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ABSTRACT

Pervasive computing systems are comprised of various personal mobile devices 
connected by the wireless networks. Pervasive computing systems have gained 
soaring popularity because of the rapid proliferation of the personal mobile 
devices. The number of personal mobile devices increased steeply over years 
and will surpass world population by 2016.

However, the fast development of pervasive computing systems is facing two 
critical issues, energy efficiency and security assurance. Power consumption of 
personal mobile devices keeps increasing while the battery capacity has been 
hardly improved over years. At the same time, a lot of private information is 
stored on and transmitted from personal mobile devices, which are operating in 
very risky environment. As such, these devices became favorite targets of 
malicious attacks. Without proper solutions to address these two challenging 
problems, concerns will keep rising and slow down the advancement of 
pervasive computing systems.

We select smartphones as the representative devices in our energy study 
because they are popular in pervasive computing systems and their energy 
problem concerns users the most in comparison with other devices. We start 
with the analysis of the power usage pattern of internal system activities, and 
then identify energy bugs for improving energy efficiency. We also investigate 
into the external communication methods employed on smartphones, such as 
cellular networks and wireless LANs, to reduce energy overhead on 
transmissions.

As to security, we focus on implantable medical devices (IMDs) that are 
specialized for medical purposes. Malicious attacks on IMDs may lead to serious 
damages both in the cyber and physical worlds. Unlike smartphones, simply 
borrowing existing security solutions does not work on IMDs because of their 
limited resources and high requirement of accessibility. Thus, we introduce an 
external device to serve as the security proxy for IMDs and ensure that IMDs 
remain accessible to save patients' lives in certain emergency situations when 
security credentials are not available.
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1 Introduction

Pervasive computing systems are comprised of various personal mobile devices 

connected by wireless networks. Some of these devices can be hand-held and 

fulfill all kinds of computational demands through intensive interactions with users. 

Other devices can be embedded into the surrounding environment or on the users' 

bodies to specifically support services with minimal human intervention. The combi

nation of general and specific purpose devices bring rich opportunities for personal 

computing. Pervasive computing systems have gained soaring popularity because 

of the rapid proliferation of personal mobile devices. The number of devices has 

been steeply increasing over recent years and will surpass the world population by 

2016.

However, the fast development of pervasive computing systems is facing two 

critical issues, energy efficiency and security assurance. As personal mobile de

vices start processing more complicated tasks, power consumption increases. How

ever, these devices are typically battery-powered because mobility is a common 

theme in pervasive computing systems. Given the fact that battery technique has 

hardly improved, the increasing energy needs of pervasive computing is outpac

ing provided battery capacity. Mobile security is of growing importance as a lot 

of private user information is stored on personal mobile devices and transmitted 

through wireless communications. Without proper protections, users' privacy will 

be violated and useful computation will be limited. Concerns rising from the energy
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and security problems have slowed down the advancement of pervasive computing 

systems.

We select smartphones for our energy study because smartphones are the most 

popular devices in pervasive computing systems. Thus, their energy problems are 

representative and the solutions we propose for smartphones can be generalized 

to other personal mobile devices. Moreover, the energy problem on smartphones 

is more serious in comparison with other devices. Smartphones are extremely 

energy-hungry because users tend to run computationally demanding tasks on 

them. At the same time, users still have a high expectation of the battery life

time for their devices. This conflict cannot be mitigated by slowly improving battery 

techniques alone. Software optimization can save energy and maximize battery 

usage.

As to security, we focus on implantable medical devices (IMDs), which are spe

cialized for medical purposes. There is a lot of sensitive patient data on IMDs and 

it is possible to physically influence the patients' health conditions through IMDs. 

Comprehensive security protections are necessary to prevent malicious attacks. 

However, unlike smartphones, borrowing existing security schemes on IMDs does 

not work because of their limited computational resources and high requirement 

of accessibility. Additionally, this problem urgently requires solutions because real 

attacks have been successfully performed on IMDs with the assistance of simple 

equipment. Action must be taken to prevent further damage. We also hope our 

research on this group of specialized devices can shed light on solving similar se

curity problems.

To help solve the energy issue, we contribute three projects. We start with an 

analysis of the power pattern of internal system activities, and we improve the en

ergy efficiency by fixing energy bugs that we found. We also investigate the external 

communication methods employed on smartphones, such as cellular networks and
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wireless LANs, to reduce the energy overhead on data transmissions.

