core data structure of

29

eCope.

3.2 Case Study

As we described in Section 2, we are interested in certain applications running on the

dedicated servers in datacenters. There are three particular services: file system, database

services and web-based services.

We take TFS, MySQL, and PHP/Apache as our case studies since they fit our assumption

in Section 2 very well, and they are also typical types of back-end services running in real-

world. TFS is a Linux-based distributed file system which provides high reliability and

concurrent access by redundancy, backup, and load balance technology. TFS is mainly

designed for small files less than 1MB in size and adopts a flat structure instead of the

traditional directory structure. The open source TFS project is developed and maintained

by Taobao, a part of Alibaba Group.

In our case studies, the throughput of the network transfer rate is a good metric for

workload. It is obvious for TFS and MySQL. For PHP/Apache case study, although request

per second is also a good metric, network throughput can equivalently describe the work-

load since the page sizes are the same in our experiment. In addition, network throughput

is service independent, which means network throughput monitor can be also used for a

wide range of services. We would like to emphasis that user can choose any other metrics

that are able to describe workload. To avoid confusion, however, all ’workload’ in the case

study section refer to the network throughput (measured by Mbps).

We conduct TFS case studies in the same environment as TFS production environment

in Alibaba. MySQL and PHP/Apache case studies are conducted on our lab servers.

30

0

2

4

6

8

10

12

14

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0F
ra

ct
io

n
 o

f
ti

m
e

(p
e

rc
e

n
t)

Workload(Mbps)

Figure 5: The workload distribution of TFS.

The performance limitation for three case studies is maximum 5% of performance loss.

The hardware configurations include the combination of 16 CPU frequencies(from 1.2GHz

to 2.5GHz, 2.7GHz, and Turbo boost mode), 3 kinds of Network interface controller(NIC)

speeds(10Mbps, 100Mbps, and 1000Mbps), and 3 kinds of disk modes (Normal, Standby,

and Sleep). So, each configuration should include these 3 components, e.g. (1.2GHz,

100Mbps, Normal).

The network switches we used in all our case studies are 1G network switches, which

means that the maximum network throughput is 1000Mbps, so the range of wokload is 0

to 1000 Mbps. TFS and MySQl are IO intensive. Figure 5 shows a typical normal workday

workload distribution of TFS on one server provided by Taobao Crop. We can see that the

server is rarely idle, and in most time, the workload is around 100 to 20 Mbps and 600 to

800 Mbps, while the CPU utilization is always lower than 20%. For PHP/Apache case study,

we implement a simple service that dynamically computes π and return it through the web

interface. Our experiment data shows that when the CPU utilization is 100%, the network

throughput is under 60Mbps, which is far below the maximum network throughput, so

PHP/Apache case study is CPU-bounded.

31

3.2.1 Basic components implementation

For TFS, it has its own interfaces to access the files, so the workload simulator was

implemented by using a TFS client API. Before the experiment starts, we store amount of

files to TFS, and save the filenames of all these files to a filename list. When we launch the

workload simulator, we pass a desired number of files and number of processes to it. Each

workload simulator process first reads all filenames from the list. Then, randomly picks a

desired number of files to read from TFS. To read a file, the workload simulator connects

with the nameserver first, and then it sends the block id to main nameserver to get the

address of desired dataserver. Later, the workload simulator uses that address to connect

with the dataserver, send both the block ID and file ID to it, and get the file data from it

directly. Thus, the entire workload can be controlled by passing different numbers of files

and processes. Most of the energy is consumed by the dataservers throughout the entire

process. In our experiment, we only optimize the dataserver. The nameservers and heart

agents run on separate servers.

We use SQL workbench as the MySQL workload simulator. Before the experiment

starts, we store a dataset on a MySQL server. When launching the workload simulator, we

pass the number of records and the number of processes to it. Each workload simulator

process queries the same number of records by generating a SQL statement.

We use Apache Bench as the PHP/Apache workload simulator. We implement Chud-

novsky algorithm in a php page that dynamically computes π using BCMath arbitrary

precision mathematics functions in PHP. Then, we invoke Apache bench with a desired

number of requests and number of concurrency to access the page.

32

MonitorMMMMMMMMMMMMMooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnniiiiiiiiiiiiiiiitttttttttttttttttttooooooooooooooooooooooo oooooooooooooooooooooorrrrrrrrrrrrrrrrrrrrrrrrrr

Selector

MMMMMMMMMMMMMMMMMMoooooooooooooooooooooooonnnnnnnnnnnnnnniiiiiiiiiiiiitttttttttttttttttttttooooooooooooooo

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeelllllllllllllllllleeeccccccccccccccccccccccccccccccccccccctttttttttttttttttttttttttoooooooooooooooooooooooooooooSSSSSSSSSSSSSSSSSSSSSSSSSeeeeeeeeeeeeeeeeeeelllleeeeeeeeeeeeeeeeecccccccccccccccccccccccctttttttttttttttttttoooooooooooooooooooooo

ooooooooooooooooooooorrrrrrrrrrrrrr

ooooooooooooooooooooooooooorrrrrrrrrrrrrrrrooooooooooooooooooooooooooooorrrrrrrrrrrrrrrrrrrrrrr

WattupWWWWWWWWWWWWWWWWWWWWaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaattuuuuuuuuuuuuuuuuuuuuuuu uuuuuuuuuppppppppppppppppp pppppppppppppppppppppppppppppp plugpppppppppppppppppppp llllllllllllluuuuuuuuuuuuuuuuuuupppppppppppppppppplllllllllllllppp -uuuuuuuuuuuuuuuuuuuugggggggggggggggggggggg inggggggggggggggggggggggggggggggg--------------------iiiiiiiiiiiiiiiiiiiiiiiiiii nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnniiiiiiiiiiiiiiiiinnn

WUPacket parser WULog

NodeManagerNNNNNNNNNNNNNNNNNNNNNNNooooooooooooooooooooooooooooodddddddddddddddddddddddddddddeeeeeeeeeeeeeeeeeeeeeeeeeeeMMMMMMMMMMMMMMMMMMMMaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaannnnnnnnnnnnnnnnnnnnnaaaaaaaaaaaaaaaaaaaaaaaaaaaaaagggggggggggggggggggggggggggggggggeeeeeeeeeeeeeeeeeeeeeeee eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee plugerrrrrrrrrrrrrrrrrrrrrrrr llllllllllllluuuuuuuuuuuuuuuuuuuuppppppppppppppppppplllllllllllllpppppppppppppppppppppppppppppppppp -uuuuuuuuuuuuuuuuuggggggggggggggggggggggg ingggggggggggggggggggggggggggggg----------------iiiiiiiiiiiiiiiiiiiiiiiii nnniiiiiiiiiiiiiiiiiinnn

NMDevice

Network interfaceNetwork interfac ce

IPMI

protocol

USB interfaceUSB interfac ce

Wattup

protocal

Data fileData fil le

Power

Information

NMConnection

NMDevice

Serial Device manager

Power MonitorPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPoooooooooooooooooooooooooooowwwwwwwwwwwwwwwwwwwwwweeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrr MMMMMMMMMMMMMMMMMMMMMooooooooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnniiiiiiiiiiiiiiiiiiiiiiiiiiitttttttttttttttttttttttttttooooooooooooooooooooooooo oooooooooooooooooooooooooorrrrrrrrrrrrrrrrrrrrrrrr

Figure 6: The structure of power monitor.

We use the same power monitor and workload monitor for our case studies. The work-

load monitor records NIC throughput and the power monitor reads power by using IntelÂő

Node Manager and Watts up. Node Manager is a set of hardware and software to optimize

and manage power and cooling resources in the data center. This server power manage-

ment technology extends component instrumentation to the framework level and can be

used to get power information from sensors integrated on motherboard chips.

Our power monitor can read power information from both Wattsup and Node Manager.

We connected the Wattsup device to our dataserver, but the power data can be read from

the USB interface connected to the Wattsup device. Node Manager is supported on our

dataserver, we can read information locally. We can also read power information from

Node Manager through the network interface by using IPMI protocal. In order to limit

the overhead on the dataserver, we read all power data from another server. Since the

data transferred by Node Manager is quite small (less than 1kbps each time) compared to

the workload of TFS or MySQL (measured by Mbps), we can neglect it and consider all

33

network data to be generated by TFS or MySQL.

Figure 6 shows the structure of our power monitor. When it is launched, we must

first specify which drive to use. Both drivers implement the same interfaces. For Wattsup,

it can only monitor the whole system power. We construct a serial device manager to

communicate with the USB interface. It sends the command packets and receives data

packets(called WUPacket) by using Wattsup protocol, but it does not know the meaning

of these packets. The WUPacket parser mainly processes the data packet, and WUlog

component is used to construct a command packet to control the Wattsup device. Wattsup

drive asks WUlog to initialize the Wattsup device on start. When receiving the packet from

the serial device manager, WUPacket parser extracts each field in the packet and returns it

to the Wattsup drive. However, in some cases, the Wattsup device does not send out data

for a long time.

By default, we ask Wattsup device to collect data for every one second. If Wattsup

drive finds that the serial device manger has failed to read data from USB for a certain

time, then it will ask WUlog to reset the device. For Node Manager, we have two ways to

connect to the network. We choose the Intelligent Platform Management Interface(IPMI)

approach because it can be used on other servers that do not support Node Manager but

still support IPMI. Node Manager is different from Wattsup. It can monitor not only total

system power, but also component level power, such as CPU and memory. So there are

several Node Manager device classes that are responsible for each component. All Node

Manager device classes use the same Node Manager connection class to communicate with

Node Manager on the target server. Both the Wattsup driver and NodeManager driver can

save the power information to a specific data file.

34

3.2.2 Process

In the measuring phase, the trainer component collects the power and workload in-

formation under various situations, including the following: (1)when the system is idle.

(2)when turning on the TFS or MySQL but not putting any workload on it. (3)when

there are workload on TFS or MySQL server, but no hardware control. (4)when there are

workload on TFS or MySQL server, and TFS or MySQL is running under a certain hard-

ware configuration. We can analyze these data to identify the optimal configuration for a

particular workload.

Before we start analyzing, we need to determine a fitting function for workload-power

relation. This function is related to the environment. User can choose the best one fits

their training data. We tried different types of functions like linear, polynomial, power,

exponential function and so on. We decide to use power function because its coefficient of

determination(or R-square) shows the best fitting result among all these functions, which

means the power function is the best one to describe the relation between workload and

power for our experiment platform. The power function has the form:

DynamicPower = a ∗ workloadb. (3.2)

Although the optimized dynamic workload-power function can be calculated by the

method described in the Section 2, we find a better way to do this for our case studies.

Suppose two configurations(denoted as A and B) have the workload-power relation f =

a1∗xb1 and g = a2∗xb2, where a1, c2 > 0 and b1, b2 > 0, there is only one positive intersection

point:

35

x = (
a2
a1

)
1

b1−b2 (3.3)

1: procedure OPTIMIZED DYNAMIC WORKLOAD-POWER FUNCTION

2: i = 0;f1 = g1;w1 = Maxworkload;
3: y = g1(Maxworkload);
4: Candidate = {gv|v = 1 to n};
5: for k ← 1, N do
6: if gi violate the perf. limitation then
7: Candidate = Candidate− gi;
8: else
9: if gi(Maxworkload) < y then

10: f1 = gi;
11: y = gi(Maxworkload);
12: Candidate = Candidate− {f1};
13: i = 2;tmp = 0;Over = ∅;fi+1 = NULL;
14: while fi−1 6= NULL do
15: w = 0;
16: for g ∈ Candidate do
17: tmp = (aV alue(g)

aV alue(fi−1)
)

1
bV alue(fi−1)−bV alue(g) ;

18: if tmp >= wi−1 then
19: Over = Over ∪ {g};
20: else
21: if tmp > w then
22: w = tmp;
23: wi = w;
24: fi = g

25: Candidate = Candidate−Over − fi;
26: i = i+ 1;

return ({f1, f2, ..., fi−1}, {[0, wi−1), ..., [w3, w2), [w2, w1]});

Algorithm 1: Obtain Optimized dynamic workload-power function

It means that this point is a turning point. If configuration A consumes less power when

the workload is lower than this point, then configuration B consumes less power when the

workload is higher than this point. Of course, mathematically, this point can be any value

even higher than the maximum possible workload, so we need to check whether the point

is in the range(in our case 0 to 1000).

Assuming that the set of static workload-power functions is G = {gv|v = 1 to n}.

36

114

119

124

129

134

1 101 201 301 401 501 601

1.2GHz

2.0GHz

2.71GHz

Time(t)

P
o

w
e

r(
w

a
tt

s)

Figure 7: The system idle power over 3 periods.

Using equation (3), algorithm 1 gives a better way to obtain the optimized dynamic

workload-power function.

In the worst case, we can find one function during each iteration and the set Over is

always empty. This results in a running time complexity of O(n2). Given the fact that the

configurations on current servers are not too much, and the training just need to be done

once, the performance is not an issue. We finish the calculation less than one second for

both TFS and SQL case studies. The benefit of this algorithm is to make programming

easier.

At last, eCope applies customization. The agent component lookup the optimized dy-

namic workload-power function periodically and change the hardware configuration if

needed.

3.2.3 Evaluation

To evaluate eCope, we first measure system idle power, TFS idle power, MySQL idle

power, and PHP/Apache idle power under all possible hardware configurations. We also

37

110

115

120

125

130

135

140

145

1 11 21 31 41 51 61 71

Time(s)

P
o

w
e

r(
w

a
tt

s)

1 2 3 4

Idle power increases 7 watts

Figure 8: Total system power when four jobs are executed sequentially with same workload
but different idle power.

Table 1: The average system idle power and the average TFS idle power
Freq.
(GHz)

Sys idle power
(Watts)

TFS idle power
(Watts)

Freq.
(GHz)

Sys idle power
(Watts)

TFS idle power
(Watts)

1.2 164.53 173.91 1.8 164.54 173.91
1.3 164.51 173.93 1.9 164.51 173.87
1.4 163.49 173.88 2.0 164.50 173.93
1.5 164.52 173.97 2.1 164.54 173.90
1.6 164.54 173.89 2.2 164.55 173.96

1.7 164.50 173.96 Turbo
Boost 117.27 121.19

measure the static workload-power relation without any optimization to get a baseline.

Then we launch the simulator to supply workload on TFS, MySQL and PHP/Apache, and

proceed to measure the system power under different hardware configurations. Next,

these data are fit into the power function in order to get the static workload-power func-

tion, and an optimized dynamic workload-power function is calculated by using algo-

rithm 1. Lastly, we apply the customization and compared the power saving.

When we do the baseline measurement, the DVFS funtion is turned off in BIOS setting

so that no governor is activated, the NIC speed is 1000Mbps, and the disk mode is normal.

Otherwise, userspace governor is used, so that the CPU frequencies are controlled by eCope

completely.

