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Abstract  

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared 
pool of configurable computing resources that can be rapidly provisioned and released with minimal 
management effort or service provider interaction. Elasticity of resources is considered as a key 
characteristic of cloud computing using this key characteristic; internet services are allocated the only-
needed resources. This allocation of resources however should not be at the expense of the services’ 
performance. Allocation of resources without degrading performance is called resource provisioning. 
Resource provisioning does not only support the elasticity of resources, but also enhances cost efficiency 
and sustainability. 

The goal of this work is to investigate resource provisioning to increase the percentage of resources 
utilization without degrading the performance so that the power consumption of the cloud data centers is 
reduced. To achieve this goal, a hybrid-approach for resource provisioning is developed. In this 
approach, a list of virtual machines is requested, passed to a selection algorithm, sorting the machines 
according to their load, compute the threshold of the machines’ load, and combining the high load with 
low load from two different virtual machines on one super virtual machine. The approach was 
implemented in a simulator called CloudSim. It was used to run two sets of experiments. The first is to 
measure the power consumption of the data center as whole and hosts as well. And the second is 
concerned with the processing times and memory usage.   

The results have shown that this approach outperforms traditional counterparts in resource provisioning. 
The results showed that the hybrid approach achieved reduction of (5.85 MW/s) in power consumption 
compared with the traditional counterparts for the whole data center, as well as reduction of (2.48 MW/s) 
in power consumption for the hosts. 

Keywords: Cloud Computing; Resource Provisioning; Energy Utilization; Resource Utilization; Power 

Aware; Cost Efficient; Sustainability; Elasticity of Resources. 
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1. Introduction 

Cloud computing is a promising computer paradigm that makes the resources available when needed at reduced 

costs. It is also used to refer to a model for enabling ubiquitous, convenient, on-demand network access to a shared 

pool of configurable computing resources that can be rapidly provisioned and released with minimal management 

effort or service provider interaction [8]. This paradigm has three delivery models, as well as four deployment 

models. Delivery models of Cloud computing are: Software as a Service (SaaS), Platform as a Service (PaaS), and 

Infrastructure as a Service (IaaS). Deployment Models are: Private, Hybrid, Community, and Public [2]. 

Cloud computing is attractive because of a set of characteristics such as elasticity of resources, scalability, location 

transparency, reliability, cost efficiency, and sustainability [4]. The key characteristic is elasticity of resources in 

which internet services are provided with the only-needed resources [21]. Scalability is the ability of a cloud to be 

enlarged, or to handle the growth of resources in a capable manner [1]. Location transparency means that process 

location is independent of both the user's location and the resource location [5]. The probability of failure can define 

in terms of Reliability [9]. Cloud computing is cost efficient since it enabled the concept of pay-as-you-go, which 

minimizes the number of wasted resources [21]. Sustainability can be supported by maximizing the energy 

efficiency, i.e. reducing the power consumption. According to sustainability the cloud computing can be 

categorized as green computing, or green IT [21].  

Although cloud computing is promising in terms of flexibility, it faces challenges such as resources provisioning, 

and security.  

Resource provisioning problem is concerned with assigning resources to virtual machines while striving to 

maximize resource utilization. This problem is an NP-Complete problem [22]. Resource provisioning has two 

aspects under-provisioning and over-provisioning. Both situations are bad, the best situation for the resources 

provisioning is to provision only needed resources to a Virtual Machine (VM).   

In this paper, we designed and implemented a Hybrid Approach for Resource provisioning in cloud computing 

(HARP). This approach tackles the problem of resource provisioning. Since resource provisioning affects the main 

advantages of cloud computing which are the illusion of having an infinite computing resources, energy utilization, 

and pay-as-you-go policy. These advantages can be mapped to the main characteristics of Cloud Computing: 

Elasticity of Resources, Sustainability, and Cost Efficiency. As a result, if we managed to have a good provisioning 

approach, it will support all of the mentioned characteristics. In such settings, the need of having a robust auto 

provisioning technique is becoming more essential. Therefore, HARP has been developed. It was built over 

thresholding, statistical median, and VM multiplexing concepts.  In this approach, a set of virtual machines is 

passed to a selection algorithm, the selection algorithm first computes the threshold value by getting the maximum 

needed resources and multiplies it by the resistance ratio value, then it sorts the Virtual Machines (VMs) according 

to their workloads, and combining the high load with low load from two different VMs on one Super Virtual 

Machine (SVM). The approach was implemented in a simulator called CloudSim. It was used to run two sets of 

experiments. The first is to measure the power consumption of the data center as whole and hosts as well. And the 

second is concerned with the processing times and memory analysis. 

The results showed that HARP outperforms its traditional counterparts. Since HARP achieved a reduction of (5.85 

MW/s) in power consumption compared with the traditional counterparts for the whole data center, as well as a 

reduction of (2.48 MW/s) in power consumption for the hosts. Moreover, it achieved the same processing times 

with its traditional counterpart on a space shared environment but with extra (0.3%) overhead in the total running 

time of the simulation for the hybrid approach. Also, it achieved a reduction in the memory usage of (0.125%) and 

achieved the same processing times with its traditional counterpart on a time shared environment but with extra 

(0.02%) overhead in the total running time of the simulation. 

