123,664 research outputs found

    Improving Energy Efficiency and Security for Pervasive Computing Systems

    Get PDF
    Pervasive computing systems are comprised of various personal mobile devices connected by the wireless networks. Pervasive computing systems have gained soaring popularity because of the rapid proliferation of the personal mobile devices. The number of personal mobile devices increased steeply over years and will surpass world population by 2016.;However, the fast development of pervasive computing systems is facing two critical issues, energy efficiency and security assurance. Power consumption of personal mobile devices keeps increasing while the battery capacity has been hardly improved over years. at the same time, a lot of private information is stored on and transmitted from personal mobile devices, which are operating in very risky environment. as such, these devices became favorite targets of malicious attacks. Without proper solutions to address these two challenging problems, concerns will keep rising and slow down the advancement of pervasive computing systems.;We select smartphones as the representative devices in our energy study because they are popular in pervasive computing systems and their energy problem concerns users the most in comparison with other devices. We start with the analysis of the power usage pattern of internal system activities, and then identify energy bugs for improving energy efficiency. We also investigate into the external communication methods employed on smartphones, such as cellular networks and wireless LANs, to reduce energy overhead on transmissions.;As to security, we focus on implantable medical devices (IMDs) that are specialized for medical purposes. Malicious attacks on IMDs may lead to serious damages both in the cyber and physical worlds. Unlike smartphones, simply borrowing existing security solutions does not work on IMDs because of their limited resources and high requirement of accessibility. Thus, we introduce an external device to serve as the security proxy for IMDs and ensure that IMDs remain accessible to save patients\u27 lives in certain emergency situations when security credentials are not available

    An alternative version of HTTPS to provide non-repudiation security property (A flexible component-based approach for secured transactions in a mobile environment): A flexible component-based approach for secured transactions in a mobile environment

    Get PDF
    International audienceThe number of mobile devices connected to the Internet is rapidly growing, inducing security issues that cannot be prevented by common mechanisms such as HTTPS. Indeed, mobile environments require light algorithms that can reduce the power-consumption and extend battery life. Moreover, HTTPS does not offer fine-grained control over the security properties such as integrity, confidentiality or authenticity. This lack of flexibility can be problematic for both power-consumption and security robustness. To overcome these issues, we have proposed in previous works a modular architecture, called LECCSAM, based on security components to secure any communication protocol by adding the required security properties. In the context of HTTP, it provides an alternative version of HTTPS by adding the integrity, confidentiality, and authenticity properties to HTTP separately or in block (i.e. only one property or any combinations of two or more properties), depending on the user needs and usage context. In this paper, we propose to extend this alternative version of HTTPS with the non-repudiation property. Preliminary results of the performance evaluation are encouraging

    Adaptive Security Framework in Internet of Things (IoT) for Providing Mobile Cloud Computing

    Get PDF
    Internet of Things (IoT) has immense potential to change many of our daily activities, routines and behaviors. The pervasive nature of the information sources means that a great amount of data pertaining to possibly every aspect of human activity, both public and private, will be produced, transmitted, collected, stored and processed. Consequently, integrity and confidentiality of transmitted data as well as the authentication of (and trust in) the services that offer the data is crucial. Hence, security is a critical functionality for the IoT. Enormous growth of mobile devices capability, critical automation of industry fields and the widespread of wireless communication cast need for seamless provision of mobile web services in the Internet of Things (IoT) environment. These are enriched by mobile cloud computing. However, it poses a challenge for its reliability, data authentication, power consumption and security issues. There is also a need for auto self-operated sensors for geo-sensing, agriculture, automatic cars, factories, roads, medicals application and more. IoT is still highly not reliable in points of integration between how its devices are connected, that is, there is poor utilization of the existing IP security protocols. In this chapter, we propose a deep penetration method for the IoT connected set of devices, along with the mobile cloud. An architecture and testing framework for providing mobile cloud computing in the IoT that is based on the object security, power utilization, latency measures and packet loss rate is explained. Our solution is based on the use of existing security protocols between clients and the mobile hosts as well as a key management protocol between the individual mobile hosts implementing an out-of-band key exchange that is simple in practice, flexible and secure. We study the performance of this approach by evaluating a prototype implementation of our security framework. This chapter, in a preliminary manner, discusses the threats, hacks, misguided packets and over read sensor message. These packets are then translated by hardware and pushed through the web for later-on action or support. Our testing of a set of sensor-triggered scenario and setup clearly indicates the security threats from wireless connected small LAN environments and the overestimated sensor messages resulting from the initial set of the sensor readings, while we emphasize more on the security level of the web services serving the IoT-connected device. Also, we add a remark on how mobile web services and their enabling devices are by far vulnerable to a 4G hack over the utilization of power pack and a serious battery use power draining issues