38

Table 2: The average system idle power and the average MySQL idle power
Freq.
(GHz)

Sys idle power
(Watts)

MySQL
idle power

(Watts)

Freq.
(GHz)

Sys idle power
(Watts)

MySQL
idle power

(Watts)
1.2 117.46 117.51 2.0 117.71 117.96
1.3 117.50 117.73 2.1 117.66 117.79
1.4 117.40 117.47 2.2 117.51 117.63
1.5 117.40 117.54 2.3 117.59 117.90
1.6 117.34 117.63 2.4 117.45 117.65
1.7 117.41 117.74 2.5 117.35 117.69
1.8 117.31 117.88 2.7 117.33 117.35

1.9 117.23 117.79 Turbo
Boost 117.27 117.46

Experimental environment MySQL 5.1.52, PHP 5.5.22, Apache 2.4.12 are set up

on an Intel R2000GZ family server in our lab as target server with Intel Xeon CPU E5-

2680 0 @ 2.70GHz and DDR3 1333MHz 8*8GB Memory. Our workload simulators are

deployed on a Dell 01V648 server. The Intel server is the target server and the Dell server

is the trainer server. The operating system of the Intel server and the Dell server are Red-

Hat 6 x86_64 and CentOS 4 x86_64 respectively. The Intel server and the Dell server

are connected by a 1G network switch. The Intel server support Node Manager that en-

ables reading the system power, CPU power, and memory power information. In addition,

Wattsup is set up to compare system power to the data collected from Node Manager. TFS

2.1.13 is set up on the same type of server as the production TFS server in Alibaba Group

for our experiment. The TFS server is equipped with Xeon CPU E5-2400 0 @ 2.20GHz and

10*10TB disks. Also servers are connected by a 1G network switch, so that the range of

workload is 0 to 1000Mbps.

Base line Figure 7 shows some results of system idle power under 3 kinds of hard-

ware configurations. We observe that in this period, the difference between the average

power of the highest CPU frequency (2.71GHz) and the average power of the lowest CPU

39

frequency(1.2GHz) is still less than 1 Watt. Therefore, the average idle power under dif-

ferent configurations is almost the same. In addition, we notice that the power changes

periodically. Thus, we define idle power as the average power over integral times of pe-

riods. As a result, when we calculate the idle power, we always take the same number of

periods of data to avoid errors caused by such periodic phenomena. For each configura-

tion, we collect the system idle power for one day. Table 1 shows the average system idle

powers(si power), which indicates that the system idle power is almost the same under dif-

ferent hardware configurations although the power vibrates over time. Thus, we can treat

the system power the same under different configurations. Table 1, 2, and 3 also show the

average idle power when the service is on but no workload. When TFS is running but has

no workload on it, the power increases when the CPU frequency increases. The difference

between maximum and minimum power is about 1.4%. On the other hand, When the idle

power of MySQL and PHP/Apache does not change so much.

Next, we measure the power under different workloads without any optimization.

Since the idle power changes periodically, the dynamic power should be calculated care-

fully. Figure 8 shows the total system power when the simulator launched four jobs se-

quentially with the same workload. Number 1 to 4 in the figure shows when these four

jobs are launched, and the red line roughly shows the idle power. We can see that when

the first two jobs are working, the idle power is about 117 Watts. When the last two jobs

are executing, the idle power is about 125 Watts. The total system powers for all those

four jobs are, however, almost the same. It is surprising that when the idle power increased

about 7 watts, the execution time and total system power are almost the same.

We also check it for those low workloads that consume 130 Watts total system power,

40

Table 3: The average system idle power and the average PHP/Apache idle power
Freq.
(GHz)

Sys idle power
(Watts)

PHP/Apache
idle power

(Watts)

Freq.
(GHz)

Sys idle power
(Watts)

PHP/Apache
idle power

(Watts)
1.2 117.33 117.43 2.0 117.41 117.47
1.3 117.43 117.47 2.1 117.54 117.61
1.4 117.38 117.43 2.2 117.63 117.81
1.5 117.40 117.51 2.3 117.39 117.55
1.6 117.51 117.59 2.4 117.67 117.79
1.7 117.42 117.53 2.5 117.42 117.61
1.8 117.57 117.63 2.7 117.52 117.55

1.9 117.39 117.54 Turbo
Boost 117.73 117.81

and observed the total system powers are almost the same while the idle power changes

periodically. So, it is not capped at a single server level. We repeated the experiment

under different configurations and different workloads, and found that this phenomenon

is common in our experimental environment. This means that the total power might not

always equal to the idle power plus dynamic power. This may be caused by uncore power,

but we haven’t yet identified why this happens. We will continue to explore the reasons.

Since it is not related to this paper, in our evaluation, we define the dynamic power as

the average total power minus the average service idle power so that on average, the total

power is still equal to the idle power plus the dynamic power. We used the power function,

shown in equation (2), to fit the workload-power relation. For TFS, the function is:

DynamicPower = 0.1140 · workload0.8449 (3.4)

For MySQL, the function is:

DynamicPower = 0.1310 · workload0.8313 (3.5)

41

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

Workload(Mbps)

D
yn

am
ic

 P
ow

er
(W

)

1.2GHz
1.4GHz
1.6GHz
1.8GHz
2.0GHz
2.2GHz
Turbo Boost

Figure 9: TFS Static workload-power functions(when NIC is 1000Mbps and disk is in
normal mode).

(3)
(2)

(1)

Figure 10: The original workload-power relation and The optimized workload-power re-
lation for TFS.

42

Table 4: Fitting results for TFS
frequency(GHz) a b R-square frequency(GHz) a b R-square

1.2 2.7495 0.2161 0.9341 1.8 0.4405 0.5751 0.9445
1.3 2.5566 0.2336 0.9362 1.9 1.5794 0.3956 0.9376
1.4 1.4905 0.3185 0.9276 2.0 2.0666 0.3631 0.9575
1.5 2.2639 0.2610 0.9207 2.1 2.2627 0.3504 0.9554
1.6 1.9094 0.2946 0.8932 2.2 2.0027 0.3796 0.9569

1.7 0.7858 0.4613 0.9311 Turbo
Boost 2.6411 0.3820 0.9123

For PHP/Apache, the function is:

DynamicPower = 24.8839 · workload0.5087 (3.6)

These functions are used as the base line to make comparisons with our optimization.

Analyzing In this part, we obtain the optimized workload-power functions. For TFS,

Different workloads are achieved by using different numbers of workload simulator pro-

cesses. All the sizes of test files were 100KB, and each thread operates on 1000 files. Next,

we calculate the dynamic power and used power function to do least squares fitting on

these data. Table 4 shows the fitting result when the NIC speed is 1000Mbps and hard

disk mode is normal. Most b values in the table are smaller than 0.7, which means that the

power function fits better than a linear function because the set of linear functions is a sub-

set of power functions. Figure 9 shows part of the related figure of static workload-power

functions. Using the algorithm 1, we obtain the optimized workload-power function for

TFS as:

43

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

50

Workload(Mbps)

D
yn

am
ic

 P
ow

er
(W

)

1.2GHz
1.4GHz
1.6GHz
2.0GHz
2.2GHz
2.4GHz
2.7GHz
Turbo Boost

Figure 11: MySQL Static workload-power functions(when NIC is 1000Mbps and disk is in
normal mode).

f(x) =

f1.8(x), if x ∈ [0 , 115.6)

f1.4(x), if x ∈ [115.6, 395.3)

f1.2(x), if x ∈ [395.3, 1000]

(3.7)

The curve with four colors in Figure 10 shows the graph of the function. It contains three

configurations that related to different CPU frequencies.

For MySQL, Different workloads are achieved by using different numbers of workload

simulator processes. Each process selects half of the data in the database. Table 5 shows

the fitting result when the NIC speed is 1000 Mbps and hard disk mode is normal. We can

see that b values for MySQL are larger than those for TFS. Some b value even reach 0.9994,

which means that it is almost linear. Figure 11 shows part of the related figure of static

workload-power functions. Using the algorithm 1, we obtain the optimized workload-

44

(1)(1)(1)(1)
(2)

(2)

(1)(1)(1)(1)

Figure 12: The original workload-power relation and the optimized Workload-power rela-
tion for MySQL.

Table 5: Fitting results for MySQL
frequency(GHz) a b R-square frequency(GHz) a b R-square

1.2 0.03771 0.8835 0.9926 2.0 0.0475 0.9978 0.9901
1.3 0.04482 0.9636 0.9997 2.1 0.1932 0.7234 0.9560
1.4 0.05423 0.8647 0.9937 2.2 0.0951 0.8502 0.9881
1.5 0.16080 0.7411 0.9606 2.3 0.1921 0.7534 0.9842
1.6 0.09302 0.7986 0.9923 2.4 0.0947 0.8573 0.9996
1.7 0.17740 0.7287 0.9806 2.5 0.0832 0.9330 0.9873
1.8 0.18410 0.7534 0.9591 2.7 0.1214 0.8010 0.9376

1.9 0.03406 0.9994 0.9620 Turbo
Boost 0.1394 0.8482 0.9220

power function for MySQL as:

f(x) =

 f1.2GHz/100Mbps(x), if x ∈ [0 , 70.9)

f1.2GHz/1000Mbps(x), if x ∈ [70.9, 1000]
(3.8)

The curve with two colors in Figure 12 shows the graph of the function. It contains two

configurations that have the same CPU frequencies, but different network speed. Figure 12

also shows the base line of MySQL that we obtained in Section 3.3.2.

For PHP/Apache, Different workloads are achieved by using different concurrency

level. Table 6 shows the fitting result when NIC speed is 100 Mbps and hard disk mode is

normal. Figure 13 shows all related figures of static workload-power functions that meets

45

the performance requirement and energy condition, when NIC speed is 100 Mbps and

hard disk mode is normal. Notice that configurations with lower frequency are not shown

in the figure 13 because they either causes more performance loss than performance re-

quirement(which is maximum 5% performance loss) or they violate the energy condition.

Using the algorithm 1, we obtain the optimized workload-power function for PHP/Apache

as:

f(x) = f2.4GHz/100Mbps(x), if x ∈ [0 , 60] (3.9)

The blue curve in Figure 14 shows the graph of the function. It contains only one static

workload-power relation function which is easier to apply.

Customization results After we apply the customization to TFS, MySQL, and PHP/A-

pache, we measure the power under our control and find that compared to the original

behavior, TFS can save up to 51.1% of dynamic power and 41.5% dynamic power on av-

erage (up to 12.0% total system power, and 7.0% total system power on average) with

average 0.57% performance loss. For MySQL, it can save up to 65.5% of dynamic power

and 65.3% dynamic power on average (up to 19.3% total system power, and 12.2% system

power on average) with average 0.98% performance loss. For PHP/Apache, it can save up

to 19.6% of dynamic power and 18.37% dynamic power on average (up to 11.6% total

system power, and 9.8% system power on average) with average 4.7% performance loss.

46

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

Workload(Mbps)

D
yn

am
ic

 P
ow

er
(W

at
ts

)

2.4GHz
2.5GHz
2.7GHz
Turbo Boost

Figure 13: PHP/Apache Static workload-power functions(when NIC is 100Mbps and disk
is in normal mode).

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

Workload(Mbps)

D
y
n
a
m

ic
 P

o
w

e
r(

W
a
tt

s
)

Original Workload−power function

Optimized Workload−power function
2.4GHz,100Mbps, Normal Mode

Figure 14: The original workload-power relation and the optimized Workload-power rela-
tion for PHP/Apache.

47

Table 6: Fitting results for PHP/Apache
frequency(GHz) a b R-square frequency(GHz) a b R-square

1.2 12.8805 0.5651 0.9991 2.0 17.3629 0.5242 0.9990
1.3 14.7596 0.5255 0.9978 2.1 19.1891 0.5043 0.9997
1.4 14.0645 0.5499 0.9993 2.2 20.0848 0.5001 0.9988
1.5 14.7331 0.5431 0.9986 2.3 20.0652 0.5078 0.9979
1.6 15.8533 0.5277 0.9989 2.4 20.4294 0.5070 0.9983
1.7 16.3604 0.5226 0.9976 2.5 20.8062 0.5121 0.9997
1.8 17.2294 0.5140 0.9983 2.7 24.6902 0.4876 0.9689

1.9 17.8611 0.5094 0.9988 Turbo
Boost 30.7797 0.5095 0.9983

3.3 Summary

In this chapter, we introduced eCope to improve energy-proportionality by workload-

aware hardware customization for servers in data centers. The solution is optimized for a

server. To achieve global energy efficiency in large scale data center requires higher level

scheduling because of conservative server provisioning and diurnal pattern, which we will

see in the next chapter.

48

CHAPTER 4 INCREASING LARGE-SCALE DATA CENTER ROW LEVEL
CAPACITY BY STATISTICAL POWER CONTROL

In this chapter, we present Ampere, a new approach to improve TPW by provisioning

extra servers. Ampere keeps the total power under the budget and brings zero perfor-

mance disturbance to the existing jobs. Different from existing approaches that react to

an over-committing event by capping the power draw, Ampere proactively reduces power

violations by driving the workload to other less utilized rows and consolidating the unused

power scattered among them.

4.1 Background on Data Center Power Provisioning

In this section, we provide some background information on the data center power sup-

ply architecture, job management and some important observations of data center power

utilization, which lead to the Ampere design.

4.1.1 Data center power provisioning and job scheduling

Row-level power provisioning. The power budget of a data center is normally partitioned

into a number of PDUs, each of which serves about 20 racks. Each rack has a power budget

of 8-10KW. As the typical rated peak power of a server is about 250W, we can have 40

servers per 10KW rack. This translates to 800 servers per PDU, which we call a row of

servers. The partitioning is due to the physical limits of commercial power equipment,

such as Uninterruptible Power Supply (UPS) and PDUs.

Servers are provisioned according to the power budget at each level. The provisioning

is often based on the rated power and we will show that it leads to significant under-

utilization of the provisioned power budget.

49

Power capping. The row-level power budget is enforced by physical circuit breakers

(fuses) in each PDU, in order to protect the PDU from overloading. Since it would cause

catastrophic service disruptions to cut down the power of hundreds of servers at the same

time, power capping is used when the total power utilization of servers in a row is over

the row budget. Power capping uses Dynamic Voltage and Frequent Scaling (DVFS) fea-

tures provided by modern server hardware, and slows down the servers to reduce the

power draw [28]. The recently proposed DVFS technique, running average power limit

(RAPL) [17], reacts in a very short period of time (< 1ms) to avoid triggering the circuit

breaker at the higher level. The downside of DVFS is that it slows down a server without

informing applications or the scheduler, which may cause unpredictable performance dis-

turbances and SLA violations (details in Section 4.3.3). We have DVFS enabled in our data

centers, but using Ampere, we dramatically reduce the cases where DVFS is triggered.