The rest of this paper is organized as follows. Chapter 2 investigates the background and the related work of 

resource provisioning in cloud computing. Chapter 3 describes the Hybrid Approach for Resource Provisioning 

(HARP), and provides a theoretical example of how HARP works. Chapter 4 introduces the design of the 

experiments and provides an assessment of the experimental results of HARP. Chapter 5 concludes this paper and 

discusses the possibilities of future work. 

2. Literature Review 

In this work, the resource provisioning problem will be investigated. As we believe that enhancing the resource 

provisioning process, increases the percentage of resources utilization and reduction of power consumption will 

support the elasticity of resources, the sustainability, and the cost efficiency characteristics of Cloud Computing. In 

this chapter we will provide an overview of the resource provisioning problem and discuss the related work. 
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2.1 Resource Provisioning Background 

Resource Provisioning or Resource Allocation is the problem of assigning resources to VMs by having as much 

high percentage of resource utilization as possible without degrading the application performance. Since resource 

allocation problem is difficult to solve, it has been addressed as an NP-Complete problem [22]. 

Resource provisioning problem has two aspects (1) under-provisioning and (2) over-provisioning. Resources over-

provisioning means that the resources allocated to services are low utilized; i.e. waste of resources. However, 

resources under-provisioning means that resources are not enough for the VMs; i.e. services performance would be 

significantly degraded. See figure 1. Both situations are bad, the best situation for the resources provisioning is to 

provision only needed resources to a VM. And this should be equivalent to having the resources utilized. The most 

common techniques that were introduced to avoid the over and under provisioning problems were by defining an 

Service Level Agreement (SLA) as a performance constraint to demonstrate the needed resources for a specific 

VM. 

 

Figure 1: Resource provisioning aspects 

 

2.2 Related Work 

The resource provisioning in cloud computing is the main challenge as well as the main advantage of cloud 

computing. Researchers in this field were interested either in finding an auto provisioning algorithm, or to find a 

prediction algorithm to predict resources needed by a VM for ahead of time resource allocation [15], [13], [25]. See 

figure 2. 

 

 

Figure 2: The related studies categories 

2.2.1 Resource Provisioning Algorithms 

In [15] Meng, et al. proposed a joint-VM provisioning approach in which multiple VMs are consolidated and 

provisioned together, based on an estimate of their aggregate capacity needs. Their approach exploits statistical 

multiplexing among the workload patterns of multiple VMs, i.e., the peaks and valleys in one workload pattern do 

not necessarily coincide with the others. Thus, the unused resources of a low utilized VM can be borrowed by the 

other co-located VMs with high utilization. Compared to individual-VM based provisioning, joint-VM provisioning 

could lead to much higher resource utilization. 



Journal of Information Sciences and Computing Technologies(JISCT) 

ISSN: 2394-9066        

Volume 6, Issue 1 available at www.scitecresearch.com/journals/index.php/jisct                                                549| 

 

In [14] Lim, et al. addressed the challenge of building an effective controller as a customer add-on outside of the 

cloud utility service itself. Such external controllers must function within the constraints of the utility service APIs. 

In [23] Xiong & Suh presented an approach for resource provisioning, to minimize the total cost of cluster 

computing resources used by an application service provider for an e-business application, which often requires 

parallel computation for high service performance, availability, and reliability while satisfying an SLA. Simulation 

experiments demonstrate the applicability of the approach. Moreover, their approach minimized the total cost of 

computing resources allocated to a customer so that a given set of SLAs including percentile of the response time 

and cluster utilization is satisfied. They have further formulated the resource provisioning problem as an 

optimization problem subject to SLA constraints for a typical SLA-based cluster computing system, and developed 

an efficient approach to solving the problem. Finally, they have demonstrated how to use their proposed approach to 

finding the minimum values of computing resources required for the customer SLA guarantee by conducting 

numerical experiments. 

In [18] Rogers, et al. discussed the problem of resource provisioning for database management systems operating 

on top of an Infrastructure-As-A-Service (IaaS) cloud. To solve this problem, they developed an extensible 

framework that, given a target query workload, continually optimizes the system’s operational cost, estimated based 

on the IaaS provider’s pricing model, while satisfying QoS expectations. Specifically, they described two different 

approaches, a “white-box” approach that uses a fine-grained estimation of the expected resource consumption for a 

workload, and a “black-box” approach that relies on coarse-grained profiling to characterize the workload’s end-to-

end performance across various cloud resources. They formalized both approaches as a constraint programming 

problem and using a generic constraint solver to efficiently tackle them. They presented preliminary experimental 

numbers, obtained by running TPC-H queries with PostsgreSQL on Amazon’s EC2, that provide evidence of the 

feasibility and utility of their approaches. 

