3,446 research outputs found

    Distributed MPC for coordinated energy efficiency utilization in microgrid systems

    Full text link
    To improve the renewable energy utilization of distributed microgrid systems, this paper presents an optimal distributed model predictive control strategy to coordinate energy management among microgrid systems. In particular, through information exchange among systems, each microgrid in the network, which includes renewable generation, storage systems, and some controllable loads, can maintain its own systemwide supply and demand balance. With our mechanism, the closed-loop stability of the distributed microgrid systems can be guaranteed. In addition, we provide evaluation criteria of renewable energy utilization to validate our proposed method. Simulations show that the supply demand balance in each microgrid is achieved while, at the same time, the system operation cost is reduced, which demonstrates the effectiveness and efficiency of our proposed policy.Accepted manuscrip

    The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management

    Get PDF
    Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation

    Optimal Economic Schedule for a Network of Microgrids With Hybrid Energy Storage System Using Distributed Model Predictive Control

    Get PDF
    Artículo Open Access en el sitio web el editor. Pago por publicar en abierto.In this paper, an optimal procedure for the economic schedule of a network of interconnected microgrids with hybrid energy storage system is carried out through a control algorithm based on distributed model predictive control (DMPC). The algorithm is specifically designed according to the criterion of improving the cost function of each microgrid acting as a single system through the network mode operation. The algorithm allows maximum economical benefit of the microgrids, minimizing the degradation causes of each storage system, and fulfilling the different system constraints. In order to capture both continuous/discrete dynamics and switching between different operating conditions, the plant is modeled with the framework of mixed logic dynamic. The DMPC problem is solved with the use of mixed integer linear programming using a piecewise formulation, in order to linearize a mixed integer quadratic programming problem.Ministerio de Economía, Industria y Competitivadad DPI2016-78338-RComisión Europea 0076-AGERAR-6-

    Risk-Averse Model Predictive Operation Control of Islanded Microgrids

    Full text link
    In this paper we present a risk-averse model predictive control (MPC) scheme for the operation of islanded microgrids with very high share of renewable energy sources. The proposed scheme mitigates the effect of errors in the determination of the probability distribution of renewable infeed and load. This allows to use less complex and less accurate forecasting methods and to formulate low-dimensional scenario-based optimisation problems which are suitable for control applications. Additionally, the designer may trade performance for safety by interpolating between the conventional stochastic and worst-case MPC formulations. The presented risk-averse MPC problem is formulated as a mixed-integer quadratically-constrained quadratic problem and its favourable characteristics are demonstrated in a case study. This includes a sensitivity analysis that illustrates the robustness to load and renewable power prediction errors

    Binary Search Algorithm for Mixed Integer Optimization: Application to energy management in a microgrid

    Get PDF
    This paper presents a binary search algorithm to deal with binary variables in mixed integer optimization problems. One example of this kind of problem is the optimal operation of hydrogen storage and energy sale and purchase into a microgrids context. In this work was studied a system composed by a microgrid that has a connection with the external electrical network and a charging station for electric cars. The system modeling was carried out by the Energy Hubs methodology. The proposed algorithm transforms the MIQP (Mixed Integer Quadratic Program) problem into a QP (Quadratic Program) that is easier to solve. In this way the overall control task is carried out the electricity purchase and sale to the power grid, maximizes the use of renewable energy sources, manages the use of energy storages and supplies the charge of the parked vehicles.Ministerio de Economía y Competitividad DPI2013-46912-C2-1-RUniversidad de Sevilla CNPq401126/2014-5Universidad de Sevilla CNPq303702/2011-

    Decentralized energy management of power networks with distributed generation using periodical self-sufficient repartitioning approach

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, we propose a decentralized model predictive control (MPC) method as the energy management strategy for a large-scale electrical power network with distributed generation and storage units. The main idea of the method is to periodically repartition the electrical power network into a group of self-sufficient interconnected microgrids. In this regard, a distributed graph-based partitioning algorithm is proposed. Having a group of self-sufficient microgrids allows the decomposition of the centralized dynamic economic dispatch problem into local economic dispatch problems for the microgrids. In the overall scheme, each microgrid must cooperate with its neighbors to perform repartitioning periodically and solve a decentralized MPC-based optimization problem at each time instant. In comparison to the approaches based on distributed optimization, the proposed scheme requires less intensive communication since the microgrids do not need to communicate at each time instant, at the cost of suboptimality of the solutions. The performance of the proposed scheme is shown by means of numerical simulations with a well-known benchmark case. © 2019 American Automatic Control Council.Peer ReviewedPostprint (author's final draft
    corecore