Job scheduling. Independent of the statically-partitioned power budget, jobs in a data

center are scheduled by a centralized scheduler using the entire data center as a single

resource pool. Data center job schedulers, such as Borg [92], Omega [78], Mesos [29] and

YARN [89] track the utilization of various resources including CPU, memory and storage,

and allocate them to different applications. Modern job schedulers allow complex and

application-specific scheduling policies, and apply advanced optimization algorithms to

achieve a variety of scheduling objectives.

The scheduler in our data center is a custom system similar to Omega [78]. It is a two-

level scheduler. The low level tracks the status of resources, bundles them into abstract

resource containers and provides the containers to the upper level. The upper level is

50

0.7 0.75 0.8 0.85 0.9 0.95 1
0.9

0.92

0.94

0.96

0.98

1

Power

C
D

F

Data Center
Row
Rack

Figure 15: The CDF of the power utilization normalized to the provisioned power budget
on rack, row and data center levels.

application-specific and decides how to efficiently allocate containers to jobs.

Freeze and unfreeze are two APIs provided by the lower level of the job scheduler.

Freeze makes a server unavailable (frozen), so that the lower level can no longer add it

to the candidate list. On the contrary, unfreeze makes a frozen server available again.

In Ampere, these APIs enable us to control power indirectly by workload scheduling. We

believe both APIs are simple enough to implement in any scheduler, making our approach

generally applicable.

4.1.2 Characteristics of data center power utilization

We have the following important observations of data center power utilization, which

directly lead to our design.

First, the average power utilization is low in the data center. Specifically, the utilization

51

Figure 16: Row power of five randomly chosen rows during a two-hour period. The
grayscale represents the power utilization. We can see both temporal and spatial varia-
tions.

is lower at a larger scale. Figure 15 shows the cumulative distribution function (CDF) of

the observed power utilization in one of our production data centers for a week at rack,

row and data center levels. The servers are provisioned based on the rated power. We can

see that the average power utilization at the data center level is only 70%, wasting almost

one third of the available power budget. We emphasize that the under-utilization is not

due to lack of workload demand, as there are often jobs waiting in the scheduler queue and

the company is still building out new data center facilities to meet the increasing demand.

Intuitively, like in many systems with statistical multiplexing, it would be desirable to

consolidate, rather than statically partition the power at the data center level as a single

52

pool [22]. Our system helps to indirectly achieve the consolidation.

To show the source of the unused power, we provide a formal notation of the power

at level X ∈ {row, rack}. Assume that there are n homogenous servers at X level and

the rated power of each server is Pm, and PM is the provisioned power budget of X, then

we have PM = nPm. At runtime, it is unlikely that all servers are at their rated power

simultaneously, and the total runtime power of the level will generally be lower than nPm.

Thus we define the unused power P
X

t of level X at time t as

P
X

t = PM −
n∑
i

Pit (4.1)

where Pit is the realtime power of the i-th server in level X at time t. Obviously the unused

power at row level is always no lower than that at rack level, as P
row

t =
∑

rack∈row P
rack

t .

The second observation is that there are large variations on power utilization at the row

level. The variations are both temporal (over time) and spatial (across different rows), and

Figure 16 shows the variations. We see that the power draw across different rows is highly

unbalanced. The reason for this imbalance is that different rows mainly focus on running

different sets of products. Also the power across these rows shows weak correlations over

time (80% of the correlation coefficients are under 0.33). The variations and imbalance

in workload provide us with opportunities to dynamically schedule power to where it is

required.

4.2 Ampere Design and Implementation

In this section, we first discuss the important design choices and an overview of the

Ampere architecture. Then, we focus on the controller, introducing the variable under

53

control and its effects on the power, as well as the control algorithm. Finally we provide

details about our controller model.

4.2.1 Design choices and rationales

We have the following four important design choices.

Managing power at the row level. We decide to manage power at the row level because

(1) it matches the row-PDU physical fuse configuration in our hardware; (2) there is a

larger amount of unused power at the row level than at the rack level, as discussed in Sec-

tion 4.1.2; (3) there are abundant servers and tasks at row level, enabling our probabilistic

control mechanism; (4) we can leverage the unbalanced power draw across different rows,

and statistically direct jobs to different rows with optimal power conditions.

Minimal interface with the scheduler. To implement power-aware scheduling, one

straightforward design would be making the scheduler power distribution aware. How-

ever it is not practical mainly due to the complexity of incorporating the information into

different scheduling policies, especially those application-specific schedulers.

Thus, Ampere does not read any data from the scheduler and only requires the freeze/unfreeze

interface. This enables Ampere to easily integrate with different schedulers and scheduling

policies.

Power control with statistical influence on new job placement. Using the freeze/unfreeze

API, we can affect the probability of placing new jobs to specific rows, and thus control

the power usage. This has no impact on the performance of existing jobs. Furthermore, by

driving away job assignments from a row, we leave the choice of where to put such jobs to

54

the scheduler, allowing it to take advantage of the existing policies. This is equivalent to

creating a virtual pool of unused power for the scheduler.

Using simple system model and tolerating inaccuracy with control. We use data-driven

predictive models to characterize the potential impact on realtime power of our control

activities. Given the statistical nature of our control input, we observe high variations on

the effects of the control input. Instead of demanding a very precise model as most power

capping approaches do, we use RHC to periodically obtain optimized control decisions and

correct the random errors in our system model.

4.2.2 Ampere architecture

Figure 17 shows the architecture of Ampere. An in-house developed power monitor

collects and aggregates the power utilization at the server, rack and row level. The central-

ized controller implements most functionality of Ampere. For each minute, the controller

reads the data from the database, computes the number of servers to freeze in the next

time period, and uses the freeze/unfreeze interface to advise the scheduler to freeze

them. The data center operator can set a control target for the maximum allowed power

budget, which can be lower than the physical limit, to provide an extra safety margin.

Note that the controller is stateless, and thus if the controller fails, we can easily switch to

a replacement.

4.2.3 Power monitoring

We implement our own power monitor, which collects server-level power utilization,

among other metrics through the intelligent platform management interface (IPMI). We

leverage our in-house streaming computation framework to aggregate the data to provide

55

Row

#1

Row

#2

Row

#n

Scheduler

Power Monitor Controller

...

...

freeze/unfreeze

scheduling actions

aggregated power

Figure 17: System architecture of Ampere.

the row-level power. We store the history data in a MySQL database and export a RESTful

API for efficient query against these data. The power monitor samples the power from

every server at every minute, and stores the numbers in a time series database. We rely on

the time series database to provide data persistence and failover. Our power monitoring

service remains stateless for easy recovery. We believe one minute is a good tradeoff

between measurement accuracy and monitoring overhead.

56

0 10 20 30 40 50
0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

Time/min

N
or

m
al

iz
ed

 S
er

ve
r

P
ow

er

Figure 18: Power drops over time when a server is frozen. The figure shows the average
power normalized to the rated power of about 80 servers at different time points after
being frozen. The noises on the curve are due to the randomness of the workload on the
servers.

4.2.4 Interface to the job scheduler

We use the freeze/unfreeze API to indirectly control job scheduling. When we freeze

a server, it has two effects: (1) the power of frozen servers will go down over time, because

the existing jobs will finish; (2) there will be statistically fewer jobs scheduled to the row

with frozen servers, so the power increase will slow down.

To examine the first effect, we randomly select a group of about 80 servers with rel-

atively high power utilization, freeze them for a period of time, and observe their power

drop. Figure 18 displays the average power change over time. We can see the power

gradually drops to the minimum (close to the idle power) after about 35 minutes.

57

As for the second effect, the number of jobs scheduled to a row is roughly proportional

to the number of available servers of the row, assuming that there are multiple rows with

different workloads. As we have discussed in Section 4.1.2, the assumption is generally

true for our case. Thus, freezing a percentage of servers will likely reduce the number of

new jobs assigned to the row, lowering the power increase during the next time period.

These two effects impact the row-level power jointly. We define the freezing ratio ut as

the percentage of frozen servers in the total number of servers in a row at a given time t.

We want to identify a function f(ut) given a specific over-provisioning ratio rO to quantify

the effect of freezing ut servers.

We empirically identify the impact of ut on the row power using a controlled experi-

ment. We will describe the detailed setup in Section 4.3.1. We denote the power of the

control group and the experiment group at time t as PC
t and PE

t respectively. We set up

the experiment so that PC
t = PE

t without power control. In other words, the only cause of

the difference between PC
t and PE

t is the control input ut. With this setup, we can express

f(ut) as f(ut) = PC
t+1 − PE

t+1.

In order to collect data to evaluate f(ut) using a regression model, we set ut to a variety

of different values over a period of 24 hours, and measure the power of the experiment

group and the control group in the controlled experiment on a cluster with about 400

servers. Figure 19 shows the measurement result. We approximate f(ut) using a linear

function y = krx where kr is a parameter dependent on rO. We can use this simple model

because our RHC mechanisms can help correct errors in the model over time.

We also want to point out that the linearity assumption of f(ut) helps us simplify our

controller model greatly, as we will discuss in Section 4.2.6.

58

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Freezing Ratio u

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

f(
u
)

25th percentile

50th percentile

75th percentile

Figure 19: The effects of freezing ratio u on the power change f(u). We plot the 25th,
50th and 75th percentile for f(u) under different u. f(u) is rO-dependent, so we plot the
normalized values.

59

4.2.5 Controller

With the freeze/unfreeze API, we implement a controller that periodically adjusts the

power draw of a single row so that it stays under the power budget.

Algorithm 2 shows the control logic. At each interval (one minute in our implementa-

tion), we obtain the power utilization from the power monitor, and compute the unused

power (as defined in Section 4.1.2). Then we compute how many servers of each row to

freeze, using the control model we will discuss in Section 4.2.6. Finally, we select a set of

servers to freeze or unfreeze.

We prefer to freeze servers with highest power draw mainly because servers with lower

power utilization may have more computation capacity left and thus freezing them may

result in a higher cost. To avoid freezing and unfreezing a server too frequently, we intro-

duce the rstable parameter to the algorithm. The algorithm will only unfreeze a server and

freeze another one if the server’s power drops by at least (1 − rstable). We find that the

value of rstable does not affect the performance much, and we choose rstable = 0.8 in all of

our experiments.

We take a control action every minute, which is an interval matching our power moni-

toring frequency. Note that the controller cannot monitor or control any power fluctuation

within a minute, imposing a risk of short-term power violations. This is why we still have

DVFS-based hardware power capping on as a safety-net against these rare cases.

4.2.6 Computing the percentage of frozen servers

The most important decision of the controller is the number of servers to freeze. We

want to freeze enough servers to avoid power violations, and in the mean time, freeze as

60

Input:
– PM : Power limit
– rthreshold: Threshold ratio
– rstable: Stable ratio
– Pk: Current power of row k
– ps: Current power of server s
– Sf [k]: The set of frozen servers at row k
– nk: The number of servers in row k
– F (·): The function from row power to freezing ratio

Output: Updated Sf [k] for each row k

1: procedure POWER CONTROLLING

2: for k ← 1, N do . N is the number of rows
3: create set S . candidate servers for freezing
4: if Pk/PM > rthreshold then
5: nfreeze ← bF (Pk/PM) · nkc
6: S ← nfreeze servers with highest power
7: pthreshold ← rstable ·mins∈S ps
8: for all s s.t. s is in row k, s 6∈ S do
9: if p(s) > pthreshold then

10: S.add(s) . for stability
11: for all s ∈ Sf [k]− S do
12: unfreeze s, update Sf [k]

13: if |Sf [k]| > nfreeze then
14: unfreeze arbitrary |Sf [k]| − nfreeze servers, update Sf [k]
15: else if |Sf [k]| < nfreeze then
16: freeze nfreeze − |Sf [k]| servers with highest power in S − Sf [k], update

Sf [k]

17: else
18: unfreeze all servers, Sf [k]← ∅

return Sf

Algorithm 2: Power controlling algorithm

Symbol Description
Ut The control actions obtained at time t.
ut The percentage of servers to be frozen at time t.
Pt The normalized row power draw at time t.
PM The normalized provisioned row power budget (= 1.0).
Et The normalized power increase at time t.
f(ut) The relative reduction of power by the control ut.
C(Ut) The cost function of Ut.
kr The gradient of the function that fits f(ut).

Table 7: Key notations in problem formulation. All power metrics used in the problem
formulation is normalized to PM .

61

few as possible to minimize the negative impact on computation capacity. We discuss how

we obtain the number of servers to freeze in this section. We first formulate the problem of

computing the optimal number of servers to freeze in a general form of a receding horizon

control (RHC) problem [43], and then use heuristics based on data-driven observations to

reduce the RHC problem to a simplified version. Table 7 summarizes the key notations we

use in the problem formulation.

The general model. The idea of controlling power using RHC is as follows. At each

time t, we calculate an optimal control Ut = {ut, ut+1, · · · , uN−1} on a finite fixed horizon,

starting at time t, say [t, t + N − 1] (N is a parameter representing how much time ahead

we want to predict). We only carry out the first control ut, that is, freezing ut servers. We

repeat this computation at each time t, and the “horizon” of the control recedes as the time

proceeds.

Suppose Pt is the row-level power at time t. We introduce Et to denote the power

demand increase, which is a predicted value that indicates the first order difference of

row-level power. Say the predicted power for time t+ 1 is P predict
t+1 , then Et = P predict

t+1 − Pt.

The change of power is basically affected by the temporal variation of workload. Instead

of implementing a predictor, we show how we use heuristic method to estimate Et in the

later part of the section.

We use the function f(ut), as we have described in Section 4.2.4, to model the effect of

frozen servers on row power. Thus we have Pt+1 = Pt + Et − f(ut).

We use C(Ut) to denote the cost function, which indicates the degradation of computing

capacity or other performance metrics due to freezing servers. We use a simple linear

62

combination of ut and model the cost function as

C(Ut) =
∑

t≤k≤t+N−1

uk. (4.2)

Therefore, we formulate the Power Control Problem (PCP) as

min C(Ut) =
∑

k uk (4.3)

s.t. Pk+1 ≤ PM (4.4)

Pk+1 = Pk + Ek − f(uk), (4.5)

0 ≤ uk ≤ 1 (4.6)

k = t, · · · , t+N − 1 for (4.3)-(4.6).

PCP is a typical RHC problem. Note that we do not need to assume f(ut) linear. Sec-

tion 4.2.4 provides the method to empirically evaluate f(ut). Given a series of predicted

Ek, there are many methods and tools to compute the solution of this RHC problem if a

solution exists [1,37,43,72].

Control model simplification. Instead of solving the general problem directly, as in our

case, the function f(ut) is close to linear, we can reduce PCP to a much simpler problem.