In [24] Zhang, et al. applied a regression-based approximation of the CPU demand of client transactions on a given 

hardware. Then they used this approximation in an analytic model of a simple network of queues, each queue 

representing a tier, and show the approximation’s effectiveness for modeling diverse workloads with a changing 

transaction mix over time. Using the TPCW benchmark and its three different transaction mixes they investigated 

factors that impact the efficiency and accuracy of the proposed performance prediction models. Experimental 

results showed that this regression-based approach provides a simple and powerful solution for efficient capacity 

planning and resource provisioning of multi-tier applications under changing workload conditions. 

In [11] Govindan, et al. explored a combination of statistical multiplexing techniques to improve the utilization of 

the power hierarchy within a data center. At the highest level of the power hierarchy, they employed controlled 

under-provisioning and over-booking of hosted workloads’ power needs. At the lower levels, they introduced the 

novel notion of soft fuses to flexibly distribute provisioned power among hosted workloads based on their needs. 

Their techniques were built upon a measurement-driven profiling and prediction framework to characterize key 

statistical properties of the power needs of hosted workloads and their aggregates. They characterized the gains in 

terms of the amount of computational work (CPU cycles) per provisioned unit of power – Computation per 

Provisioned Watt (CPW). Their technique is able to double the CPWoffered by a Power Distribution Unit (PDU) 

running the e-commerce benchmark TPC-W compared to conventional provisioning practices. Over-booking the 

PDU by 10% based on tails of power profiles yields a further improvement of 20%. Reactive techniques 

implemented on their Xen VMM-based servers dynamically modulate CPU DVFS states to ensure power draw 

below the limits imposed by soft fuses. Finally, information captured in our profiles also provides ways of 

controlling application performance degradation despite overbooking. 

In [16] Padala, et al. developed an adaptive resource control system that dynamically adjusts the resource shares to 

individual tiers in order to meet application-level QoS goals while achieving high resource utilization in the data 

center. Their control system is developed using classical control theory, and they used a black-box system modeling 

approach to overcome the absence of first principle models for complex enterprise applications and systems. To 

evaluate their controllers, they built a testbed simulating a virtual data center using Xen virtual machines. they 

experimented with two multi-tier applications in this virtual data center: a two-tier implementation of RUBiS, an 

online auction site, and a two-tier Java implementation of TPC-W. Their results indicate that the proposed control 

system is able to maintain high resource utilization and meets QoS goals in spite of varying resource demands from 

the applications. In other words, they built a testbed for a data center hosting multiple multi-tier applications using 

virtualization. They have developed a two-layered controller using classical control theory. The controller 

algorithms were designed based on input-output models inferred from empirical data using a black-box approach. 

2.2.2 Resource Prediction Algorithms 

In [13] Islam, et al. they developed prediction-based resource measurement and provisioning strategies using Neural 

Network and Linear Regression to satisfy upcoming resource demands. Experimental results demonstrate that the 
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proposed technique offers more adaptive resource management for applications hosted in cloud environment, an 

important mechanism to achieve on-demand resource allocation in the cloud. They provided an evolutionary 

approach to constructing an effective prediction model for adaptive resource provisioning in the cloud in order to 

facilitate dynamic and proactive resource management, scheduling and capacity planning for interactive e-

commerce applications where immediacy and responsiveness are vitally important. Throughout their study, they 

have evaluated several major machine learning algorithms, in particular varying sliding window size with a view to 

providing accurate forecasting ahead of time. They exemplified their proposed prediction techniques in the context 

of the dataset obtained by using TPC-W, a benchmark which is well-established for e-commerce applications. 

In [7] Caron, et al. proposed an approach to the problem of workload prediction based on identifying similar past 

occurrences to the current short-term workload history. They presented in detail the auto-scaling algorithm that uses 

the above approach as well as experimental results by using real-world data and an overall evaluation of this 

approach, its potential and usefulness. As we know, one of the most important benefits of Cloud Computing is the 

ability of a Cloud Client to be dynamically scalable based on its use. This has great implications on cost saving as 

resources are not paid for when they are not used. Dynamic scalability is achieved through virtualization. The 

downside of virtualization is that they have a non-zero setup time that has to be taken into consideration for an 

efficient use of the platform. It follows that a prediction method would greatly aid a Cloud Client in making its 

auto-scaling decisions. In this approach a new resource usage prediction algorithm is presented. It uses a set of 

historic data to identify similar usage patterns to a current window of records that occurred in the past. The 

algorithm then predicts the system usage by interpolating what follows after the identified patterns from the 

historical data. Experiments have shown that the algorithm has good results when presented with relevant input data 

and, more importantly, that its results can improve by increasing the historic data size. This makes the evaluation of 

the algorithm be context dependent. 

In [10] Gmach, et al. proposed and evaluated aspects of a capacity management process for automating the efficient 

use of such pools when hosting large numbers of services. They used a trace based approach to capacity 

management that relies on; a definition for required capacity, the characterization of workload demand patterns, the 

generation of synthetic workloads that predict future demands based on the patterns, and a workload placement 

recommendation service. 

