1,372 research outputs found

    MAC Protocols for Wireless Mesh Networks with Multi-beam Antennas: A Survey

    Full text link
    Multi-beam antenna technologies have provided lots of promising solutions to many current challenges faced in wireless mesh networks. The antenna can establish several beamformings simultaneously and initiate concurrent transmissions or receptions using multiple beams, thereby increasing the overall throughput of the network transmission. Multi-beam antenna has the ability to increase the spatial reuse, extend the transmission range, improve the transmission reliability, as well as save the power consumption. Traditional Medium Access Control (MAC) protocols for wireless network largely relied on the IEEE 802.11 Distributed Coordination Function(DCF) mechanism, however, IEEE 802.11 DCF cannot take the advantages of these unique capabilities provided by multi-beam antennas. This paper surveys the MAC protocols for wireless mesh networks with multi-beam antennas. The paper first discusses some basic information in designing multi-beam antenna system and MAC protocols, and then presents the main challenges for the MAC protocols in wireless mesh networks compared with the traditional MAC protocols. A qualitative comparison of the existing MAC protocols is provided to highlight their novel features, which provides a reference for designing the new MAC protocols. To provide some insights on future research, several open issues of MAC protocols are discussed for wireless mesh networks using multi-beam antennas.Comment: 22 pages, 6 figures, Future of Information and Communication Conference (FICC) 2019, https://doi.org/10.1007/978-3-030-12388-8_

    AODV enhanced by Smart Antennas

    Get PDF

    Performance improvement of ad hoc networks using directional antennas and power control

    Get PDF
    Au cours de la dernière décennie, un intérêt remarquable a été éprouvé en matière des réseaux ad hoc sans fil capables de s'organiser sans soutien des infrastructures. L'utilisation potentielle d'un tel réseau existe dans de nombreux scénarios, qui vont du génie civil et secours en cas de catastrophes aux réseaux de capteurs et applications militaires. La Fonction de coordination distribuée (DCF) du standard IEEE 802.11 est le protocole dominant des réseaux ad hoc sans fil. Cependant, la méthode DCF n'aide pas à profiter efficacement du canal partagé et éprouve de divers problèmes tels que le problème de terminal exposé et de terminal caché. Par conséquent, au cours des dernières années, de différentes méthodes ont été développées en vue de régler ces problèmes, ce qui a entraîné la croissance de débits d'ensemble des réseaux. Ces méthodes englobent essentiellement la mise au point de seuil de détecteur de porteuse, le remplacement des antennes omnidirectionnelles par des antennes directionnelles et le contrôle de puissance pour émettre des paquets adéquatement. Comparées avec les antennes omnidirectionnelles, les antennes directionnelles ont de nombreux avantages et peuvent améliorer la performance des réseaux ad hoc. Ces antennes ne fixent leurs énergies qu'envers la direction cible et ont une portée d'émission et de réception plus large avec la même somme de puissance. Cette particularité peut être exploitée pour ajuster la puissance d'un transmetteur en cas d'utilisation d'une antenne directionnelle. Certains protocoles de contrôle de puissance directionnel MAC ont été proposés dans les documentations. La majorité de ces suggestions prennent seulement la transmission directionnelle en considération et, dans leurs résultats de simulation, ces études ont l'habitude de supposer que la portée de transmission des antennes omnidirectionnelles et directionnelles est la même. Apparemment, cette supposition n'est pas toujours vraie dans les situations réelles. De surcroît, les recherches prenant l'hétérogénéité en compte dans les réseaux ad hoc ne sont pas suffisantes. Le présent mémoire est dédié à proposer un protocole de contrôle de puissance MAC pour les réseaux ad hoc avec des antennes directionnelles en prenant tous ces problèmes en considération. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Réseaux ad hoc, Antennes directives, Contrôle de puissance

    Development of an efficient Ad Hoc broadcasting scheme for critical networking environments