Using the empirically obtained f(ut) that can be approximated by a linear function y = krx,

we get

f(ut) = krut. (4.7)

63

In this way, we replace Eq. (4.5) by

Pk+1 = Pk + Ek − krut. (4.8)

With the linear function f(ut) we define a simplified PCP (SPCP) as follows:

min C(ut) = ut (4.9)

s.t. Pt+1 ≤ PM (4.10)

Pt+1 = Pt + Et − krut (4.11)

0 ≤ ut ≤ 1. (4.12)

This is a special case of RHC problem in that the distance to horizon is 1. Assuming there

is a feasible solution, the constraints and the object function are all linear so it is very easy

to obtain the optimal solution, which is

ut = max{min{(Pt + Et − PM)/kr, 1.0}, 0}. (4.13)

Empirically, Et − 1.0 · kr ≤ 0, which means that if all servers are frozen, the row-level

power will not rise. Assuming PCP has feasible solutions (and thus SPCP also has feasible

solutions), and denoting the optimal solution of SPCP as u′t0 (Eq. (4.13)), we prove the

following lemma:

Lemma 4.1. U ′t0 = {u′t0 , u
′
t0+1, · · · , u′t0+N−1} is the optimal solution of PCP, where u′i (i =

t0, · · · , t0 + N − 1) is the optimal solution of SPCP in which t = i, Et = Ei, and Pt =

64

0 rthreshold PM =1.0

Realtime Row Power (Pt)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
e
zi
n
g
 R
a
ti
o
 (
u
t
)

EtThreshold Ratio

Power Limit

Figure 20: The control function F from Pt to ut. The threshold rthreshold is defined by
PM − Et. Note the curve varies for different Et and kr.

65

Pt0 +
∑

k<i(Ek − kru′i).

Proof. Without the loss of generality, we assume that Ek ≥ 0 (k = t, · · · , t + N − 1) and

Pt +
∑

k Ek > PM . We can easily verify U ′t0 is a feasible solution to PCP. Assuming that

U∗t0 = {u∗t0 , · · · , u
∗
t0+N−1} is an optimal solution to PCP, by applying Eq. (4.8) iteratively for

all k, we get

Pt0 +
∑
k

Ek − kr
∑
k

u∗k = Pt0+N ≤ PM . (4.14)

Therefore

C(U∗t0) =
∑
k

u∗k ≥ (Pt0 +
∑
k

Ek − PM)/kr ≥ C(U ′t0). (4.15)

Thus, U ′t0 is the optimal solution of PCP.

This reduction greatly simplifies the problem: we only need to optimize the freezing

ratio for a horizon at a distance of 1 at each time t.

In the optimal control strategy, the predicted power demand Et defines a safety margin

[1.0 − Et, 1.0]. That is, if the power Pt is below a threshold rthreshold = 1.0 − Et, we

do not need any control as there is unlikely a imminent power violation. However, if

Pt > rthreshold, the closer the current power is to the power limit, the more servers we will

freeze. We call rthreshold the threshold ratio. Figure 20 shows the intuition and relationship

among rthreshold, PM and Et.

Estimate the power change Et. In order to avoid power violation due to a sudden power

surge, we need to leave a safety margin. The estimated Et determines the margin, as it

66

indicates the expected power increment during the next minute. We use a data-driven

approach to estimate Et. We would like to keep Et small to improve the power utilization.

We monitor the power of all rows in our data center for a long time, and collect the

power increase for every minute. We discover that the distribution of power increase

varies for different hours in a day, so we calculate the 99.5-percentile power increase for

each hour and use the one matching the hour of t to estimate Et. By experiments we

find that Ampere’s performance is not sensitive to Et. Nevertheless, our Et estimation is

conservative as we are preparing for almost the largest change in observed history (99.5th

percentile). We can use a better online power prediction model to get a better estimation,

which we leave for future work.

4.3 Evaluation

In this section, we present the evaluation results from a production data center. We

first introduce the experiment setup and characterize the workload. Then we show the

effectiveness of Ampere and its advantage over existing power capping methods. Finally

we evaluate the effects of various parameter choices in Ampere.

4.3.1 Experiment setup

In this section, we briefly introduce the cluster setup, the production workload prop-

erties and our controlled experiment setup that allows us to perform experiments on a

production cluster.

Cluster setup and workload We have implemented Ampere in one of our production

data centers. Here we present results on a single row with 400+ homogeneous servers.

All servers in this row are part of a datacenter-wide resource pool managed by a single job

67

0 10 20 30 40 50
Job Duration/min

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Figure 21: The CDF of batch job durations in the production cluster.

scheduler as described in Section 4.1.1. We only focus on the power draw from servers, as

other devices like network switches consume only a negligible fraction of the total power.

All servers run production workload comprised of mainly batch jobs (e.g., Map-reduce

tasks). We add interactive jobs to the cluster to evaluate the effectiveness of Ampere, and

we show the results in Section 4.3.3. The durations of these batch jobs vary and Figure 21

shows the CDF of the job durations. The average job duration is about 9 minutes, and

about 40% jobs finish in 2 minutes. The arrival rate of jobs in the cluster also varies a lot

over time, and usually the rate is 400-600 jobs per minute. The variations of job durations

and arrival rate make our probabilistic control more effective, as there is a good chance

that some job will finish on some frozen machine, reducing the power utilization.

As we describe in Section 4.1.2, the row level power that is directly affected by the

workload on the row, also varies significantly over time. Figure 22 shows the power uti-

lization in a twenty-four hour period with a reading every minute. There are two observa-

68

0 6 12 18 24
Time/hour

0.75

0.80

0.85

0.90

0.95

1.00

N
o
rm

a
liz
e
d
 R
o
w
 P
o
w
e
r

Figure 22: The power of a row in 24 hours, normalized to the maximum power. The values
on the X-axis do not correspond to actual wall clock.

tions:

1) At a larger time scale (hours), we observer high variations. This larger-scale vari-

ations leave us with room at many time periods to over-provision servers and keep the

power below the daily peak.

2) At a smaller time scale (a few minutes), we can see many spikes and valleys on

power utilization. It is hard to predict these spikes. To better characterize these spikes, we

plot the CDF of the first order differences of the power (the power changes at 1-minute

scale) in Figure 23. We can see that within a single minute, the power change is generally

small (smaller than +-2.5% for 99% of the time), but it can be a change as large as 10%.

We design the approach described in Section 4.2.6 to handle these relatively large spikes.

Section 4.3.2 shows the results.

69

−0.10 −0.05 0.00 0.05 0.10
Normalized Power Change

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

1-min scale

5-min scale

20-min scale

60-min scale

Figure 23: The CDF of the power changes of the control group on various time scales. For
the k-minute scale, we compute a sequence of the maximum power for every k minutes,
and then plot the CDF of the first order differences of the power sequence. The power
changes are normalized to the provisioned power budget.

70

Considering some operational maintenance issues of the scheduler, we limit the maxi-

mum ratio of freezing servers to 50%. This limitation causes a few power violations, as we

will show later in the section.

Controlled experiment design As we cannot isolate a large number of servers to con-

duct trace-based experiments to compare the system performance with or without Ampere,

we perform a controlled experiment. We partition the servers into two virtual groups, the

experiment group and the control group. Specifically, we partition them based on the parity

of the server IDs and thus a server is assigned to a group in a uniformly random way. Both

groups accept jobs from the same scheduler and thus statistically they should have similar

workload. We verify the fact by calculating the average power and the correlation coeffi-

cients of power of the experiment and control groups (with Ampere turned off) over five

days. The difference between the average power is less than 0.46%, and the correlation

coefficient of the power is 0.946. Thus, we can safely assume that any differences between

these two groups are results of the control actions from Ampere.

We turn off the power capping so we can observe the real power demand. In order

not to cause real-world power violation, we emulate the power violation events by scaling

down the power budget of these servers. Consider we set the power budget to P ′M instead

of the actual PM , with Nr servers per rack, we can emulate the case where in each rack,

bP ′M/Pmc of the servers are designed to be provisioned, and the other Nr − bP ′M/Pmc

servers are over-provisioned. Thus we can calculate the over-provisioning ratio rO as

rO = Nr/bP ′M/Pmc − 1 = PM/P
′
M − 1. (4.16)

71

We use the scaling-based emulation differently in our evaluations. In Section 4.3.2, we

scale down the power budgets of both groups to compare the power of two over-provisioned

groups and show the effectiveness of our control. In Section 4.3.4, we only scale down the

power budget of the experiment group so that we can observe the impact on throughput.

We emphasize that we only use the scale-based emulation to provide more insights into

how Ampere works, and it is not part of the production system.

We set the over-provision ratio to 0.25, a very high value, in most of our experiments to

demonstrate the effectiveness of Ampere under extreme conditions. As we will show later

in Section 4.3.4, we choose r = 0.17 as the optimal value for real production.

Key performance metrics We focus on the following three key performance metrics:

1) The number of power violations. Given the power capping mechanism , the user may

choose to allow a few power violations, and small violation number shows the effectiveness

of Ampere;

2) The ratio of frozen servers (ut). Obviously, a smaller frozen ratio can help minimize

the impact on the overall performance of the cluster;

3) The gain in throughput per provisioned watt (TPW). We define TPW as:

TPW =
Total throughput during a time interval T

PM · T
(4.17)

where PM is the total provisioned power budget, and the throughput is the number of

jobs accepted during the time period T . We simply choose the job count as the through-

put indicator because with large number of jobs, each job has similar average resource

72

0 6 12 18 24
0.80

0.85

0.90

0.95

1.00

1.05

R
o
w
 P
o
w
e
r

0.00
0.25
0.50

Fr
e
e
zi
n
g
 R
a
ti
o

Experiment Group Control Group Power Limit Freeze

(a)

0 6 12 18 24
0.80

0.85

0.90

0.95

1.00

1.05

R
o
w
 P
o
w
e
r

0.00
0.25
0.50

Fr
e
e
zi
n
g
 R
a
ti
o

(b)

Figure 24: The freezing ratio ut and its effects on the power utilization, on both light
(a) and heavy (b) workload over 24 hours. The control group does not have power con-
trol and thus the power differences between the control group and experiment group are
approximately the effects of the power control.

requirements.

The Gain in TPW, GTPW , is the increase of TPW by over-provisioning. We use this

metric to evaluate the balance between the computation capacity gain from adding more

servers, and the capacity loss from freezing some servers. We discuss the evaluation of

GTPW in Section 4.3.4.

4.3.2 The effectiveness of Ampere’s control

We first provide evaluation results using two extreme types of workload in our cluster -

heavy and light. We fix the over-provision ratio at 0.25 for both experiments in this section.

Table 8 shows a few performance metrics of Ampere. We observe a smaller maximum

power draw from the experiment group. Meanwhile, under the heavy workload, in the

control group without any power control, we observe 321 power violations, while we

73

Workload Light Heavy
Group Exp Ctr Exp Ctr
umean 1.5% 0% 24.7% 0%
umax 44.1% 0% 50.0% 0%
Pmean 0.857 0.860 0.948 0.970
Pmax 0.967 0.997 1.002 1.025

V iolations 0 0 1 321

Table 8: Controller effectiveness under light / heavy workload. The experiment runs for 24
hours and the measurements are taken every minute. umean and umax are the mean/max
freezing ratio. Pmean and Pmax are the mean/max power draw. V iolations is the total
number of power violations.

observe only one violation using Ampere’s control, and this violation is due to the 50%

freezing ratio limitation. These observations have proved the effectiveness of Ampere’s

power control ability.

Taking a closer look at the control actions with different workload, Figure 24 plots

the power draw and control actions over a period of 24 hours under heavy and light

workload. Figure 24(a) shows the light workload case, i.e., the power draw mostly under

the power limit. In this case, we only take control actions occasionally, and thus cause

little impact on the overall power or throughput. In contrast, Figure 24(b) shows the

heavy workload situation, during which the power draw would exceed the power budget

quite often without control. We can see from the figure (purple/dotted lines) that Ampere

freezes a significant number of servers at many time periods and successfully avoids power

violations. Table 8 shows the statistics for a 24 hour period for light workload and heavy

workload.

Note that because we limit the maximum freezing ratio of servers to 50%, we get

many saturation on the control input in Figure 24(b). This limitation effectively reduces

how much we can react to a power surge and thus makes it more vulnerable to power

violations. We will try to remove this scheduler limitation in our future work.

74

SET GET LPUSH LPOP LRANG_600 MSET

Redis Operations

0.0

0.2

0.4

0.6

0.8

1.0
La

te
n

cy
 i

n
 t

h
e

 9
9

.9
th

 P
e

rc
e

n
ti

le
Power Capping

Ampere's Control

Figure 25: The 99.9th percentile normalized latency of various operations in the Redis-
benchmark, using either power capping or Ampere as power controller.

4.3.3 Advantage over power capping approach

Power capping, as we have already mentioned, may cause performance disturbances.

In this section, we compare the performance disturbances, and demonstrate that Ampere

has big advantage in this aspect.

We deploy a Redis [74] cluster on a row with over-provision ratio rO set to 25%. We

repeatedly run a Redis-benchmark [75] on a number of clients located in another cluster

that does not have any power control. We compare the performance of the Redis cluster

under power capping and under Ampere, respectively. We report the 99.9th percentile

latency observed on the client side. Figure 25 shows the results.

We can see power capping reduces the performance of the Redis, almost doubling the

99.9th percentile latency in almost all benchmarks. This is because Redis servers are CPU-

75

bound, and reducing CPU frequency on a busy server slows down request processing,

causing significant queuing effects that lead to longer latency. In comparison, with the

control of Ampere, we rarely trigger power capping, and freeze/unfreeze operations do

not affect existing jobs. Thus Ampere results in a much smaller latency for interactive

applications like Redis.

Without the control of Ampere, power capping is very common in the cluster. To quan-

tify this fact, we collect 8640 power utilization records (one per minute) on all servers over

several days. Among these records, 1306 are over power budget. For each of these 1306

minutes, we check each individual server to see if it is power capped. Our data shows that

on average, 54.34% servers are power capped for roughly 15% of the total time, which is

quite unacceptable for latency-sensitive jobs. In comparison, Ampere has no impact on

running jobs, and thus is applicable to both interactive and batch jobs.

4.3.4 Factors that affect the TPW

The goal of our work is to increase the computation capacity given a fixed power bud-

get, and thus TPW is an important metric. Two parameters affect TPW, the over-provision

ratio rO and the throughput ratio rT . The throughput ratio rT is in turn affected by the

workload. In this section, we provide some quantitative analysis on the rO choice and its

effect on TPW under different workload.

Over provision, workload and the gain in TPW. The increase on TPW is obvious from

the number of extra servers provisioned. To evaluate the throughput loss due to control,

we compare the number of jobs accepted in the experiment group thruE and the control

group (with the same number of servers, but with Ampere turned off) thruC during the

76

same time period. We define the throughput ratio rT as thruE/thruC . Generally rT ≤ 1.0

as freezing servers reduces the throughput.