2.2.3 Time Reduction to Instantiate a VM 

In [25] Zhu, et al. they studied the time reduction to instantiate a VM problem: how can the VMs and the 

applications inside are brought up as quickly as possible? This problem has not been solved satisfactorily in existing 

cloud services. They develop a fast start technique for cloud applications by restoring previously created VM 

snapshots of fully initialized application. They proposed a set of optimizations, including working set estimation, 

demand prediction, and free page avoidance, that allow an application to start running with only partially loaded 

memory, yet without noticeable performance penalty during its subsequent execution. They implemented their 

system, called Twinkle, in the Xen hypervisor and employ the two-dimensional page walks supported by the latest 

virtualization technology. They used the RUBiS and TPC-W benchmarks to evaluate its performance under flash 

crowd and failure over scenarios. The results indicate that Twinkle can provision VMs and restore the QoS 

significantly faster than the current approaches. In other words, they presented Twinkle, a fast resource provisioning 

mechanism for the Internet services which facilitate the feature of auto scaling in the cloud. By starting a virtual 

machine from partial snapshot and other techniques, this would reduce the time to provision a virtual machine to a 

few seconds without noticeable performance overhead. With Twinkle, the Internet services can keep closer to 

capacity requirement and can maintain application level performance in the cases of flash crowds and failures. 

In [20] Silva, et al. presented a heuristic to optimize the number of machines that should be allocated to process 

tasks so that for a given budget the speedups are maximal. We have simulated the proposed heuristics against real 

and theoretical workloads and evaluated the ratios between number of allocated hosts, charged times, speedups and 

processing times. With the proposed heuristics, it is possible to obtain speedups in line with the number of allocated 

computers, while being charged approximately the same predefined budget. In other words, they presented a 

heuristic that efficiently defines the number of hosts to allocate on a utility computing infrastructure in order to 

solve bag-of-tasks problems. In the target environment, hosts may be allocated on demand, the user will later be 

charged for the time each host was used and jobs are composed of tasks whose execution times are not known 

before their execution. The results show that our heuristic determines the number of necessary hosts to guarantee 

that the charged time is close to desired value. The number of allocated hosts is close to the optimal value that 

would be found if task duration were previously known. The speedups accomplished are close to the number of 

allocated hosts. The presented heuristic can provide both a conservative as well as a more aggressive behavior. 

Varying both the creationRatio and the increaseRatio it is possible to lower the charged time (with higher timespan) 

or lower the job timespan with an increase in payment. So, if the user has a guess on the tasks processing time, this 
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information can be used to initially launch several computers. The number of computers to launch should be 

corrected with the creationRatio, in order to avoid the allocation of too much machines. 

3. Proposed Work 

This paper introduces a new provisioning approach to allocate resources in cloud computing. The goal of the new 

approach is to maximize both resources and energy utilization. The approach is expected to enhance performance 

by suggesting a threshold concept. This threshold incorporates the concepts of resistance ratio and statistical 

median. 

The new approach works as follows. First, a list of virtual machines is requested and passed to a selection 

algorithm. The virtual machines are sorted according to their load and the statistical median of the virtual machine's 

load is computed. Finally, the high load and low load from two different VMs are combined on one SVM. The 

approach was implemented in a simulator, CloudSim, to run two sets of experiments. The first is to measure the 

power consumption of the data center as whole and its constituent hosts, and the second is concerned with the 

processing times and memory analysis. The new approach is called Hybrid Approach for Resource Provisioning or 

HARP for short. 

3.1 Selection Algorithm 

The HARP has utilized the concepts of VM multiplexing and thresholding depending on the resistance ratio 

concepts. This is achieved by inferring the multiplexing technique into the resource provisioning module. Thus, 

before assigning the requested resources to the VMs, a set of virtual machines is passed to a selection algorithm 

illustrated in figure 4. In the Figure, the set of virtual machines is represented by the variable VMList. 

 

Figure 3: HARP design in terms of input, output and process 

Figure 3 illustrates HARP in terms of Input, output, and process. The selection algorithm receives as an input a list 

of VMs and produces a modified List of VMs as an output. The algorithm, first, computes the threshold value. Then 

the VMs in the VMList are sorted according to their workloads. After that the variables: First and Last are being 

assigned, which represents the beginning and the end of the VMList are defined. Finally, the VMs consolidation 

decision is taken, i.e., either consolidate the VMs or not. 

The selection n algorithm computes the threshold by invoking the calculate Threshold function, represented in 

figure 5, and the last, which defines the end of the VMList, is assigned by invoking the get End function, 

represented in figure 6. 
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Figure 4: Selection Algorithm 

The selection algorithm represented in figure 4. Its first line is an invocation to the calculate Threshold function by 

passing the VMList. The function returns the Threshold value which will be stored in the TS variable. The sorting 

will take place at the 2nd line of the selection algorithm and will be according to the workload usage. Merge sort on 

linked lists will be used due to its performance in terms of time and space. The third line will assign a value of (0) to 

the First variable. getEnd function will be invoked and will receive the VMList and First variables as its parameters. 