    Computation Offloading and Scheduling in Edge-Fog Cloud Computing

    Get PDF
    Resource allocation and task scheduling in the Cloud environment faces many challenges, such as time delay, energy consumption, and security. Also, executing computation tasks of mobile applications on mobile devices (MDs) requires a lot of resources, so they can offload to the Cloud. But Cloud is far from MDs and has challenges as high delay and power consumption. Edge computing with processing near the Internet of Things (IoT) devices have been able to reduce the delay to some extent, but the problem is distancing itself from the Cloud. The fog computing (FC), with the placement of sensors and Cloud, increase the speed and reduce the energy consumption. Thus, FC is suitable for IoT applications. In this article, we review the resource allocation and task scheduling methods in Cloud, Edge and Fog environments, such as traditional, heuristic, and meta-heuristics. We also categorize the researches related to task offloading in Mobile Cloud Computing (MCC), Mobile Edge Computing (MEC), and Mobile Fog Computing (MFC). Our categorization criteria include the issue, proposed strategy, objectives, framework, and test environment.

    Keep Your Nice Friends Close, but Your Rich Friends Closer -- Computation Offloading Using NFC

    Full text link
    The increasing complexity of smartphone applications and services necessitate high battery consumption but the growth of smartphones' battery capacity is not keeping pace with these increasing power demands. To overcome this problem, researchers gave birth to the Mobile Cloud Computing (MCC) research area. In this paper we advance on previous ideas, by proposing and implementing the first known Near Field Communication (NFC)-based computation offloading framework. This research is motivated by the advantages of NFC's short distance communication, with its better security, and its low battery consumption. We design a new NFC communication protocol that overcomes the limitations of the default protocol; removing the need for constant user interaction, the one-way communication restraint, and the limit on low data size transfer. We present experimental results of the energy consumption and the time duration of two computationally intensive representative applications: (i) RSA key generation and encryption, and (ii) gaming/puzzles. We show that when the helper device is more powerful than the device offloading the computations, the execution time of the tasks is reduced. Finally, we show that devices that offload application parts considerably reduce their energy consumption due to the low-power NFC interface and the benefits of offloading.Comment: 9 pages, 4 tables, 13 figure

    Social Welfare Maximization Auction in Edge Computing Resource Allocation for Mobile Blockchain

    Full text link
    Blockchain, an emerging decentralized security system, has been applied in many applications, such as bitcoin, smart grid, and Internet-of-Things. However, running the mining process may cost too much energy consumption and computing resource usage on handheld devices, which restricts the use of blockchain in mobile environments. In this paper, we consider deploying edge computing service to support the mobile blockchain. We propose an auction-based edge computing resource market of the edge computing service provider. Since there is competition among miners, the allocative externalities (positive and negative) are taken into account in the model. In our auction mechanism, we maximize the social welfare while guaranteeing the truthfulness, individual rationality and computational efficiency. Based on blockchain mining experiment results, we define a hash power function that characterizes the probability of successfully mining a block. Through extensive simulations, we evaluate the performance of our auction mechanism which shows that our edge computing resources market model can efficiently solve the social welfare maximization problem for the edge computing service provider

    Security in Ad-Hoc Routing Protocols

    Full text link
    Mobile Ad-Hoc Networks (MANETs) are becoming increasingly popular as more and more mobile devices find their way to the public, besides traditional" uses such as military battlefields and disaster situations they are being used more and more in every-day situations. With this increased usage comes the need for making the networks secure as well as efficient, something that is not easily done as many of the demands of network security conflicts with the demands on mobile networks due to the nature of the mobile devices (e.g. low power consumption, low processing load). The concept and structure of MANETs make them prone to be easily attacked using several techniques often used against wired networks as well as new methods particular to MANETs. Security issues arise in many different areas including physical security, key management, routing and intrusion detection, many of which are vital to a functional MANET. In this paper we focus on the security issues related to ad hoc routing protocols in particular. The routing in ad hoc networks remains a key issue since without properly functioning routing protocols, the network simply will not work the way it's intended to. Unfortunately, routing may also be one of the most difficult areas to protect against attacks because of the ad hoc nature of MANETs. We will present the main security risks involved in ad-hoc routing as well as the solutions to these problems that are available today.