Given rT and the over-provision ratio rO, we estimate GTPW by

GTPW =
TPWE

TPWC
− 1 =

thruE/(P ′M ∗ t)
thruC/(PM ∗ t)

− 1

= rT · (1 + rO)− 1. (4.18)

For example, if the over-provision ratio is 0.25, i.e. we add 25% more power budget

(and thus 25% more servers) to the row. With sufficient power budget, we should get

an increase of capacity by 25% and the throughput should increase by 25% with enough

workload. The power control of Ampere reduces the throughput. We measure the loss by

comparing the experiment group throughput with the control group. For example, if we

observe a 10% decrease in throughput in the experiment group, then the overall TPW gain

is GTPW = (1− 0.1) ∗ (1 + 0.25)− 1 = 0.125.

Note that GTPW is workload dependent. Under a light workload, adding servers just

cause more servers to stay idle without any positive effects. With a fully utilized cluster

already taking the entire power budget, we cannot run new jobs even with more servers.

However, as we show in Section 4.1.2, when the workload shows high variation, we have

plenty of opportunities to get a good GTPW .

An intuitive example. We illustrate that TPW does not increase monotonically with the

over-provisioning ratio rO.

Figure 26 shows an example of how rO affects TPW. During this experiment, we set

77

rO = 0.25 and run the experiment for four hours. The boxed area on the left shows the

time period when power utilization is high. Comparing to the control group, we observe

a throughput decrease by about 20% in the experiment group, as expected. Thus we have

rT = 0.8 and GTPW = (1 + 0.25) × 0.8 − 1, which is close to zero. Intuitively, as we are

already using all the power without over-provisioning, adding more servers do not bring

in extra capacity for jobs due to the power limit. It is even worse that the extra servers

consume idle power, eventually hurting the overall throughput. Thus, we need to avoid

this situation in production.

If we choose a smaller rO = 0.17, under the same heavy workload in Figure 26, we are

under the power budget most of the time, and thus rT is close to 1.0, making TPW gain

close to the over-provision ratio GTPW = (1 + 0.17)× 1.0− 1 = 0.17, indicating that we can

fully utilize the over-provisioned resource even at a high workload.

Of course, workload varies over time. During the four hour period shown in Figure 26,

the average rT is 0.95, a higher number than 0.8. Therefore, we can estimate that when

rO = 0.25, we can get a gain in TPW, GTPW = (1 + 0.25) ∗ 0.95/1.0 − 1 = 0.19, a better

number than the case with high workload.

From the example, we see that both rO and the average workload have a high impact

on the gain in TPW.

Evaluation on different over-provision ratio and workload. Over an experiment pe-

riod of 20 days, we run Ampere using different over-provisioning ratio under varying pro-

duction workload. Table 9 captures representative results from 13 days. Note that the

workload is from real production that we have no control over, and it is the reason why

78

0 1 2 3 4
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

R
o
w
 P
o
w
e
r

Limit

Threshold

Experiment Group

Control Group

0 1 2 3 4
Time/hour

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz
e
d
 T
h
ro
u
g
h
p
u
t

Figure 26: The effect of Ampere on power and throughput. The box highlights the effect:
the control actions effectively reduces both the power and the throughput of the experi-
ment row. Ampere only applies the control action when the power is above the threshold,
leaving other regions unaffected.

79

we show different workload in different cases. We have the following two observations.

First, with a given rO, GTPW is directly affected by the control input umean. It is intuitive

that the more servers we freeze on average, the smaller the capacity is, and so is the GTPW .

A deeper analysis of Table 9 shows that umean is largely affected by the average power

demand Pmean
2. With similar Pmean, occasional spikes on P trigger large ut at certain

times, also affecting GTPW . For example, #4 shows worse GTPW mainly due to the high

maximum workload.

Second, the over-provisioning ratio rO also has a large impact on GTPW . For example,

#4 and #7 have very close Pmean (scaled by rO), but rT and GTPW are both better with a

smaller rO. It is due to the same reason as we have discussed earlier: rO = 0.25 is too high

an over-provision ratio, causing ut to be high quite often. As another extreme, rO = 0.13

is too low, because GTPW is upper bounded by rO, the gain is only 0.13, making it a less

attractive choice.

Choosing the optimal rO. Given the observation above, we want to choose a moderate

rO. There are two metrics to consider: (1) We want to choose a rO so that we can maximize

GTPW under the typical workload; (2) Choosing rO is also a tradeoff between safety (fewer

power violations) and performance (higher TPW).

In our experiments in Table 9, we find that 0.17 is a safe and effective choice. From

our observation over a month, the 85th and the 95th percentile power is 0.909 and 0.924

(scaled to match rO), which means most of the time GTPW will be at least 15%. Thus both
2We estimate the power demand using the control group power, which is unaffected by the control. To

show the effect of over-provisioning, we normalize the power of the control group to the scaled power budget
of the experiment group. That’s why Pmax may exceed 1.0 in some cases.

80

rO Pmean Pmax umean rthru GTPW

1

0.25

0.903 1.028 0.019 0.953 19.70%
2 0.931 1.062 0.134 0.941 17.60%
3 0.936 1.062 0.152 0.885 10.60%
4 0.927 1.061 0.196 0.835 4.30%
5

0.21

0.786 0.913 0 1.0 20.70%
6 0.835 0.982 0.0016 1.0 20.70%
7 0.894 1.000 0.009 0.979 18.20%
8 0.903 1.036 0.11 0.88 6.20%
9

0.17

0.836 0.931 0 1.0 17%
10 0.839 0.926 0 1.0 17%
11 0.908 0.992 0.07 0.984 14.90%
12 0.938 1.004 0.12 0.904 5.50%
13 0.13 0.847 0.969 0 1.0 13%

Table 9: GTPW under different over-provision ratio rO and workload condition. Pmean
and Pmax are the mean and max power of the control group, respectively, which are good
indicators of the power demand. umean is the average freezing ratio. Bold rows represent
results under typical workload.

GTPW and over-provisioning efficiency are relatively higher compared to other rO choices.

In conclusion, we choose 0.17 as our over-provisioning ratio considering safety, GTPW and

efficiency.

4.4 Summary

In this chapter, we introduced Ampere, to to improve TPW of data center by provision-

ing extra servers and statistical power control. It is mainly designed for offline workloads.

Combining online and offline services on the same set of servers can further increase the

power utilization but supporting such heterogeneous workloads also introduce more chal-

lenges, which we will discuss in the next chapter.

81

CHAPTER 5 PELICAN: POWER SCHEDULING FOR QOS IN
LARGE-SCALE DATA CENTERS WITH HETEROGENEOUS WORKLOADS

To address the above limitations and challenges in the previous chapter, we investigate

the behavior of power and task in data centers and present Pelican, a new power schedul-

ing system for large-scale data centers with heterogeneous workloads. Instead of moving

tasks on spatial dimension, we tried to move tasks on temporal dimension. Based on the

current power of a rack, we will find an optimized power budget for each server and by

limiting resources for tasks.

5.1 Review and Observation

As shown in [97], low average power utilization, especially at a larger scale, in the

data center along with conservative server provisioning is one of the main opportunities

for over-provisioning. Here, we are going to provide background information as well as

review our data center power architecture, provisioning, which lead to our design.

5.1.1 Rack power

A server does not have hard power budget as long as rack power distribution unit(PDU)

can supply enough power but maximum power of each model of server is measured for

provisioning. Following the definition in [97], we called it the rated power, or measured

maximum power draw from equipment. Rack level-power, however, is limited by both

physical limits and limits from row level supply. If the power of a rack exceeds its power

budget, we call it a power violation.

The overall power utilization of data centers in Baidu, Inc. is about 70% to 80%. In

order to improve power utilization, some data centers have provisioned more server. To

ensure safety, the data center operator chooses a power limit that is lower than physical

82

power limit. And a rack level DVFS is deployed to those data centers to enforce the power

limit. We monitored the power of a rack for 31 days and found out that the rack power

exceeded rated power for 2% of the time. The maximum normalized power can reach

1.06. As a result, we need a better power management solution to improve QoS for over-

provisioned racks with heterogeneous workloads.

5.1.2 Power controlling

Without modifying existing software and hardware on a server, there are two major

ways to control power. One way is cooperating with job scheduler to change the placement

of jobs so as to move the power in the spatial dimension. The other way is to control the

computing resources assigned to tasks so as to move the power in the temporal dimension.

The power variations in both temporal (over time) and spatial (across different racks)

makes it possible to do either choice. In this paper, we choose to use the second way. One

of the reason is that our services are location sensitive so that power controlling should not

influence job placement. The most difficult part for the second way is how we can reduce

performance impact. If we can somehow "move" part of power usage of long run and

resource hungry tasks during busy time to idle time, then we can make less performance

impact on short and latency sensitive tasks. To do so, there are two questions. The first

question is how to select proper tasks. In a heterogeneous workloads environment, offline

workloads are usually much longer than online workloads and also consumes more power.

Short tasks finished quickly so that we have no chance to do such operation. On the other

hand, online workloads are more latency sensitive while offline workloads are more focus

on throughput. As a result, offline workloads are preferred. Within offline tasks, we can

choose lower priority instead of estimating the length of execution, which is much easier

83

Figure 27: System Architecture of Pelican.

to obtain. In addition, the priority of offline workload is lower than online workload so

that priority could be a good indicator to choose tasks. The second question is how can

we "move" the power. Generally, we can achieve it by controlling computing resources

assigned to a task. To make the controller applicable to all servers in our data center, as

well as keep our controller simple, we decide to use core binding to control the power of a

specific task. Because core management is a common part when handling heterogeneous

workloads, for example, some cores are reserved only for online workloads. Core binding

can also react in a short time period and it is widely supported both by OS and hardware

in all servers in our data centers.

84

5.2 Pelican Design and Implementation

5.2.1 Architecture

The overall architecture of Pelican is shown in Figure 27. A centralized power monitor

collects and aggregates the power utilization at the server, rack level. The power scheduler

implements most functionality of Pelican, which is responsible to manage one or multiple

racks. At the beginning of each time interval(represented by T), the scheduler reads power

data from our centralized power monitor, computes the power budget for each server if

necessary, and uses the budget API to deliver power budget to resource agent on each

server. The resource agent then limit power usage by process management and resource

management. The data center operator may choose a control target for the maximum

allowed power budget, which can be lower than the physical limit, to provide an extra

safety margin.

5.2.2 Power monitoring

We implement our own power monitor, which collects server-level power utilization,

among other metrics through the intelligent platform management interface (IPMI). The

power monitor samples the power from each server every time period. Our power moni-

toring service remains stateless for easy recovery. In our experiment, the monitoring cycle

is ten seconds, which we believe is a good trade-off between measurement accuracy and

monitoring overhead.

5.2.3 Resource agent and budget API

We use the budget API to indirectly control the resource assigned to tasks running on

servers and leave power controlling policy to resource agents on servers so that different

85

cluster could have various policies depending on workload and type of service. Since local

server knows exact types and priorities of tasks running on it, it is appropriate to do local

resource management instead of managing by power scheduler.

A centralized API server is implemented to act as an adapter to deliver power budget

commands to a specific server. In this way, the scheduler does not need to locate and

communicate with individual servers in the data center.

5.2.4 Scheduler

With API server, we implement a scheduler that periodically adjusts the power budget

of servers so that the total power of a rack stays under the target power specified by data

center operators. A scheduler can manage several racks at the same time. The decision

process is independent and identical based on different inputs from racks. So here we

discuss the scheduling method for one rack.

Algorithm 3 shows the overall schedule logic. Data center operator first decides a fixed

power budget Br for a rack so that our goal is to limit overall rack power less than it. Then

a power threshold Pt is determined based on the change of power of a rack within a time

period (See details in Section 5.2.5). At each interval (ten seconds in our implementation),

the scheduler obtains power utilization information from the power monitor. If current

rack power exceeds power threshold, we will compute the power budget for each server in

a rack using the schedule model, which we will discuss in Section 5.2.5. The goal here is

to keep rack power under power threshold. However, even if the rack power is lower than

the power threshold, we should not stop controlling immediately because the observed

rack power is a result of working resource agent. On the other hand, rack power in the

next interval may exceed the power threshold again causing resource agent to be on and

86

off frequently. That’s why a safe power threshold Ps is introduced to determine if the

rack power is safe enough. Ps should be less than Pt and is also determined based on the

change of power but we will tune this value in Section 5.3.5. Only if current rack power

is less than safe power threshold, the scheduler will notify resource agent to stop resource

limit. Finally, we send power budget command to API server to apply on each server. To

maximize the power utilization, Pt and Ps should be as close to Br as possible and they

are both related to future rack power. Instead of implementing a predictor, we show how

we use a heuristic method to estimate Pt and Ps in the later part of this section.

The scheduling cycle matches the power monitoring cycle. Note that the scheduler

cannot monitor or control any power fluctuation within a time interval, imposing a risk

of short-term power violations. This is why we still have DVFS-based hardware power

capping on as a safety-net against these rare cases.

The scheduler is designed to be stateless, as a result, we can easily switch to a replica

if any scheduler fails.

5.2.5 Computing the power budget for servers

In order to avoid power violation due to a sudden power surge, we need to leave a

safety margin. Pt and Ps describe the margin, as it determines when to turn resource

agent on and off. The change of power is basically affected by the temporal variation of

workload. We use a data-driven approach to estimate them. We would like to keep Pt and

Ps close to rack power budget.

We monitor the power of all racks in our data center for a long time and collect the

power increase for every minute. We discover that the distribution of power increase varies

for different hours in a day, so we calculate the 99.5-percentile power increase.

87

Input:
– P k

r : Current power of rack k
– P k

t : Threshold of rack k
– P k

s : Safe rack power of rack k
– N : The number of racks
– P k

i : Current power of server i in rack k
– Dk

i : Dynamic power of server i in rack k
– nk: The number of servers in rack k

1: procedure POWER SCHEDULING

2: for k ← 1, N do
3: if P k

r > P k
t then

4: Prest ← P k
r − P k

t

5: Sort servers by Dk
i in decreasing order

6: for i← 1, nk do
7: if Prest ≥ Dk

i ·Rmax then
8: Bk

i = P k
i −Dk

i ·Rmax

9: else if Prest > 0 then
10: Bk

i = P k
i − Prest

11: else
12: Bk

i = P k
i

13: Send Bk
i to budget API

14: else if P k
r < P k

s then
15: Send stop command to budget API

return

Algorithm 3: Power scheduling algorithm

88

Our estimation is conservative as we are preparing for almost the largest change in

observed history. We can use a better online power prediction model to get a better esti-

mation, which we leave for future work.

To determine the budget for each server at the begin of a time interval is the most

important task for the scheduler. We want to limit enough power usage to avoid power

violations, and in the meantime, reduce overall negative performance impact on a rack.

Symbol Description
Pr The current overall rack power.
Pt The rack power threshold.
Pi The power of i-th server in the rack.
Ii The idle power of i-th server.
Di The dynamic power of i-th server.
∆i The expected reduced power by resource limitation.
Ri The expected power reduce ratio.
Rmax The maximum allowed power reduce ratio.
Bi The result power budget for i-th server.
P ′
r The expected rack power in next time interval.