It will return a numeric value that is stored in the Last variable. We called the lines from 6 to 13 the consolidation 

part. Since the consolidation process is done in this part. The consolidation part starts with the loop. This loop 

applies the concept of statistical median as it loops over pairs of VMs, such as ([0, n], [1, n-1] …). These pairs are 

sorted according to their workload the least loaded with the most loaded. The loop has two counters; n counter 

which is incremental, and Last counter which is decremental. In the body of this loop, two VMs are passed to the is 

Combinable function. If the sum of the two VMs were less than or equals to the threshold, they will be 

consolidated. If not, they will be provisioned separately. 

By consolidation, the VMs that are consolidated together are applicable to be provisioned in a utilized way. The 

remaining VMs are provisioned as normal, i.e., one-by-one. The threshold is the most vital part of HARP. Since the 

consolidation between two VMs is constrained by having a summation of workloads less than or equal to the 

threshold. In order to find the threshold value the calculate Threshold function was designed and implemented. In 

figure 5, the calculate Threshold function is represented. This function’s input is a List of VMs and it returns a 

numeric value as its output. 

 

 

Figure 5: Calculate Threshold function 
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The calculate Threshold function, in the first 9 lines, loops through all of the VMs in the List of VMs, and gets the 

maximum needed resources. In the 10th line the calculate Threshold function multiplies the maximum needed 

resources by the resistance ratio value. The result of this multiplication is returned as the threshold value. 

The getEnd function is presented in figure 6. This function returns a numeric value as the end of the VMList and 

takes as its input List of VMs and numeric value. This numeric value represents the end of the List of VMs.  

 

Figure 6: getEnd function 

The getEnd function in the 3rd line assigns the End variable with the value of the count of VMs. In the lines (4 – 7), 

the function makes sure that the different between the beginning and the end of the VMList is even. If it is odd, then 

we increment the End variable by one; In order to make it an even number. Finally, getEnd function will return the 

End variable at the 8th line. This function was important to ensure the smoothness of the application of the 

statistical median concept in the selection algorithm. 

 

The consolidation process is done depending on the computed threshold. This condition was implemented in the 

isCombinable function, presented in figure 7. This function will be returning a boolean value as its output, and takes 

two VMs as an input. 

 

Figure 7: isCombinable function 

The isCombinable function in the 3rd line sum the resources needed by the two VMs that has been passed to it as an 

input and store it in the Cap variable. Then, in the line (4 – 9), it will compare the Cap and TS variables if the Cap 

was greater than the TS it will return false. Otherwise, it will return true. 

The isCombinable function returns a decision to the selection algorithm whether to proceed to consolidation or not, 

of course not for any reason. Since HARP only supports resources conditions. I.e. if the RAM needed by VM1 is 
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(512MB), and for VM2 is (1024MB) and the threshold value is only (1024MB), then those VMs will not be 

consolidated to be provisioned together. 

The idea behind VM multiplexing is to group VMs regarding to their workloads into sets of VMs. We would call a 

group as a super VM. Grouping VMs is done via the selection algorithm, which selects VMs which workload 

pattern differs, i.e. selecting VMs with complementary workloads, to reduce the number of VMs, and to get semi-

unified sized VMs; which helps achieving the maximum percentage of the utilization, and speeds up the process of 

provisioning the resources. And as mentioned before that the selection algorithm comprises of three functions, that 

we demonstrate the responsibilities of each one of them. 

In spite of, provisioning VMs in a VM-by-VM basis, VM multiplexing is to provision the grouped VMs unit. i.e. 

super VMs. The selection algorithm first finds the threshold depending on the number of resources needed by the 

most needy VMs and multiply it by the resistance ratio [12]. Then it finds the most compatible VMs regarding to 

the statistical median to group them into a super VM. To assure achieving highly resource savings, highly 

complementary should be grouped together. The selection algorithm is somehow simple, but efficient; because the 

demands of VMs vary and we guarantee to combine the VMs that totally complement each other. 

The complexity of the selection algorithm is O (n) in terms of time and O (log n) in terms of space. Since, the 

calculateThreshold function takes O (n) as its complexity in terms of time and O (1) in terms of space. The sorting 

operation takes as O (n log n) as its complexity in terms of time and O (log n) in terms of space. Since we used 

merge sort on linked lists, which require O (log n) only pointers to be changed out of place [19]. O (1) is considered 

to be the complexity of the process of assigning the first and last variables, in terms of both time and space. And 

regarding the loop, which was called the consolidation part; it takes O (n/2) in terms of time and O (1) in terms of 

space. 

HARP may have a set of limitations regarding security, because we may raise Multi-tenancy and/or Data 

Remanence threats [26].  