    Get PDF
    Mobile ad hoc network has been widely deployed in support of the communications in hostile environment without conventional networking infrastructure, especially in the environments with critical conditions such as emergency rescue activities in burning building or earth quick evacuation. However, most of the existing ad hoc based broadcasting schemes either rely on GPS location or topology information or angle-of-arrival (AoA) calculation or combination of some or all to achieve high reachability. Therefore, these broadcasting schemes cannot be directly used in critical environments such as battlefield, sensor networks and natural disasters due to lack of node location and topology information in such critical environments. This research work first begins by analyzing the broadcast coverage problem and node displacement form ideal locations problem in ad hoc networks using theoretical analysis. Then, this research work proposes an efficient broadcast relaying scheme, called Random Directional Broadcasting Relay (RDBR), which greatly reduces the number of retransmitting nodes and end-to-end delay while achieving high reachability. This is done by selecting a subset of neighboring nodes to relay the packet using directional antennas without relying on node location, network topology and complex angle-of-arrival (AoA) calculations. To further improve the performance of the RDBR scheme in complex environments with high node density, high node mobility and high traffic rate, an improved RDBR scheme is proposed. The improved RDBR scheme utilizes the concept of gaps between neighboring sectors to minimize the overlap between selected relaying nodes in high density environments. The concept of gaps greatly reduces both contention and collision and at the same time achieves high reachability. The performance of the proposed RDBR schemes has been evaluated by comparing them against flooding and Distance-based schemes. Simulation results show that both proposed RDBR schemes achieve high reachability while reducing the number of retransmitting nodes and end-to-end delay especially in high density environments. Furthermore, the improved RDBR scheme achieves better performance than RDBR in high density and high traffic environment in terms of reachability, end-to-end delay and the number of retransmitting nodes

    On the performance of STDMA Link Scheduling and Switched Beamforming Antennas in Wireless Mesh Networks

    Get PDF
    Projecte final de carrera realitzat en col.laboraciĂł amb King's College LondonWireless Mesh Networks (WMNs) aim to revolutionize Internet connectivity due to its high throughput, cost-e ectiveness and ease deployment by providing last mile connectivity and/or backhaul support to di erent cellular networks. In order not to jeopardize their successful deployment, several key issues must be investigated and overcome to fully realize its potential. For WMNs that utilize Spatial Reuse TDMA as the medium access control, link scheduling still requires further enhancements. The rst main contribution of this thesis is a fast randomized parallel link swap based packing (RSP) algorithm for timeslot allocation in a spatial time division multiple access (STDMA) wireless mesh network. The proposed randomized algorithm extends several greedy scheduling algorithms that utilize the physical interference model by applying a local search that leads to a substantial improvement in the spatial timeslot reuse. Numerical simulations reveal that compared to previously scheduling schemes the proposed randomized algorithm can achieve a performance gain of up to 11%. A signi cant bene t of the proposed scheme is that the computations can be parallelized and therefore can e ciently utilize commoditized and emerging multi-core and/or multi-CPU processors. Furthermore, the use of selectable multi-beam directional antennas in WMNs, such as beam switched phase array antennas, can assist to signi cantly enhance the overall reuse of timeslots by reducing interference levels across the network and thereby increasing the spectral e ciency of the system. To perform though a switch on the antenna beam it may require up to 0.25 ms in practical deployed networks, while at the same time very frequent beam switchings can a ect frame acquisition and overall reliability of the deployed mesh network. The second key contribution of this thesis is a set of algorithms that minimize the overall number of required beam switchings in the mesh network without penalizing the spatial reuse of timeslots, i.e., keeping the same overall frame length in the network. Numerical investigations reveal that the proposed set of algorithms can reduce the number of beam switchings by almost 90% without a ecting the frame length of the network

    Smart-antenna techniques for energy-efficient wireless sensor networks used in bridge structural health monitoring