Table 10: Key notations in problem formulation. All power metrics used in the problem
formulation is normalized to PM .

Suppose Pi is the current power of i-th server in the rack and Ii is the idle power of the

server. Then an effective power budget Bi should belong to [Pi, Ii], where the maximum

power of a server can possibly reduce is the dynamic power of the server Di = Pi − Ii.

So if we decide the value of Bi, the expected reduced power is ∆i = Pi − Bi. Thus, the

expected rack power P ′r = Pr −
∑

i ∆i Now we introduce expected power reduce ratio

as Ri = ∆i/Di. This ratio basically compares the expected reduced power to its current

dynamic power, which quantifies the impact for current control. Obviously, the range of

Ri is [0, 1]. To limit performance impact of control, our goal is to minimize average of Ri,

which we call it impact ratio R =
∑

iRi/n. Furthermore, we have an upper bound on ratio

Ri, denoted as Rmax.

89

Therefore, we formulate the Power Scheduling Problem (PSP) as:

min R =
∑

iRi/n (5.1)

s.t. 0 ≤ Ri ≤ Rmax (5.2)

P ′r ≤ Pt, (5.3)

P ′r = Pr −
∑

i ∆i (5.4)

Bi = Pi −Ri ·Di (5.5)

where Bi is the result power budget for each server.

Table 10 summarizes key notations we used in the problem formulation.

PSP problem is a typical linear programming (LP) problem. There are many methods

and tools to compute the solution of this LP problem if a solution exists. The solution of

PSP problem, however, is special so that we can obtain the solution much easier instead of

solving the general problem directly. Without the loss of generality, we assume that servers

are sorted by Di in decreasing order. Then the solution will be:

Bi =

Pi −Rmax ·Di, if i < k

Pi − (Pr − Pt −
∑k

i=0Ri ·Di), if i = k

Pi, otherwise

(5.6)

90

where

k = sup
x∈Z

(
x∑
i=0

Ri ·Di ≤ Pr − Pt) (5.7)

So basically the scheduler will limit power budget for servers with higher dynamic power.

5.2.6 Resource agent

As we discussed in Chapter 5.1, the local resource agent limit power usage by lever-

aging core binding to control resources of tasks in our implementation. When a resource

agent received a power budget command, it will control the number of binding cores in

order to control the server power under a specified power budget until it receives a stop

command. The resource agent reads power information directly from the server and the

controlling cycle in our implementation is 1s. Suppose the resource agent on server i re-

ceive a power budget Bi, then we can calculate the expected power reduce ratio Ri = Pi−Bi
Pi−Ii

where Pi, Ii are defined in Section 5.2.4. Note that resource agent works on a higher fre-

quency than power scheduler so that Bi is fixed within a power scheduler cycle but Pi may

change over time. As a result, we need to calculate Ri every Resource agent control cycle.

Intuitively, the number of cores to unbind is Ri · Nc where Nc is the number of running

cores. However, the number of cores does not always linear related to power consump-

tion. They are just positive correlated. So we need to gradually control the number of

cores binding to tasks to both increase control accuracy and reduce chattering. On the

other hand, we also need to ensure that the resource agent can control the power within

the given time. So we adopt a simple linear closed loop control system to unbind Ri ·Nc/C

cores, where C is convergence coefficient. We need to trade off between the impact of

91

changing binding cores and convergence time by tuning C and the results are shown in

Section5.3.2.

After we calculate the number of cores to operate, resource agent will choose task with

lower priority to unbind. In addition, Ri here is different from power scheduler that is not

always positive because server power may be reduced below power budget. Negative Ri

means release unbinded cores or binding more cores to tasks and the order to choose task

is reversed.

The resource agent may stop partial of low priority tasks depends on the power budget

required but it will never stop all the task on a server as we have a limit on expected power

reduce ratio introduced in Section 5.2.4.

5.3 Evaluation

5.3.1 Experimental setup

Cluster setup and workloads The experiment platform is several racks which contain

more than 200 homogeneous servers(with 56 cores) in a real over-provisioning production

cluster. By real over-provisioning, we mean that the measured maximum power can be

higher than the designed power budget. The over-provisioning ratio is 12.7% (this is

measured by turning off DVFS and providing extra power source) and the rack is protected

by DVFS and UPS. Given the hardware configuration, our goal is to utilize the existing

hardware to improve QoS and significantly reduce power violation.

All servers in these racks are part of a datacenter-wide resource pool that is managed by

a single job scheduler. Resource agent and power monitor are deployed on every server and

a central power controller is responsible for manage all racks with independent decisions.

92

Three workloads involved in our evaluation: web service, MPI service, and Map-reduce.

The first one is online service and the last one is offline service. MPI service can be either

online or offline service depends on individual task but MPI task requires more on stability.

Thus it always have a higher priority than Map-reduce. And Web service always have a

higher priority than MPI service. These are all representative workloads in our data center.

Key performance metrics First key performance metric is the number of power viola-

tions. Safety is the first priority when considering over-provisioning. Users may choose

to allow a few power violations, and small violation number shows the effectiveness of

Pelican; Since our monitoring cycle is 10 seconds, the total time of violations is estimated

as the production of violation number and monitoring cycle. Second is QoS. For online

services, we focus on latency. And for offline services, we measure throughput. Our goal

is to improve the throughput of offline workloads while not affecting the latency of online

services. Third is the impact ratio (R). Besides the QoS, we hope to reduce the impact of

operations on the number of servers. Obviously, a smaller average impact ratio is better;

5.3.2 The effectiveness of resource agent

Before we evaluate Pelican, We need to verify if the resource agent can work as ex-

pected given power budget from API server. To determine the convergence coefficient C

described in Section 5.2.6, let’s first consider an extreme situation that all 56 cores are

running but only one core with the highest priority consumes 100% of power and the

power budget is 0% of dynamic power. Since scheduler cycle is 10s and resource agent

cycle is 1s, resource agent has 10 times to control the resource and reduce power. In this

case, C should be equal or less than 5.6 in order to unbind the last target core. Then, let’s

93

Figure 28: Average time for resource agent to reduce power under various workloads and
given different reduce ratio.

consider the other extreme situation that the server is running at maximum power and

all cores consume the same amount of power. In this case, since the maximum allowed

power reduce ratio in our experiment is set to over-provisioning ratio, 12.7%, we need to

unbind 12.7% of 56 cores, which is 7.11 cores. Even we unbind 1 core every second, we

are able to unbind 8 cores within 10 seconds. So we tested the resource agent with various

workload when C is 5 6. We found that the effectiveness of the resource agent is not very

sensitive to C so we set C to 5.6. Figure 28 shows the average time for resource agent to

reduce power under various workloads and given different reduce ratio. We can see that

the resource agent can always control the power under target value within a scheduling

cycle(< 10s).

5.3.3 The effectiveness of Pelican’s control

To evaluate the effectiveness of our system, we first mirror production MPI and MapRe-

duce workloads to two groups of racks: experiment and control groups (with Pelican

turned off). We use the scale-down method in [97] to observe power violation while

94

Workload Light Heavy
Group Exp Ctr Exp Ctr
Rmean 0.01% 0% 1.7% 0%
Rmax 6.31% 0% 7.12% 0%
Pmean 0.921 0.921 0.972 0.975
Pmax 0.992 1.036 0.998 1.048

V iolations 0 21 0 759

Table 11: Controller effectiveness under light / heavy workload. The experiment runs for
24 hours and the measurements are taken every 10s. Rmean and Rmax are the mean/max
impact ratio. Pmean and Pmax are the mean/max power draw. V iolations is the total
number of power violations.

keeping the physical devices safe. Also, we turn DVFS off so that our results can reflect

real power change. We conduct our experiment for 24 hours using two extreme types of

workloads in our cluster: heavy and light.

Table 11 shows a few performance metrics of Pelican. Under the heavy workload, there

are 759 power violations in the control group without any power control, while there is no

violation using Pelican’s control. This proved the effectiveness of Pelican’s power control

ability.

The vibration of our workload is very high especially under heavy workloads. if we

plot 24-hour power change, we can not see any detail so we plot 6 hours power change

for both situations to show typical rack power utilization.

Figure 29(a) shows the light workload situation where the power draws mostly under

the power limit. Even in this situation, we can see sharp power increases from time to time

and several power violations, but overall, very few control actions are triggered. We can

see a very high power increase happened at about 2.5h. In contrast, the heavy workload

case Pelican control triggered quite often because the average power draw is very close to

the power limit as shown in Figure 29(b). Besides the effectiveness test, one of our main

goals is to figure out the appropriate rack threshold that can ensure safety. And then we

95

(a)

(b)

Figure 29: Power utilization under light (a) and heavy (b) workload. Pelican is deployed
on Experiment group. And the control group is the base line for comparison.

96

apply the threshold to the same test on the production environment without scaling down

for 220 hours with no power violence.

5.3.4 DVFS approach comparison

As we mentioned in Chapter 5.1, DVFS is another widely used way to control power

resource for tasks but it can cause overall performance disturbance, which is not suitable

for our situation. In this section, we compare the QoS and demonstrate our advantage

under same over-provisioning ratio. The DVFS approach limit the power of each server

to provisioned power when the overall power of a rack is close to the power limit. It is

also threshold based approach and we choose the lowest threshold that can achieve same

safety requirements as Pelican can.

We deploy Web service along with MPI and MapReduce on two racks with the same

over-provision ratio configuration running the same workload trace. As we mentioned

in workload description, Web service tasks are always on online services and MapReduce

tasks are offline workloads but MPI can be both depending on the applications. We com-

pare QoS of such cluster under DVFS and under Pelican respectively, i.e. compare latency

on different levels for online tasks and throughput distribution for offline tasks.

Figure 30 shows the result of the median, 99.5th percentile and 99.9th percentile la-

tency. Note that the y-axis is logarithmic. DVFS reduces the performance of online tasks

almost doubling in terms of 99.5th percentile and 99.9th percentile latency. And DFVS

also increase the median latency by about half compared with our system.

Figure 31 shows the results for throughput. We can see that the distribution of re-

sulted throughput is similar. This is because DVFS can response faster but our method

may provide more cores after power budget control. However, we still improve 1.43%

97

Figure 30: Latency comparison using either DVFS or Pelican as power controller. Latency
normalized to the Latency throughput in both case.

Figure 31: Throughput distribution using either DVFS or Pelican as power controller.
Throughput normalized to the maximum throughput in both case.

overall throughput compared to DVFS method while achieving much better latency for

online workloads. This is mainly because we limit power usage on low priority and longer

running offline workloads and not affecting online services while DVFS slows down over-

all performance of server causing longer task queue that significantly increase the latency

of online tasks. This also proves that our method successfully schedules power on the

temporal dimension.

98

5.3.5 Tuning for QoS

Our goal in this work is to improve overall QoS by utilizing provisioning more server

given a fixed power budget. Specifically, we would like to keep safety first, then ensure

that the latency of online services is not affected and last improve throughput for offline

services.

We have performed a heavy workload evaluation and production test to determine

rack threshold Pt mainly for safety. Here we present our evaluation on safe rack power Ps

which determines when to stop resource agent control. Low Ps can ensure that it is safe

to release more computing resources but it may also cause low performance. On the other

hand, high Ps results in more computing power to be used as soon as possible but may also

lead to surge power increase so that online services are also involved in resource control.

Thus, we run different Ps from 0.80 to 0.97(the safe threshold is 0.98) under varying

production workload. The workload input is from production input that we can not control

so we show different workload in different cases. Table 12 shows the representative results.

Bold rows represent results under typical workloads. Gt is the throughput gain. Rmean is

the average impact ratio. Pmean and Pmax are the mean and maximum power. Pmax can

exceed, for example in #12, because it is the power of the control group.

First, we notice that the throughput gainGt is positive related to Ps, especially in typical

cases #4, #6, #9, and #12. But it is also related to high power demand. For example,

in #11, the overall power demand is low, which cause lower throughput gain. Then we

found that Rmean is sensitive to Ps when Pmean is high, shown in #1, #4, #7, and #10.

Also, the latency is always not affected when Ps is low.

99

Ps Pmean Pmax Rmean Latency Gt

1
0.8

0.936 1.031 0.0069% 1.0 9.7%
2 0.901 1.062 0.032% 1.0 9.30%
3 0.925 1.011 0.067% 1.0 9.7%
4

0.90
0.930 0.994 0% 1.0 10.50%

5 0.864 0.998 0% 1.0 10.10%
6 0.923 1.006 0.06% 1.0 10.31%
7

0.95
0.939 1.018 0.07% 1.0 11.2%

8 0.894 1.003 0.011% 0.995 13.5%
9 0.929 1.013 0.074% 1.0 11.4%

10
0.96

0.930 1.049 0.81% 1.0 11.6%
11 0.868 0.926 0% 1.0 10.8%
12 0.925 1.021 0.078% 0.973 11.90%

Table 12: Qos under different safe rack power Ps and workload condition. Bold rows
represent results under typical workloads. Gt is the throughput gain. Pmean and Pmax are
the mean and maximum power for the control group, which are good indicators of the
power demand. Rmean is the average impact ratio.

Overall, we find that 0.95 is an effective choice. The latency in the typical case is

not affected and the throughput increases by 11.4%. The increment is higher than other

choices except when Ps is 0.96. But the latency is reduced in the typical case when Ps is

0.96. As a result, we choose 0.95 for Ps considering safety and QoS.

5.4 Summary

In this chapter, we investigate opportunities and challenges of improving QoS for large-

scale data center with heterogeneous workloads by over-provisioning. While power con-

trolling is still the key to this problem, heterogeneous workloads requires faster response

time and the ability to deal with the temporal power management. We design and imple-

ment Pelican in our real over-provisioned production cluster then empirically demonstrate

the feasibility of scheduling power budget within a rack without affecting task placement

to utilize computing resources but prevent power outage.

100

CHAPTER 6 CONCLUSION

The power budget has become one of the most contentious resources in data center

management. Given the tremendous expense, it is crucial to fully utilize the power ca-

pacity of data centers to reduce the Total Cost of Ownership(TCO) and improve Quality

of Services(QoS). One of the biggest problems in data centers we observed is insufficient

power budget given the ever increasing demand on computation. While it is economically

attractive to provision more servers into an existing data center with a fixed budget, it is

a hard tradeoff between the cost saving and other considerations such as power system

safety, performance stability especially for interactive jobs, as well as the complexity it

brings to integrate with existing system. To provide comprehensive energy efficient system

designs for data center, we conduct studies on different levels of power hierarchy.

On rack level, we investigate opportunities and challenges of improving QoS for large-

scale data center with heterogeneous workloads by over-provisioning. While power con-

trolling is still the key to this problem, heterogeneous workloads requires faster response

time and the ability to deal with the temporal power management. We design and imple-

ment Pelican in our real over-provisioned production cluster then empirically demonstrate

the feasibility of scheduling power budget within a rack without affecting task placement

to utilize computing resources but prevent power outage. We adopt a two-level design

that separate overall power scheduling and local power controlling for each server, which

allows resource agent to maximize its ability to access local task information and react to

large variation quickly while cooperate with other server with simple interface provided

by power scheduler. This makes our power scheduling system more flexible and efficient

101

for heterogeneous workloads.