Experimental Design and Assessment of Results 

This chapter introduces the design of the experiments and provides assessment of the results. The experiments were 

conducted using simulation via CloudSim Toolkit. CloudSim was used to conduct two sets of experiments. The first 

set measured the power consumption of a data center and its constituent hosts. The second set however measured 

the processing performance of the HARP in terms of processing times, run time, and memory usage. Initially, the 

Chapter introduces the experimental environment and then it presents the assessment of the two simulation 

experiments. 

4.1. Experimental Environment 

It is challenging to conduct repeatable, large-scale experiments on real cloud infrastructure. As a result, simulation 

using CloudSim Toolkit is chosen as a method to implement and evaluate the performance of the HARP. 

Simulation also reduces the cost and facilitates the repeatability of experiments. 

4.1.1. CloudSim Toolkit 

The CloudSim toolkit [6] is chosen as a simulation platform. It provides modeling and simulation environment for 

cloud computing infrastructure and services. In contrast to alternative simulation toolkits such as SimGrid and 

GangSim, it allows the modeling of virtual environments and supports and manages on demand resource 

provisioning. CloudSim is recently extended with crucial features such as enabling energy aware simulation and the 

ability to simulate service applications with dynamic workloads. 

In this study, HARP will be implemented in CloudSim and simulation experiments will be conducted. The 

experiments aim at evaluating the performance of the HARP algorithm and compare it with other traditional 

resource provisioning techniques. 

4.1.2. Simulation Setup 

This study simulates a data center that comprises 800 heterogeneous physical nodes divided evenly into two 

categories of servers: HP ProLiant ML110 G4 and HP ProLiant ML110 G5. The specifications of the server are 

briefly presented in table 1. 
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Table 1: Specifications of the simulated servers 

 HP ProLiant ML110 G4 HP ProLiant ML110 G5 

MIPS 3720 37280 

Network Bandwidth 1 Gb/s 1 Gb/s 

RAM 4 GB 8 GB 

Storage 1 TB 1 TB 

 

 

4.1.3. Performance Metrics 

Several performance metrics are used to measure the efficiency of HARP. The metrics include the following: (1) 

the power consumption of the data center; (2) the power consumption of the hosts; (3) the starting time of the 

cloudlets; (4) the waiting time of the cloudlets; (5) the response time of the cloudlets; (6) the execution time of the 

cloudlets; (7) the finishing time of the cloudlets; (8) the run time of the simulation; and (9) the memory usage in the 

simulation. 

In the first set of experiments, the power consumption of the whole data center and its constituent hosts will be 

measured. In the second set of experiments, the following metrics will be measured: the starting time, the waiting 

time, the response time, the execution time, and the finishing time of the cloudlets, and the run time of the 

simulation and the memory usage in the simulation. 

4.1.4. Workload Data 

The experiments conducted in this study will use a set of data from the CoMon project, a monitoring infrastructure 

for PlanetLab [17]. The data was collected from servers located at more than 500 global locations. We have 

randomly chosen the workload data trace collected over 10 days between March and April 2011. While conducting 

the experiments, each VM is randomly assigned a workload trace from one of 10 days. 

4.2. Assessment of Results 

To measure the effectiveness of the HARP approach, the HARP algorithm was implemented in CloudSim and two 

sets experiments were run. The first set measured the power consumption of a data center and its constituent hosts. 

The second set measured the processing performance of the HARP in terms of processing times, run time, and 

memory usage. 

 

4.2.1. First Set of Experiments 

This set of experiments measures the power consumption of the data center as whole and its constituent hosts as 

individuals. Two power aware policies were implemented in CloudSim [3], Local Regression Virtual Machine 

allocation and Minimum Migration Time Virtual Machine selection.  The goal is to measure the power consumption 

resulted from the implementation of the two policies before and after implementing HARP. The simulation of the 

policies before applying HARP are referred to as non-HARP policies while the policies after applying HARP are 

referred to as HARP policies.  

4.2.1.1. Power Consumption of Data Center 

The results of part 1 of the first set of experiments are presented in figure 8. In this Figure, the y-axis represents the 

power consumption in Watt per second and the x-axis represents the run time intervals of the simulation. We can 

see the simulation run time intervals are represented as double numbers. This is because CloudSim uses an 

incremental counter of type double to represent the time slices of the simulation. The simulations results of the non-

HARP policies are represented by a blue color and the HARP policies are represented by Red color. 



Journal of Information Sciences and Computing Technologies(JISCT) 

ISSN: 2394-9066        

Volume 6, Issue 1 available at www.scitecresearch.com/journals/index.php/jisct                                                556| 

 

 

Figure 8: Data Center power consumption 

The values in figure 8 show convergence in power consumption for the non-HARP and HARP policies. However, 

the results of the non-HARP policies show more leaps than their HARP counterparts. 

The statistical information of the power consumption of data centers during the simulation run time is presented in 

table 2. The table presents the total and the average values of power consumption during all time intervals for both; 

HARP and non-HARP policies. 