System power models are important to power management and optimization 

on smartphones. However, existing approaches for power modeling have several 

limitations. Some approaches require external power meters, which are not con

venient for people to use. Others either rely on the internal battery current sensing 

hardware, which is not available on many smartphones, or take a long time to gen

erate power models. To overcome these limitations, we propose a new way of 

generating power models from battery voltage dynamics called V-edge. V-edge is 

self-constructive and does not require current-sensing. Most importantly, it builds 

models quickly. Our implementation supports both component-level power models 

and per-application energy accounting. Evaluation results using various bench

marks and applications show that the V-edge approach achieves high power mod

eling accuracy, and is two orders of magnitude faster than existing self-modeling 

approaches requiring no current-sensing hardware.

In our second project, we build upon our system power modeling technique 

mentioned above to improve the energy efficiency of popular applications on smart

phones. Specifically, we investigate email sync over 3G. According to our study, 

a large portion of energy is wasted while the smartphone receives messages in 

sleep mode. We perform a thorough analysis of different email sync techniques, 

across different mobile platforms, and we identify common energy usage problems 

in them. Then we propose a general design guideline for developers to improve 

the energy consumption of other programs on smartphones.

In our third project, we propose an online access point association algorithm 

for pervasive computing systems. It runs in a decentralized manner and is easy to 

deploy without any change to the infrastructure. This project is motivated because 

selecting a suitable access point (AP) is important to pervasive computing devices 

using WiFi. When contentions occur because of unwise AP association, the link
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quality is severely degraded and more energy is wasted on data re-transmissions.

Last but not least, the rapid development in pervasive computing is blurring the 

boundary between the physical and cyber world. This trend makes security issues 

critical because malicious attacks are now able to threaten human life. For exam

ple, wireless access to IMDs today is unprotected and open to any one. Recently, 

real attacks have been demonstrated that a patient with an IMD could die because 

of this vulnerability. It is not appropriate to simply enforce traditional security on 

IMDs due to concerns for patient safety. 24/7 protection via standard encryption 

stops malicious actions, but also rigidly prevents legitimate doctors, who do not 

have security credentials, from accessing IMDs to save the patient's life in an unex

pected emergency. Therefore, our fourth contribution is to design a context-aware 

security scheme tailored for heart-related IMDs. There are two novel techniques 

incorporated. One is ECG based key paring without prior shared secrets, and the 

other is an access control mechanism resilient to the spoofing attacks in this con

text.

Specifically we address four challenging problems as follows.

1.1 Energy Modeling on the Smartphone

Smartphones already commanded 63 percent market share in the United State 

according to a recent report, and the percentage keeps increasing. Compared with 

their predecessor, featured phones, the large demand of energy has stretched their 

battery capacities to the limit. Frequent re-charging becomes an annoying part of 

daily smartphone usage. The application using WiFi is a major factor that leads 

to this energy starving. In order to improve the power consumption of this kind of 

application, it is important to first understand where the energy is drained with the 

use of WiFi based applications. Bottlenecks of the power consumption are then
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able to be identified and solved. Thus, we propose a fine-grained power modeling 

on smartphones to fulfill this demand.

There are three design requirements of our modeling approach. The first re

quirement is fine granularity. Each major hardware component should have its 

own power model. This is the key building block to track the energy consump

tion of active applications on the smartphone. The second one is self-construction. 

Slight changes in hardware and software configuration may lead to different model

ing outcomes. Given the fact that there are a lot of smartphones models with many 

customization options, we require our modeling can run on the target device in an 

online manner, for the sake of accuracy. The last one is widespread use. So far 

only part of battery interfaces are capable of sensing electrical current. In order to 

make our modeling suitable to all kinds of smartphones, we do not take advantage 

of this useful electrical current information in the procedure of modeling.

The energy waste of carelessly designed applications also intensifies this ten

sion. Therefore, energy is a crucial resource to be managed on smartphones. In 

order to manage well, it is required to have good online modeling of consumes 

power on major smartphone hardware component like CPU and screen. Existing 

solutions however either cannot achieve satisfied accuracy and overhead, or need 

current sensing support on smartphones while a large portion of them is not capable 

doing that, we propose one online self-constructive energy modeling at component 

granularity only based upon voltage information from battery interfaces. One novel 

metric, V-edge, is first introduced to construct a new energy measurement system, 

replacing current required by the traditional way. New modeling procedures are 

described to estimate battery capacity and generate energy models for each major 

component using this new measurement system. Our proposed V-edge solution 

estimates power consumption 900 times faster than previous SOD based method. 