    Stochastic Memory Devices for Security and Computing

    Get PDF
    With the widespread use of mobile computing and internet of things, secured communication and chip authentication have become extremely important. Hardware-based security concepts generally provide the best performance in terms of a good standard of security, low power consumption, and large-area density. In these concepts, the stochastic properties of nanoscale devices, such as the physical and geometrical variations of the process, are harnessed for true random number generators (TRNGs) and physical unclonable functions (PUFs). Emerging memory devices, such as resistive-switching memory (RRAM), phase-change memory (PCM), and spin-transfer torque magnetic memory (STT-MRAM), rely on a unique combination of physical mechanisms for transport and switching, thus appear to be an ideal source of entropy for TRNGs and PUFs. An overview of stochastic phenomena in memory devices and their use for developing security and computing primitives is provided. First, a broad classification of methods to generate true random numbers via the stochastic properties of nanoscale devices is presented. Then, practical implementations of stochastic TRNGs, such as hardware security and stochastic computing, are shown. Finally, future challenges to stochastic memory development are discussed

    SMS Security by Elliptic Curve and Chaotic Encryption Algorithms

    Get PDF
    Short message services (SMS) represent one of the components of the global communications network and are one of the important developments in communication technologies and communications technology. SMS messages without a password are stored in the SMS server. For the purpose of review and dispute resolution. The security of SMS content cannot be protected because it is transmitted in plain text and is accessible to network operators and employees. Therefore, the end-to-end key is based on encryption and decryption technology can provide SMS security. The security protocols used for SMS security on contemporary mobile devices were examined in this study. SMS security system encryption time affects how well mobile devices work. This shows that security technologies take longer to generate keys and encrypt keys as the key size increases. Due to the limited processing power of mobile devices, large-scale algorithms such as DES, AES, RC4, and Blowfish are not suitable for SMS encryption. SMS may be encrypted using the elliptic curve technique because it provides great security with a smaller key on devices with limited resources, such as mobile phones. And chaotic theory, encryption is simple, fast and secure data encryption. As a result, a combination of elliptic curve algorithm and chaotic encryption algorithm is proposed to achieve a high level of security. In this paper, several tests have been done to compare the algorithms in terms of throughput, power consumption, SMS size, encoding time, and decoding time. The results indicate that the proposed method is better than the comparison method.

    Security Issues in Manet and Counter-Measures

    Get PDF
    Mobile Ad-hoc Networks (MANET) are self-configuring networks of mobile nodes connected by wireless links. These nodes are able to move randomly and organize themselves and thus, the network's wireless architecture change rapidly and unpredictably. MANETs are usually utilized in situations of emergency for temporary operations or when there are no resources to set up elaborate networks. Mobile Ad-hoc Networks operate in the absence of any fixed infrastructure, which makes them easy to deploy, at the same time however, due to the absence of any fixed infrastructure, it becomes difficult to make use of the existing routing techniques for network services, and this poses a number of challenges in ensuring the security of the communication network, something that is not easily done as many of the demands of network security conflict with the demands of mobile networks due to the nature of the mobile devices (e.g. low power consumption, low processing load). Most of the ad-hoc routing protocols that address security issues rely on implicit trust relationships to route packets among participating nodes. Apart from security objectives like authentication, availability, confidentiality, and integrity, the ad-hoc routing protocols should also address location confidentiality, cooperation fairness and absence of traffic diversion. In this paper we attempt to survey security issues faced by the mobile ad-hoc network environment and provide a classification of the various security mechanisms. We also analyzed the respective strengths and vulnerabilities of the existing routing protocols and proposed a broad and comprehensive frame-work that can provide a tangible solution
    • …
    corecore