On row level, we design and implement Ampere, and empirically demonstrate the

feasibility of using statistical control to indirectly manage the power utilization across a

cluster. Specifically, as we use receding horizon control (RHC) to correct errors over time,

we can achieve effective power control using statistical and inaccurate system models

that are inexpensive to maintain in production. Also, using the simple freeze/unfreeze

API, Ampere can be loosely coupled with complex job schedulers, which greatly simplifies

the system implementation. For evaluation, we conduct controlled experiments with real

production workload and provide detailed insights into the performance of the system. In

production, we deploy Ampere to a data center, allowing us to provision 17% more servers,

leading to a throughput gain of 15%.

102

CHAPTER 7 FUTURE WORK

The idea of eCope can be also extened to rack or cluster level. Since we know the

workload-power relation for each server, we can do workload schedule according to these

workload-power relations to make the entire rack or cluster energy proportional. We no-

tice, that currently there is not much configurable hardware available on the market. This

may be a limitation when applying the approach. However, our eCope methodology is

easy to extend to software customization because in fact, we only assume that there are

different configurations that can affect system power. So we will also explore software

customization. On a higher level, there are two kinds of future work we are pursuing.

First, on the power management side, we are exploring ways to schedule the jobs to differ-

ent rows so that there can be a larger variance in power utilization across different rows,

leading to more unused power to cultivate. Note that even with the improvement, we can

still use the simple interface of Ampere. Second, we believe the simple statistical interface

is a promising design to connect the low-level data center infrastructure to the higher-level

software components such as the job scheduler and even applications, and allows cross-

layer optimization. We are building a workload-sensitive cooling control system based on

a similar interface. For heterogeneous workloads, it is likely to achieve better QoS if higher

level power scheduling is also integrated with our Pelican although our power scheduler

focuses on rack level power scheduling because this is the real problem that we need to

solve first. The same power budget interface can be used to send through our API server.

On the other hand, we are exploring other ways of controlling task resources so as to

improve the stability and efficiency on power control.

103

REFERENCES

[1] ACADO Toolkit. http://acado.github.io/.

[2] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and K. Schwan. Robust

and flexible power-proportional storage. In Proceedings of the 1st ACM symposium

on Cloud computing, pages 217–228, 1807164, 2010. ACM.

[3] V. Anagnostopoulou, S. Biswas, H. Saadeldeen, A. Savage, R. Bianchini, T. Yang,

D. Franklin, and F. T. Chong. Barely alive memory servers: Keeping data active

in a low-power state. ACM Journal on Emerging Technologies in Computing Systems

(JETC), 8(4):31, 2012.

[4] APC. Metered-by-outlet with switching rack PDU, http://goo.gl/qvE8NV.

[5] Facebook Autoscale. https://code.facebook.com/posts/816473015039157/making-

facebook-s-software-infrastructure-more-energy-efficient-with-autoscale/.

[6] L. A. Barroso, J. Clidaras, and U. Hoelzle. The Datacenter as a Computer: An Intro-

duction to the Design of Warehouse-Scale Machines. Morgan & Claypool, 2013.

[7] L. A. Barroso and U. Holzle. The case for energy-proportional computing. Computer,

40(12):33–37, 2007.

[8] L. A. Barroso and U. Hölzle. The case for energy-proportional computing. Computer,

(12):33–37, 2007.

[9] N. Bila, E. de Lara, K. Joshi, H. A. Lagar-Cavilla, M. Hiltunen, and M. Satya-

narayanan. Jettison: Efficient idle desktop consolidation with partial VM migra-

tion. In Proceedings of the 7th ACM european conference on Computer Systems, pages

211–224. ACM, 2012.

http://acado.github.io/
http://goo.gl/qvE8NV

104

[10] D. J. Bradley, R. E. Harper, and S. W. Hunter. Workload-based power manage-

ment for parallel computer systems. IBM Journal of Research and Development,

47(5.6):703–718, 2003.

[11] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle. Managing

energy and server resources in hosting centers. In ACM SIGOPS Operating Systems

Review, volume 35, pages 103–116. ACM, 2001.

[12] C. Chen, M. Won, R. Stoleru, and G. Xie. Energy-efficient fault-tolerant data storage

and processing in mobile cloud. Cloud Computing, IEEE Transactions on, 3(1):28–

41, Jan 2015.

[13] N. Chen, X. Ren, S. Ren, and A. Wierman. Greening multi-tenant data center de-

mand response. In IFIP Performance, 2015.

[14] D. Cheng, X. Zhou, P. Lama, M. Ji, and C. Jiang. Energy efficiency aware task as-

signment with dvfs in heterogeneous hadoop clusters. IEEE Transactions on Parallel

and Distributed Systems, 29(1):70–82, Jan 2018.

[15] B.-G. Chun, G. Iannaccone, G. Iannaccone, R. Katz, G. Lee, and L. Niccolini. An en-

ergy case for hybrid datacenters. ACM SIGOPS Operating Systems Review, 44(1):76–

80, 2010.

[16] Cisco Unified Computing System. http://www.cisco.com/c/en/us/products/

servers-unified-computing.

[17] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. RAPL: Memory

power estimation and capping. In Low-Power Electronics and Design (ISLPED), 2010

ACM/IEEE International Symposium on, pages 189–194. IEEE, 2010.

http://www.cisco.com/c/en/us/products/servers-unified-computing
http://www.cisco.com/c/en/us/products/servers-unified-computing

105

[18] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM, 56(2):74–80, Feb.

2013.

[19] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware scheduling for heterogeneous

datacenters. ACM SIGARCH Computer Architecture News, 41(1):77–88, 2013.

[20] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and QoS-aware cluster

management. ACM SIGPLAN Notices, 49(4):127–144, 2014.

[21] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a warehouse-sized

computer. In ISCA, 2007.

[22] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a warehouse-sized

computer. In ACM SIGARCH Computer Architecture News, volume 35, pages 13–23.

ACM, 2007.

[23] Y. Fu, A. Holler, and C. Lu. Cloudpowercap: Integrating power budget and resource

management across a virtualized server cluster. In 11th International Conference

on Autonomic Computing (ICAC 14), pages 221–231, Philadelphia, PA, June 2014.

USENIX Association.

[24] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal power allocation in

server farms. SIGMETRICS Perform. Eval. Rev., 37(1):157–168, June 2009.

[25] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and A. Baldini. Statistical

profiling-based techniques for effective power provisioning in data centers. In Pro-

ceedings of the 4th ACM European conference on Computer systems, pages 317–330.

ACM, 2009.

[26] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud: Research

problems in data center networks. SIGCOMM Comput. Commun. Rev., 39(1), Dec.

106

2008.

[27] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud: Research

problems in data center networks. ACM SIGCOMM computer communication review,

39(1):68–73, 2008.

[28] M. Hähnel, B. Döbel, M. Völp, and H. Härtig. Measuring energy consumption for

short code paths using RAPL. ACM SIGMETRICS Performance Evaluation Review,

40(3):13–17, 2012.

[29] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,

S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource sharing in

the data center. In NSDI, volume 11, pages 22–22, 2011.

[30] U. Hoelzle and L. A. Barroso. The Datacenter as a Computer: An Introduction to the

Design of Warehouse-Scale Machines. Morgan and Claypool Publishers, 2009.

[31] HP Thermal Logic. http://h20621.www2.hp.com/video-gallery/us/en/

4b547a2b6afff5fc7fc512069ad54d3928a124c9/r/video.

[32] C.-H. Hsu, Q. Deng, J. Mars, and L. Tang. Smoothoperator: Reducing power frag-

mentation and improving power utilization in large-scale datacenters. In Proceed-

ings of the Twenty-Third International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS ’18, pages 535–548, New

York, NY, USA, 2018. ACM.

[33] C. Hu, C. Wu, W. Xiong, B. Wang, J. Wu, and M. Jiang. On the design of green

reconfigurable router toward energy efficient internet. Communications Magazine,

IEEE, 49(6):83–87, June 2011.

http://h20621.www2.hp.com/video-gallery/us/en/4b547a2b6afff5fc7fc512069ad54d3928a124c9/r/video
http://h20621.www2.hp.com/video-gallery/us/en/4b547a2b6afff5fc7fc512069ad54d3928a124c9/r/video

107

[34] IBM PowerExecutive. https://www-01.ibm.com/marketing/iwm/tnd/demo.

jsp?id=IBM+PowerExecutive+Power+Capping+Mar07.

[35] Intel DCM Energy Director. http://www.intel.com/content/dam/www/public/us/

en/documents/articles/intel-dcm-energy-director-overview.pdf.

[36] C. Isci, S. McIntosh, J. Kephart, R. Das, J. Hanson, S. Piper, R. Wolford, T. Brey,

R. Kantner, A. Ng, et al. Agile, efficient virtualization power management with

low-latency server power states. In ACM SIGARCH Computer Architecture News,

volume 41, pages 96–107. ACM, 2013.

[37] jMPC Toolbox. http://www.i2c2.aut.ac.nz/Resources/Software/jMPCToolbox.

html.

[38] M. Kazandjieva, C. Shah, E. Cheslack-Postava, B. Mistree, and P. Levis. System Ar-

chitecture Support for Green Enterprise Computing. In Proceedings 5th International

Green Computing Conference (IGCC), November 2014.

[39] F. Kong and X. Liu. Greenplanning: Optimal energy source selection and capacity

planning for green datacenters. In Proceedings of the 7th International Conference

on Cyber-Physical Systems, ICCPS ’16, pages 5:1–5:10, Piscataway, NJ, USA, 2016.

IEEE Press.

[40] V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E. Pettis, D. M.

Tullsen, and T. S. Rosing. Managing distributed UPS energy for effective power

capping in data centers. In Computer Architecture (ISCA), 2012 39th Annual Inter-

national Symposium on, pages 488–499. IEEE, 2012.

[41] V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E. Pettis, D. M.

Tullsen, and T. S. Rosing. Managing distributed ups energy for effective power

https://www-01.ibm.com/marketing/iwm/tnd/demo.jsp?id=IBM+PowerExecutive+Power+Capping+Mar07
https://www-01.ibm.com/marketing/iwm/tnd/demo.jsp?id=IBM+PowerExecutive+Power+Capping+Mar07
http://www.intel.com/content/dam/www/public/us/en/documents/articles/intel-dcm-energy-director-overview.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/articles/intel-dcm-energy-director-overview.pdf
http://www.i2c2.aut.ac.nz/Resources/Software/jMPCToolbox.html
http://www.i2c2.aut.ac.nz/Resources/Software/jMPCToolbox.html

108

capping in data centers. In 2012 39th Annual International Symposium on Computer

Architecture (ISCA), pages 488–499, June 2012.

[42] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang. Power and

performance management of virtualized computing environments via lookahead

control. Cluster computing, 12(1):1–15, 2009.

[43] W. H. Kwon and S. H. Han. Receding Horizon Control: Model Predictive Control for

State Models. Springer Science & Business Media, 2006.

[44] W. Lang, S. Harizopoulos, J. M. Patel, M. A. Shah, and D. Tsirogiannis. Towards

energy-efficient database cluster design. Proc. VLDB Endow., 5(11):1684–1695, July

2012.

[45] C. Li, Y. Hu, R. Zhou, M. Liu, L. Liu, J. Yuan, and T. Li. Enabling datacenter

servers to scale out economically and sustainably. In Proceedings of the 46th An-

nual IEEE/ACM International Symposium on Microarchitecture, MICRO-46, pages

322–333, New York, NY, USA, 2013. ACM.

[46] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska. Dynamic right-sizing for

power-proportional data centers. IEEE/ACM Transactions on Networking (TON),

21(5):1378–1391, 2013.

[47] L. Liu, C. Li, H. Sun, Y. Hu, J. Gu, T. Li, J. Xin, and N. Zheng. Heb: Deploying and

managing hybrid energy buffers for improving datacenter efficiency and economy.

In Proceedings of the 42Nd Annual International Symposium on Computer Architec-

ture, ISCA ’15, pages 463–475, New York, NY, USA, 2015.

[48] L. Liu, H. Wang, X. Liu, X. Jin, W. B. He, Q. B. Wang, and Y. Chen. GreenCloud:

A new architecture for green data center. In Proceedings of the 6th international

109

conference industry session on Autonomic computing and communications industry

session, pages 29–38. ACM, 2009.

[49] Y. Liu, S. C. Draper, and N. S. Kim. Sleepscale: Runtime joint speed scaling and

sleep states management for power efficient data centers. SIGARCH Comput. Archit.

News, 42(3):313–324, June 2014.

[50] Y. Liu, S. C. Draper, and N. S. Kim. SleepScale: Runtime joint speed scaling and

sleep states management for power efficient data centers. In Computer Architecture

(ISCA), 2014 ACM/IEEE 41st International Symposium on, pages 313–324. IEEE,

2014.

[51] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis. Towards energy

proportionality for large-scale latency-critical workloads. In Proceeding of the 41st

Annual International Symposium on Computer Architecuture, ISCA ’14, pages 301–

312, Piscataway, NJ, USA, 2014. IEEE Press.

[52] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis. Towards energy

proportionality for large-scale latency-critical workloads. In Proceeding of the 41st

annual international symposium on Computer architecuture, pages 301–312. IEEE

Press, 2014.

[53] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis. Heracles: Im-

proving resource efficiency at scale. In Proceedings of the 42nd Annual International

Symposium on Computer Architecture, pages 450–462. ACM, 2015.

[54] B. Luo, W. Chen, X. Liu, X. Li, L. Zhang, and W. Shi. Pelican: Power scheduling

for qos in large-scale data centers with heterogeneous workloads. In The tenth

110

international green and sustainable computing conference, IGSC ’19, Alexandria, VA,

U.S.A., 2019.

[55] B. Luo, S. Wang, W. Shi, and Y. He. ecope: Workload-aware elastic customization

for power efficiency of high-end servers. IEEE Transactions on Cloud Computing,

4(2):237–249, April 2016.

[56] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periyathambi, and

M. Horowitz. Towards energy-proportional datacenter memory with mobile dram.

In Proceedings of the 39th Annual International Symposium on Computer Architecture,

ISCA ’12, pages 37–48, Washington, DC, USA, 2012. IEEE Computer Society.

[57] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pierson, and A. V. Vasilakos.

Cloud computing: Survey on energy efficiency. ACM Computing Surveys (CSUR),

47(2):33, 2014.

[58] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Eliminating server idle power.

In ACM Sigplan Notices, volume 44, pages 205–216. ACM, 2009.

[59] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch. Power

management of online data-intensive services. In Proceedings of the 38th Annual

International Symposium on Computer Architecture, ISCA ’11, pages 319–330, New

York, NY, USA, 2011. ACM.