Table 2: Data Center power consumption 

 

non-HARP policies HARP policies 

Total power consumption 199,501,777.4 193,645,800 

Average power consumption 260,817.6256 255,261.6699 

 

The values in table 2 show that the results of the simulation of the HARP policies achieved less power consumption 

than non-HARP. For instance, the HARP policies achieved (5,855,977.35 W/s) reduction in power consumption of 

the data center as a whole. This reduction was caused by reducing the number of provisioned VMs. This maximizes 

the resources utilization and as a result minimizes the power consumption. Moreover, the results also shows that 

HARP policies achieved (5,555.96) reduction in the averages value of power consumption compared to non-HARP 

policies. This result was also caused by the reduction in the number of the provisioned VMs. This reduction 

provides an indicator that all the hosts and devices are reaching a higher percentage of both resource and energy 

utilization. 

4.2.1.2. Power Consumption of The Hosts 

Part 2 of the first set of experiments measures the power consumption of HARP and non-HARP policies for the 

individual hosts. 

In figure 9, the x-axis represents the hosts while the y-axis represents the corresponding power consumption in Watt 

per second. The simulations results of the non-HARP policies are represented by a blue color and the HARP 

policies are represented by Red color. 
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Figure 9: Hosts' power consumption 

The values in figure 9 show that the non-HARP policies hosts consume power than their HAPR counterparts. It's 

noteworthy that the non-HARP policies increase in discrete, big leaps while their HARP counterparts increase 

slowly. To have a better vision of hosts' power consumption, statistical information regarding the overall power 

consumption must be considered. Table 3 introduces statistical information the power consumption of the hosts. 

Table 3: Statistics of Hosts' power Consumption 

 

non-HARP policies HARP policies 

Total power consumption 189,576,188.8 187,092,637 

Average power consumption 236,970.236 233,865.7963 

 

The values in the table show that power consumption of the HARP policies is less than that of their non-HARP 

counterparts. For instance, the HARP policies achieved (2,483,551.72 W/s) reduction in power consumption of the 

data center as a whole.  The reduction was caused by reducing the number of provisioned VMs and as a result 

maximizes the resource utilization. Moreover, the results also shows that HARP policies achieved (3,104.45) 

reduction in the averages value of power consumption compared to non-HARP policies. This result was also caused 

by the reduction in the number of the provisioned VMs. This reduction provides an indicator that all the hosts and 

devices are reaching a higher percentage of both resource and energy utilization. 

In all, the results of the first set of experiments showed that the HARP policies outperformed their non-HARP 

policies in terms of power consumption at either center or its constituent hosts. For instance, the HARP policies 

achieved reduction of power consumption for the whole data center of (5.85 MW/s) compared to its non-HARP 

counterparts. Furthermore, the HARP policies achieved reduction in power consumption on hosts level of (2.48 

MW/s) compared to its non-HARP counterparts. 

4.2.2. Second Set of Experiments 

This set of experiments measures the performance of HARP in terms of metrics such as starting time, waiting time, 

response time, execution time, and finishing time of the cloudlets. The HARP approach is closely related to these 

metrics since the HARP executes before executing the cloudlets, and it consolidates VMS, which affect the 



Journal of Information Sciences and Computing Technologies(JISCT) 

ISSN: 2394-9066        

Volume 6, Issue 1 available at www.scitecresearch.com/journals/index.php/jisct                                                558| 

 

parameters. Other interesting metrics are the run time and memory usage. These extra metrics indicate the impact of 

the HARP on memory usage or on introducing any extra time overhead. 

CloudSim originally has two policies, time sharing and space sharing scheduling policies. These two policies were 

used to emulate a time sharing and space sharing environments, respectively. The goal of this study is to measure 

the performance of the two policies in terms of all of the above mentioned metrics before and after implementing 

HARP. Again, the simulation of the policies before and after applying HARP is referred to as non-HARP policies 

and HARP polices, respectively.  

4.2.2.1. Time Sharing Environment 

Part 1 of the second set of experiments measures the starting time, the waiting time, the response time, the 

execution time, and the finishing time of cloudlets. The run time and total memory use are also measured. 

The results of measuring the starting time, the waiting time, the response time, the execution time, and the finishing 

time of cloudlets by applying the HARP policies versus the non-HARP policies on a time sharing environment 

showed that although the HARP policies achieved in the first experiments of reduction in power consumption, this 

reduction did not affect the starting time, the waiting time, the response time, the execution time, and the finishing 

time of cloudlets. This means that HARP execution did not cause any extra overhead regarding the starting time, the 

waiting time, the response time, the execution time, and the finishing time of cloudlets. This is because the 

consolidation of the VMs was achieved according to a threshold value. The threshold value depends on the 

resources usage value of the neediest VM. 

The results of measuring the run time and memory usage by applying the HARP policies versus the non-HARP 

policies on a time sharing environment are presented in table 4. This table compares the run time and memory usage 

caused by HARP Policies, represented in the first column, and non-HARP policies, represented in the second 

column. 