    Get PDF
    Abstract: It is well known that wireless sensor networks differ from other computing platforms in that 1- they typically require a minimal amount of computing power at the nodes; 2- it is often desirable for sensor nodes to have drastically low power consumption. The main benefit of the this work is a substantial network life before batteries need to be replaced or, alternatively, the capacity to function off of modest environmental energy sources (energy harvesting). In the context of Structural Health Monitoring (SHM), battery replacement is particularly problematic since nodes can be in difficult to access locations. Furthermore, any intervention on a bridge may disrupt normal bridge operation, e.g. traffic may need to be halted. In this regard, switchbeam smart antennas in combination with wireless sensor networks (WSNs) have shown great potential in reducing implementation and maintenance costs of SHM systems. The main goal of implementing switch-beam smart antennas in our application is to reduce power consumption, by focusing the radiated energy only where it is needed. SHM systems capture the dynamic vibration information of a bridge structure in real-time in order to assess the health of the structure and to predict failures. Current SHM systems are based on piezoelectric patch sensors. In addition, the collection of data from the plurality of sensors distributed over the span of the bridge is typically performed through an expensive and bulky set of shielded wires which routes the information to a data sink at one end of the structure. The installation, maintenance and operational costs of such systems are extremely high due to high power consumption and the need for periodic maintenance. Wireless sensor networks represent an attractive alternative, in terms of cost, ease of maintenance, and power consumption. However, network lifetime in terms of node battery life must be very long (ideally 5–10 years) given the cost and hassle of manual intervention. In this context, the focus of this project is to reduce the global power consumption of the SHM system by implementing switched-beam smart antennas jointly with an optimized MAC layer. In the first part of the thesis, a sensor network platform for bridge SHM incorporating switched-beam antennas is modelled and simulated. where the main consideration is the joint optimization of beamforming parameters, MAC layer, and energy consumption. The simulation model, built within the Omnet++ network simulation framework, incorporates the energy consumption profiles of actual selected components (microcontroller, radio interface chip). The energy consumption and packet delivery ratio (PDR) of the network with switched-beam antennas is compared with an equivalent network based on omnidirectional antennas. In the second part of the thesis, this system model is leveraged to examine two distinct but interrelated aspects: Gallium Arsenide (GaAs) based solar energy harvesting and switched-beam antenna strategies. The main consideration here is the joint optimization of solar energy harvesting and switchedbeam directional antennas, where an equivalent network based on omnidirectional antennas acts as a baseline reference for comparison purposes.Il est bien connu que les réseaux de capteurs sans fils diffèrent des autres plateformes informatiques étant donné 1- qu’ils requièrent typiquement une puissance de calcul minimale aux noeuds du réseau ; 2- qu’il est souvent désirable que les noeuds capteurs aient une consommation d’énergie dramatiquement faible. La principale retombée de ce travail réside en la durée de vie allongée du réseau avant que les piles ne doivent être remplacées ou, alternativement, la capacité de fonctionner indéfiniment à partir de modestes sources d’énergie ambiente (glânage d’énergie). Dans le contexte du contrôle de la santé structurale (CSS), le remplacement de piles est particulièrement problématique puisque les noeuds peuvent se trouver en des endroits difficiles d’accès. De plus, toute intervention sur un pont implique une perturbation de l’opération normale de la structure, par exemple un arrêt du traffic. Dans ce contexte, les antennes intelligentes à commutation de faisceau en combinaison avec les réseaux de capteurs sans fils ont démontré un grand potentiel pour réduire les coûts de réalisation et d’entretien de systèmes de CSS. L’objectif principal de l’intégration d’antennes à commutation de faisceau dans notre application réside dans la réduction de la consommation énergétique, réalisée en concentrant l’énergie radiée uniquement là où elle est nécessaire. Les systèmes de CSS capturent l’information dynamique de vibration d’une structure de pont en temps réel de manière à évaluer la santé de la structure et prédire les failles. Les systèmes courants de CSS sont basés sur des senseurs piézoélectriques planaires. De plus, la collecte de données à partir de la pluralité de senseurs distribués sur l’étendue du pont est typiquement effectuée par le biais d’un ensemble coûteux et encombrant de câbles blindés qui véhiculent l’information jusqu’à un point de collecte à une extremité de la structure. L’installation, l’entretien, et les coûts opérationnels de tels systèmes sont extrêmement élevés étant donné la consommation de puissance élevée et le besoin d’entretien régulier. Les réseaux de capteurs sans fils représentent une alternative attrayante, en termes de coût, facilité d’entretien et consommation énergétique. Toutefois, la vie de réseau en termes de la durée de vie des piles doit être très longue (idéalement de 5 à 10 ans) étant donné le coût et les problèmes liés à l’intervention manuelle. Dans ce contexte, ce projet se concentre sur la réduction de la consommation de puissance globale d’un système de CSS en y intégrant des antennes intelligentes à commutation de faisceau conjointement avec une couche d’accès au médium (couche MAC) optimisée. Dans la première partie de la thèse, une plateforme de réseau de capteurs sans fils pour le CSS d’un pont incorporant des antennes à commutation de faisceaux est modélisé et simulé, avec pour considération principale l’optimisation des paramètres de sélection de faisceau, de la couche MAC et de la consommation d’énergie. Le modèle de simulation, construit dans le logiciel de simulation de réseaux Omnet++, incorpore les profils de consommation d’énergie de composants réels sélectionnés (microcontrôleur, puce d’interface radio). La consommation d’énergie et le taux de livraison de paquets du réseau avec antennes à commutation de faisceau est comparé avec un réseau équivalent basé sur des antennes omnidirectionnelles. Dans la deuxième partie de la thèse, le modèle système proposé est mis à contribution pour examiner deux aspects distrincts mais interreliés : le glânage d’énergie à partir de cellules solaire à base d’arséniure de Gallium (GaAs) et les stratégies liées aux antennes à commutation de faisceau. La considération principale ici est l’optimisation conjointe du glânage d’énergie et des antennes à commutation de faisceau, en ayant pour base de comparaison un réseau équivalent à base d’antennes omnidirectionnelles