V-edge also outperforms SOD method in terms of accuracy for voltage-sensing-
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only smartphones. Additionally, we develop kernel module Pecan for per-process 

energy accounting on the real smartphone device as the example to demonstrate 

the application and performance of V-edge approach.

The contribution of our work are as follows.

• We are the first to introduce a new metric to build an alternative energy system 

of traditional one. Only voltage information is required for our approach, so it 

is able to be applied on smartphones that are only capable of voltage sensing, 

as well as other embedded devices that are also manufactured like that, which 

are quit common.

• We provide energy transferring mechanisms between new and corresponding 

traditional energy systems, and whole procedures of component level mod

eling with concrete examples on real hardware. The overhead of energy es

timation on one system operation is significantly reduced to 1 second 1 from 

above 900 seconds in SOD method. The modeling accuracy is improved as 

well, comparable to current-sensing-capable based methods.

• We implement a per-process energy accounting on Android platform, Pecan, 

for demonstrating the auto and self-constructive procedures from modeling to 

monitoring and overall performance.

• We are the first to take screen pixel colors, which have a heavy impact on 

power consumption, into account when modeling screen component.

1.2 Improve Energy Consumption of Email Sync

Standby time, a battery’s life in standby mode, is important for smartphones to 

provide good power performance to users. Even though many smartphones claim

1 Could be further reduced if voltage updating frequency is less than 1 second.
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a standby time of more than 10 days in their technical specifications, in practice 

their standby times are often much shorter, e.g., only two or three days or even 

less. The main reason for such a big gap is that when a smartphone remains in 

standby mode, it stays connected to the Internet through its cellular data interface 

(e.g., 3G), waiting for various incoming events, such as emails, short messages, 

instant messages, notifications of social applications (e.g., Twitter and Facebook), 

and many other push notifications.

We study the power performance of email sync in connected standby on smart

phones. Email is a killer application on smartphones for most users, who expect 

their email clients to keep synchronized with one or more email servers even when 

the phone is in standby mode. We measure the energy consumption of existing 

email clients on two major smartphone platforms: Android and Windows Phone 

(WP). Our results show that email sync is indeed a major drain on existing plat

forms, and we observe that existing mobile email clients do not handle incoming 

emails in an energy-efficient way.

Based on our findings, we formulate new design principles for energy-efficient 

event handling (and specifically email sync) on smartphones in connected standby. 

Applying these principles to the case of email sync, we develop 5 new techniques, 

each one addressing one of the shortcomings we have identified in existing sys

tems. Collectively, these techniques achieve significant reductions in the energy 

cost of email syncing. In summary, the main contributions of this work are:

• We show that email sync in a connected standby state is a major source of 

energy consumption in today’s smartphones, and that existing email clients 

are not optimized for operation in this mode.

• We derive design principles for energy-efficient event handling in connected 

standby, and propose techniques for reducing the energy required per email 

sync.
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• We implement a new email client on smartphones and show that it is signifi

cantly more energy efficient.

1.3 AP Association in Wireless LAN

802.11 is the main communication method on mobile devices like laptops. There

fore, the throughput of this wireless link has a major influence on the laptop user 

experience. Among all operations in the 802.11 protocol, AP association procedure 

is one of few steps determining the throughput. As the first step of the communica

tion procedure, an unwise selection of AP hurts one laptop or client's throughput. 

This performance downgrade is usually hard to be offset by other methods like ef

ficient rate adaptations. Which AP should one laptop pick for association? This 

question is not easy to answer in modern wireless networks where there are many 

laptops and APs, because the broadcast characteristic of wireless communication 

cause interference within the networks. The throughput of one laptop is affected 

by association decisions of other network clients that interfere with it. To improve 

throughput in wireless networks, we study this AP selection problem in a decen

tralized manner with the objective of maximizing the minimal throughput among all 

clients. We reveal through theoretical analysis that the selfish strategy, which com

monly applies in decentralized systems, cannot effectively achieve this objective. 

Accordingly, we propose an online AP association strategy that not only achieves 

a minimal throughput (among all clients) that is provably close to the optimum, but 

also works effectively in practice with a reasonable computation and transmission 

overheads on laptops. The association protocol applying this strategy is imple

mented on the commercial hardware and compatible with legacy APs without any 

modification. We demonstrate its feasibility and performance through real experi

ments and intensive simulations.