Table 4: Run time and memory usage comparison on time sharing environment 

 

non-HARP policies HARP policies 

Run time 9.516s 9.688s 

Memory usage 8M 8M 

 

The values in table 4 shows that memory use in the simulation run times were the same for both policies.  

Introducing the HARP policies was expected to incur more memory use overhead due to the computational tasks 

within the policies. However, they did not since the computations were performed on variables passed by reference 

(not by value). From the table, once can notice an extra run time overhead of (0.02%) caused by the HARP policies 

compared to their non-HARP counterparts. 

4.2.2.2. Space Sharing Environment 

Part 2 of the second set of experiments measures the starting time, the waiting time, the response time, the 

execution time, and the finishing time of cloudlets. The run time and memory usage are also measured on a space 

shared environment. 

The results of measuring the starting time, the waiting time, the response time, the execution time, and the finishing 

time of cloudlets by applying the HARP policies versus the non-HARP policies on a space sharing environment 

showed that although the HARP policies achieved reduction in power consumption as shown in the first 

experiments, they did not affect the starting time of the cloudlets. This means that the HARP execution did not 

cause any extra overhead regarding the starting time of the cloudlets. This is because the consolidation of the VMs 

was achieved according to a threshold value. The threshold value depends on the resources usage value of the 

neediest VM. The results of measuring the run time and memory usage by applying the HARP versus the non-

HARP policies on a space sharing environment are presented in table 5. The table compares the run time and total 

memory of the HARP Policies, represented in the first column, with those of the non-HARP policies, represented in 

the second column. 
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Table 5: Run time and memory use comparison on space sharing environment 

 

non-HARP policies HARP policies 

Run time 9.501s 12.323s 

Memory usage 8M 7M 

 

The values in table shows that memory usage in the simulation run times were reduced by (0.125%) by the 

application of HARP policies on space sharing environment. This reduction was due to passing variables by 

reference (not by value) and doing the needed computations. The table also shows that the application of HARP 

policies introduced an extra overhead of (0.3%) on run time compared to non-HARP policies.  

 

In all, the results of the second set of experiments showed that the HARP policies achieved a minimal overhead 

compared to their non-HARP policies in terms of processing times and memory usage at either time sharing or 

space sharing environments. For instance, HARP policies achieved the same starting time, waiting time, response 

time, execution time, finishing time, and memory usage as with its traditional counterparts on time sharing 

environment. Furthermore, the HARP caused extra (0.02%) overhead in the run time of the simulation. Whereas, on 

a space sharing environment, HARP achieved the same starting time, waiting time, response time, execution time, 

and finishing time as with its traditional counterpart. But HARP caused an extra (2.822s) which can be expressed as 

(0.3%) overhead in the run time of the simulation on a space sharing environment. HARP reduced the memory 

usage by (1M) which can be expressed as (0.125%) of the memory usage in the simulation. 

  

5. Conclusion and Future Work 

The goal of this work is to investigate resource provisioning in order to increase the percentage of both resources 

and energy utilization without degrading the performance. To achieve this goal, the HARP was developed. In this 

approach, a list of virtual machines is requested, passed to a selection algorithm, sorting the VMs according to their 

workload, compute the statistical median of the VM's workload, and combining the high load with low load from 

two different VMs on one SVM. The approach was implemented in a simulator called CloudSim. It was used to run 

two sets of experiments. The first is to measure the power consumption of the data center as whole and hosts as 

well. The second is concerned with the processing times and memory analysis. 

 

The results have shown that this approach outperforms traditional counterparts in resource provisioning. The results 

of the first experiment showed that the hybrid approach achieved reduction of (5,855,977.35 W/s) which can be 

expressed as (0.04%) in power consumption compared with the traditional counterparts for the whole data center, as 

well as a reduction of (2,483,551.72 W/s) which can be expressed as (0.013%) in power consumption for the hosts. 

 

For the second experiment on time sharing environment, it showed that hybrid approach achieved the same 

processing times with the traditional counterparts. Furthermore, the hybrid approach caused extra (0.172s) which 

can be expressed as (0.02%) overhead in the total running time of the simulation compared to its traditional 

counterparts. Also the results of the second experiment on a space shared environment achieved a reduction of 

memory usage of (1M) which can be expressed as (0.125%). It also achieved the same processing times for the 

hybrid approach and its traditional counterpart but with extra (2.822s) which can be expressed as (0.3%) overhead 

in the total running time of the simulation for the hybrid approach against its traditional counterparts. 

 

Our next moves will be towards the concepts of forecasting the resources needed by a specific VM ahead of time. 

We are looking forward to develop a resource prediction algorithm for HARP that applies the concepts of 

forecasting the resources needed ahead of time, depending on the history of resources usage for each VM. This 

algorithm will be estimating the resources that a VM will need after a period of time; we believe that by 

implementing the prediction algorithm for HARP, it will give much better results than what we have for now. 
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