    A Self-Organization Framework for Wireless Ad Hoc Networks as Small Worlds

    Full text link
    Motivated by the benefits of small world networks, we propose a self-organization framework for wireless ad hoc networks. We investigate the use of directional beamforming for creating long-range short cuts between nodes. Using simulation results for randomized beamforming as a guideline, we identify crucial design issues for algorithm design. Our results show that, while significant path length reduction is achievable, this is accompanied by the problem of asymmetric paths between nodes. Subsequently, we propose a distributed algorithm for small world creation that achieves path length reduction while maintaining connectivity. We define a new centrality measure that estimates the structural importance of nodes based on traffic flow in the network, which is used to identify the optimum nodes for beamforming. We show, using simulations, that this leads to significant reduction in path length while maintaining connectivity.Comment: Submitted to IEEE Transactions on Vehicular Technolog

    The improvements in ad hoc routing and network performance with directional antennas

    Get PDF
    The ad hoc network has typically been applied in military and emergency environments. In the past decade, a tremendous amount of MAC protocols and routing protocols have been developed, but most of these protocols are designed for networks where devices equipped with omni-directional antennas. With fast development of the antenna technology, directional antennas have been proposed to improve routing and network performance in ad hoc networks. However, several challenges and design issues (like new hidden terminal problem, deafness problem, neighbor discovery problem and routing overhead problem) arise when applying directional antennas to ad hoc networks, consequently a great number of directional MAC and routing protocols have been proposed. In this thesis the implementation of directional antennas in ad hoc networks is studied from technical point of view. This thesis discusses the problems of utilizing directional antenna in ad hoc networks and reviews several recent proposed MAC algorithms and routing algorithms. The improvement of ad hoc routing and network performance with directional antennas compared with omni-directional antennas are evaluated based on simulations which are done with the QualNet simulator. The main finding of this study is that directional antennas always outperform omni-directional antennas in both static and mobility scenarios, and the advantage of directional antennas is more obvious when channel condition becomes worse or mobility level is larger. This thesis provides a survey of directional MAC and routing protocols in ad hoc networks. The result and principles obtained in this thesis are quite valuable for researchers working in this field. They can use it as reference for further researches. The theory parts of smart antenna technology and IEEE 802.11 MAC protocol can be considered as a technical introduction for beginners
    • …
    corecore