8



Our main contributions are:

1. We have designed a distributed online algorithm for AP association. This 

algorithm well captures interference in transmission. It only needs to be per

formed once on a new user when she or he joins the network, and mean

while all existed users do not have to revoke their association decision already 

made. We have proved our algorithm is elogm competitive, while no online 

algorithm is able to do better than [log(m +  1)] [19].

2. Our implementation is practical and does not require any modification on APs, 

making our technique applicable to existing wireless networks. A light-weight 

method is introduced to estimate one laptop's throughput on the target AP 

without association, reducing the operation overhead. We demonstrate its 

practicability in real experiments, as well as in large scale simulation settings.

1.4 Secure Wireless Communication in IMDs

Medical device technique has seen a rapid development over the past several 

years. Therapy utilizing IMDs has become much easier with the help of wireless 

communication. By leveraging external wireless programmer, doctors can wire

lessly link to IMD to collect medical information and adjust treatments on devices 

in routine follow-ups. In the near future, patients even do not need to make a spe

cial trip to the hospitals for check up because doctors will be able to check patients' 

health conditions over wireless LAN. Therefore, both parties prefer wireless IMDs to 

other types, simulating wireless applications in IMDs. However, the current wireless 

protocols implemented on IMDs are not designed with the consideration of secu

rity. Recent study found out that, with simple programmer equipment obtained from 

off-the-shelf markets, anyone including malicious attackers could connect and re

program the commercial IMDs that are widely used right now. This security hazard
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put patients' lives in danger, not to mention potential leaking of private information.

We designed a security scheme to protect wireless communications between 

the IMD and legitimate external programmer. This scheme includes changes of 

system architecture and communication protocols specifically for heart-related IMDs 

A wearable device called IMD Guardian is introduced to act like a security proxy 

between the IMD and programmer. This architecture change obviously benefits the 

energy consumption of battery-powered IMDs because they does not have to deal 

with many communication messages other than medical data. More importantly, 

this change is able to save patient's life in certain emergency case that requires IMD 

to remain operable when appropriate security credentials may be unavailable. Ac

cordingly wireless communication protocols also need to be changed accordingly 

to meet new requirements and security standards.

Two novel techniques are incorporated to protect IMDs from potential attacks 

targeting at these design changes. One is an Electrocardiography (ECG) based 

secure key establishment without prior shared secrets. This technique ensure IMD 

to securely and successfully pair with correct Guardian even under circumstances 

adversary may present. The other is an access control mechanism resilient to 

adversary spoofing attacks. When applied, adversary cannot make IMD disable 

security functionality by making fake emergency conditions.

Our IMD security scheme makes the following contributions:

1. Previous work in ECG based key agreements did not properly extract the 

randomness of input data or correctly evaluate final outputs. In contrast, we 

are the first to propose a rigorously information-theoretic secure extraction 

scheme, and evaluate its performance on resource constrained embedded 

systems.

2. To the best of our knowledge, we are the first to finalize and implement a 

comprehensive secure protocol for the previously proposed architecture that
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uses an external device as the authentication proxy to protect the IMD. Be

sides, our design is tailored for IMDs and requires no special hardware. For 

example, the key extraction scheme of IMD Guard is proposed based on the 

existing functionality of the IMD, and the wearable device does not need pow

erful transmitter modules to defend against the adversary's spoofing attacks.

3. We perform extensive experiments on our prototype to evaluate the validity 

and performance of the IMDGuard.

1.5 Organization

This proposal is organized as follows. In Chapter 2 we introduce a fast self-constructive 

power modeling technique that works on most of smartphones. Then we improve 

the email sync in the connected standby mode on smartphones in Chapter 3. In 

Chapter 4, we present an online AP association protocol for 802.11 that improve 

the network throughput. In Chapter 5, we present a security mechanism to pro

tect wireless communications between the IMD and legitimate programmer with 

the consideration of patients' safety. We conclude this dissertation in Chapter 6.
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2 Smartphone Power Modeling

Energy consumption is a paramount concern in all battery-powered mobile devices, 

including smartphones. Power modeling is a key technology and an effective way 

to understand the power consumption of applications running on mobile devices. 