[60] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch. Power

management of online data-intensive services. In Computer Architecture (ISCA),

2011 38th Annual International Symposium on, pages 319–330. IEEE, 2011.

[61] G. Metri, S. Srinivasaraghavan, W. Shi, and M. Brockmeyer. Experimental analysis

of application specific energy efficiency of data centers with heterogeneous servers.

111

In Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing,

CLOUD ’12, pages 786–793, Washington, DC, USA, 2012. IEEE Computer Society.

[62] M. P. Mills. The cloud begins with coal: Big data, big networks, big infrastructure,

and big power. In National Mining Association and American Coalition for clean Coal

Electricity, 2013.

[63] T. Minartz, T. Ludwig, M. Knobloch, and B. Mohr. Managing hardware power sav-

ing modes for high performance computing. In Proceedings of the 2011 International

Green Computing Conference and Workshops, pages 1–8, 2193377, 2011. IEEE Com-

puter Society.

[64] S. Mittal. Power management techniques for data centers: A survey. arXiv preprint

arXiv:1404.6681, 2014.

[65] Open Compute Project. http://www.opencompute.org/.

[66] A.-C. Orgerie, M. D. d. Assuncao, and L. Lefevre. A survey on techniques for im-

proving the energy efficiency of large-scale distributed systems. ACM Computing

Surveys (CSUR), 46(4):47, 2014.

[67] S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch, and J. Underwood. Power rout-

ing: Dynamic power provisioning in the data center. In ASPLOS, 2010.

[68] V. Petrucci, M. A. Laurenzano, J. Doherty, Y. Zhang, D. MossÃl’, J. Mars, and

L. Tang. Octopus-man: Qos-driven task management for heterogeneous multicores

in warehouse-scale computers. In 2015 IEEE 21st International Symposium on High

Performance Computer Architecture (HPCA), pages 246–258, Feb 2015.

[69] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded

operating systems. SIGOPS Oper. Syst. Rev., 35(5):89–102, Oct. 2001.

http://www.opencompute.org/

112

[70] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Load balancing and unbalanc-

ing for power and performance in cluster-based systems. In Workshop on compilers

and operating systems for low power, volume 180, pages 182–195. Barcelona, Spain,

2001.

[71] I. Psaroudakis, T. Kissinger, D. Porobic, T. Ilsche, E. Liarou, P. Tozun, A. Ailamaki,

and W. Lehner. Dynamic fine-grained scheduling for energy-efficient main-memory

queries. In Proceedings of the Tenth International Workshop on Data Management on

New Hardware, DaMoN ’14, pages 1:1–1:7, New York, NY, USA, 2014. ACM.

[72] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive control tech-

nology. Control engineering practice, 11(7):733–764, 2003.

[73] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. No power strug-

gles: Coordinated multi-level power management for the data center. In ACM

SIGARCH Computer Architecture News, volume 36, pages 48–59. ACM, 2008.

[74] Redis. http://redis.io/.

[75] Redis-benchmark. http://redis.io/topics/benchmarks.

[76] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. Heterogeneity

and dynamicity of clouds at scale: Google trace analysis. In Proceedings of the Third

ACM Symposium on Cloud Computing, SoCC ’12, pages 7:1–7:13, New York, NY,

USA, 2012.

[77] C. Rusu, A. Ferreira, C. Scordino, and A. Watson. Energy-efficient real-time het-

erogeneous server clusters. In Real-Time and Embedded Technology and Applications

Symposium, 2006. Proceedings of the 12th IEEE, pages 418–428. IEEE, 2006.

http://redis.io/
http://redis.io/topics/benchmarks

113

[78] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes. Omega: Flexi-

ble, scalable schedulers for large compute clusters. In Proceedings of the 8th ACM

European Conference on Computer Systems, pages 351–364. ACM, 2013.

[79] Open Data Center Committy. http://www.opendatacenter.cn/.

[80] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu. Power-aware QoS

management in web servers. In Real-Time Systems Symposium, 2003. RTSS 2003.

24th IEEE, pages 63–72. IEEE, 2003.

[81] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen. Power containers:

An os facility for fine-grained power and energy management on multicore servers.

SIGPLAN Not., 48(4):65–76, Mar. 2013.

[82] D. Shin, J. Kim, N. Chang, J. Choi, S. W. Chung, and E.-Y. Chung. Energy-optimal

dynamic thermal management for green computing. In Proceedings of the 2009

International Conference on Computer-Aided Design, ICCAD ’09, pages 652–657, New

York, NY, USA, 2009. ACM.

[83] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware consolidation for cloud com-

puting. In Proceedings of the 2008 conference on Power aware computing and systems,

volume 10, pages 1–5. San Diego, California, 2008.

[84] F. Sun, H. Li, Y. Han, G. Yan, and J. Ma. Powercap: Leverage performance-

equivalent resource configurations for power capping. In 2016 Seventh International

Green and Sustainable Computing Conference (IGSC), pages 1–8, Nov 2016.

[85] J. Sun, R. Zheng, J. Velamala, Y. Cao, R. Lysecky, K. Shankar, and J. Roveda. A

self-tuning design methodology for power-efficient multi-core systems. ACM Trans.

Des. Autom. Electron. Syst., 18(1):4:1–4:24, Jan. 2013.

http://www.opendatacenter.cn/

114

[86] Q. Sun, C. Wu, S. Ren, and Z. Li. Fair rewarding in colocation data center: Truthful

mechanism for emergency demand response. In IWQoS, 2015.

[87] I. Takouna, W. Dawoud, and C. Meinel. Dynamic configuration of virtual machine

for power-proportional resource provisioning. In Green Computing Middleware on

Proceedings of the 2Nd International Workshop, GCM ’11, pages 4:1–4:6, New York,

NY, USA, 2011. ACM.

[88] S. K. Tesfatsion, E. Wadbro, and J. Tordsson. Perfgreen: Performance and energy

aware resource provisioning for heterogeneous clouds. In 2018 IEEE International

Conference on Autonomic Computing (ICAC), pages 81–90, Sep. 2018.

[89] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,

J. Lowe, H. Shah, S. Seth, et al. Apache Hadoop YARN: Yet another resource ne-

gotiator. In Proceedings of the 4th annual Symposium on Cloud Computing, page 5.

ACM, 2013.

[90] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin, and I. Stoica.

The power of choice in data-aware cluster scheduling. In 11th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 14), pages 301–316, 2014.

[91] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari. Server workload analysis

for power minimization using consolidation. In Proceedings of the 2009 conference

on USENIX Annual technical conference, pages 28–28. USENIX Association, 2009.

[92] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. Large-

scale cluster management at Google with Borg. In Proceedings of the Tenth European

Conference on Computer Systems, page 18. ACM, 2015.

115

[93] H. Voigt, T. Kissinger, and W. Lehner. Smix: Self-managing indexes for dynamic

workloads. In Proceedings of the 25th International Conference on Scientific and

Statistical Database Management, SSDBM, pages 24:1–24:12, New York, NY, USA,

2013. ACM.

[94] D. Wang, C. Ren, S. Govindan, A. Sivasubramaniam, B. Urgaonkar, A. Kansal, and

K. Vaid. ACE: Abstracting, characterizing and exploiting peaks and valleys in dat-

acenter power consumption. ACM SIGMETRICS Performance Evaluation Review,

41(1):333–334, 2013.

[95] D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and H. Fathy. Energy storage

in datacenters: what, where, and how much? In SIGMETRICS, 2012.

[96] G. Wang, S. Wang, B. Luo, W. Shi, Y. Zhu, W. Yang, D. Hu, L. Huang, X. Jin, and

W. Xu. Increasing large-scale data center capacity by statistical power control. In

EuroSys, 2016.

[97] G. Wang, S. Wang, B. Luo, W. Shi, Y. Zhu, W. Yang, D. Hu, L. Huang, X. Jin, and

W. Xu. Increasing large-scale data center capacity by statistical power control. In

Proceedings of the Eleventh European Conference on Computer Systems, EuroSys ’16,

pages 8:1–8:15, New York, NY, USA, 2016. ACM.

[98] Z. Wang, N. Tolia, and C. Bash. Opportunities and challenges to unify workload,

power, and cooling management in data centers. In Proceedings of the Fifth In-

ternational Workshop on Feedback Control Implementation and Design in Computing

Systems and Networks, pages 1–6. ACM, 2010.

[99] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling in processor

sharing systems: Optimality and robustness. Perform. Eval., 69(12):601–622, Dec.

116

2012.

[100] D. Wong and M. Annavaram. Knightshift: Scaling the energy proportionality

wall through server-level heterogeneity. In Proceedings of the 2012 45th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO-45, pages 119–

130, Washington, DC, USA, 2012. IEEE Computer Society.

[101] Q. Wu, Q. Deng, L. Ganesh, C.-H. R. Hsu, Y. Jin, S. Kumar, B. Li, J. Meza, and Y. J.

Song. Dynamo: Facebook’s data center-wide power management system. In ISCA,

2016.

[102] R. Xu, D. Zhu, C. Rusu, R. Melhem, and D. Mossé. Energy-efficient policies for

embedded clusters. In ACM SIGPLAN Notices, volume 40, pages 1–10. ACM, 2005.

[103] Z. Xu, Y.-C. Tu, and X. Wang. Pet: Reducing database energy cost via query opti-

mization. Proc. VLDB Endow., 5(12):1954–1957, Aug. 2012.

[104] Z. Xu, X. Wang, and Y. cheng Tu. Power-aware throughput control for database

management systems. In Proceedings of the 10th International Conference on Auto-

nomic Computing (ICAC 13), pages 315–324, San Jose, CA, 2013. USENIX.

[105] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux: Precise online QoS man-

agement for increased utilization in warehouse scale computers. ACM SIGARCH

Computer Architecture News, 41(3):607–618, 2013.

[106] F. Yao, J. Wu, G. Venkataramani, and S. Subramaniam. Ts-batpro: Improving energy

efficiency in data centers by leveraging temporal-spatial batching. IEEE Transactions

on Green Communications and Networking, pages 1–1, 2018.

[107] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie. Half-dram: A high-bandwidth

and low-power dram architecture from the rethinking of fine-grained activation. In

117

Proceeding of the 41st Annual International Symposium on Computer Architecuture,

ISCA ’14, pages 349–360, Piscataway, NJ, USA, 2014. IEEE Press.

[108] W. Zheng, A. P. Centeno, F. Chong, and R. Bianchini. Logstore: toward energy-

proportional storage servers. In Proceedings of the 2012 ACM/IEEE international

symposium on Low power electronics and design, pages 273–278, 2333723, 2012.

[109] W. Zheng, K. Ma, and X. Wang. Hybrid energy storage with supercapacitor for cost-

efficient data center power shaving and capping. IEEE Transactions on Parallel and

Distributed Systems, 28(4):1105–1118, April 2017.

118

ABSTRACT

TOWARD ENERGY EFFICIENT SYSTEMS DESIGN FOR DATA CENTERS

by

BING LUO

December 2019

Advisor: Dr. Weisong Shi

Major: Computer Science

Degree: Doctor of Philosophy

Surge growth of numerous cloud services, Internet of Things, and edge computing pro-

motes continuous increasing demand for data centers worldwide. Significant electricity

consumption of data centers has tremendous implications on both operating and capital

expense. The power infrastructure, along with the cooling system cost a multi-million or

even billion dollar project to add new data center capacities. Given the high cost of large-

scale data centers, it is important to fully utilize the capacity of data centers to reduce

the Total Cost of Ownership. The data center is designed with a space budget and power

budget. With the adoption of high-density rack designs, the capacity of a modern data

center is usually limited by the power budget. So the core of the challenge is scaling up

power infrastructure capacity. However, resizing the initial power capacity for an exist

data center can be a task as difficult as building a new data center because of non-scalable

centralized power provisioning scheme. Thus, how to maximize the power utilization and

optimize the performance per power budget is critical for data centers to deliver enough

computation ability. To explore and attack the challenges of improving the power utiliza-

tion, we have planned to work on different levels of data center, including server level,

119

row level, and data center level. For server level, we take advantage of modern hardware

to maximize power efficiency of each server. For rack level, we propose Pelican, a new

power scheduling system for large-scale data centers with heterogeneous workloads. For

row level, we present Ampere, a new approach to improve throughput per watt by pro-

visioning extra servers. By combining these studies on different levels, we will provide

comprehensive energy efficient system designs for data center.

120

AUTOBIOGRAPHICAL STATEMENT

Bing Luo is a Ph.D. candidate in the Department of Computer Science at Wayne State

University. He joined the Ph.D. program in 2012. He received his Bachelor of mathematics

degree in Information and Computing Science and Bachelor of Engineering in Computer

Science as second major at East China University of Technology and Science(ECUST) in

Aug 2008. His research interests include Energy efficiency in data center, Energy-aware

system design, Edge Computing, and he has published several papers in workshops, con-

ferences and journal, such as EuroSysIGCC, IGSC, ICDCS, SEC. He has also served as a

peer reviewer for many conferences and journals.

	Toward Energy Efficient Systems Design For Data Centers
	Recommended Citation

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Problem Statement and Overview
	Server Customization for Power Efficiency of High-End Servers
	Increasing Large-Scale Data Center Row Level Capacity by Statistical Power Control
	Pelican: Power Scheduling for QoS in Large-scale Data Centers with Heterogeneous Workloads
	Summary of Contributions
	Outline

	Background and Related Work
	Server Level Energy Efficient System Designs
	Higher Level Energy Efficient System Designs
	Energy Efficient System Designs for Heterogeneous System

	eCope: Workload-aware Elastic Customization for Power Efficiency of High-End Servers
	eCope Design
	Pair training
	Analyzing
	Application
	Discussing

	Case Study
	Basic components implementation
	Process
	Evaluation

	Summary

	Increasing Large-Scale Data Center Row Level Capacity by Statistical Power Control
	Background on Data Center Power Provisioning
	Data center power provisioning and job scheduling
	Characteristics of data center power utilization

	Ampere Design and Implementation
	Design choices and rationales
	Ampere architecture
	Power monitoring
	Interface to the job scheduler
	Controller
	Computing the percentage of frozen servers

	Evaluation
	Experiment setup
	The effectiveness of Ampere's control
	Advantage over power capping approach
	Factors that affect the TPW

	Summary

	Pelican: Power Scheduling for QoS in Large-scale Data Centers with Heterogeneous Workloads
	Review and Observation
	Rack power
	Power controlling

	Pelican Design and Implementation
	Architecture
	Power monitoring
	Resource agent and budget API
	Scheduler
	Computing the power budget for servers
	Resource agent

	Evaluation
	Experimental setup
	The effectiveness of resource agent
	The effectiveness of Pelican's control
	DVFS approach comparison
	Tuning for QoS

	Summary

	Conclusion
	Future Work
	References
	Abstract
	Autobiographical Statement