Thus, it has attracted much research effort. With a power model, users can iden

tify the power-hungry applications and better manage battery life of their smart

phone [2]. Developers are able to profile, and consequently optimize, the energy 

consumption of their mobile applications [64],

Existing approaches for power modeling have several limitations. First, an accu

rate power model heavily depends on individual smartphone's hardware/software 

configuration, battery age, and device usage [35]. Most existing work [23,28,38, 

69, 78, 81] relies on external power measurement equipment to generate accu

rate models. This is labor-intensive and requires experts' knowledge. Since the 

power model of individual smartphone is different and slowly changing [4,35], it 

is expensive to apply this approach to build models tailored to every phone. The 

"self-metering" approach [35, 39,45] has been proposed to build individualized 

power models if a smartphone can read the online voltage and current values from 

its built-in battery interface. While most smartphones have voltage-sensing ca

pabilities, many smartphones today, including popular models like Nexus S and 

some Samsung Galaxy series, do not have the ability to sense current. Therefore, 

the previous approach based on current sensing is not applicable to many smart
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phones. The State-of-Discharge (SOD) approach [94] sidesteps this problem by 

using the SOD information in battery interface. It does not require current-sensing 

but has very long model generation time (days) due to the very slow changing na

ture of SOD. This makes it impossible to have fast power model construction, which 

is often required to rebuild power models to adapt to various changes in hardware 

and software, the battery aging, and usage pattern changes (Section 2.2).

In this paper we propose a new approach for power modeling, called V-edge, 

to address the limitations of existing approaches. V-edge is self-constructive, does 

not require current-sensing, and most importantly, is fast in model building. V-edge 

is based on the following insight to voltage dynamics on battery-powered devices: 

when the discharge current of a battery is changed, the instant voltage change, 

caused by the internal resistance, has a reliable linear relationship with the current 

change. Therefore, from the voltage change, we can determine the change of 

current and consequently the power information (see more details in Section 2.3). 

The V-edge power modeling requires only voltage-sensing and thus works for most 

smartphones, and is able to generate power models much faster than SOD-based 

approaches.

We have designed and implemented a power modeling prototype based on 

V-edge. Our implementation supports both component-level power models and 

per-application energy accounting. Experimental evaluation results, using various 

benchmarks and real applications, show that V-edge is able to generate accurate 

power models, comparable to the power-meter-based approach. The building time 

is much shorter than SOD-based approaches.

To the best of our knowledge, V-edge is the first work to model smartphone 

power consumption by leveraging the regularity of instant battery voltage dynam

ics. Prior to our exploration, these instant dynamics are treated as irregular fluc

tuations during slow supply voltage dropping (i.e. SOD decreasing) [94]. Our key
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contributions are as follows.

• We are the first to observe that the current information can be inferred from 

instantaneous changes in a battery's voltage. We demonstrate that inferring 

current in such a manner is fast, reliable, and accurate.

• Based on this observation, we propose V-edge to facilitate the self-constructive 

power modeling on most smartphones. V-edge is much faster than the exist

ing solution, making it efficient to (re)build power models for timely adapting 

of hardware and software configurations with minimum interruption to users.

• We present the design and implementation of the power modeling system that 

applies V-edge on popular smartphones, including power models of major 

hardware components and the per-application energy accounting.

• We evaluate our V-edge-based implementation using a diverse set of bench

marks and applications. The results demonstrate that, given the same model, 

the error range of the energy estimations of V-edge is within 4%, on average, 

compared with those of power-meter-based approaches. The model gener

ation is two orders of magnitude faster than SOD-based approaches.

The rest of the chapter is organized as follows. In Section 2.1, we introduce 

how power modeling works as background. In Section 2.2, we survey the related 

work and motivate V-edge. In Section 2.3, we describe our observation on battery 

voltage dynamics and demonstrate how to infer current information from voltage 

readings of battery interface. We present the V-edge energy measurement system 

in Section 2.4 and the power models in Section 2.5. We describe the design and 

implementation of a system built upon the V-edge power modeling in Section 2.6 

and evaluation results in Section 2.7. We discuss limitations of V-edge and future 

work in Section 2.8 and conclude in Section 2.9.
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2.1 Background: Power Modeling

A power model estimates the power consumption of a system, such as a smart

phone, based on more readily observable system statuses. Typically, the model 

is generated through a training phase. A set of well-designed programs are run 

to explore various system states in this phase and corresponding power values 

are measured at the same time. Provided system states and their power mea

surements as inputs, various modeling techniques like Linear Regression (LR) can 

derive the relationship between these two sets of information, i.e., a power model.

It is common to simply take resource utilization as the system status, such as 

screen brightness, CPU usage and so on. As an example of such a utilization- 

based power model, consider a system consisting of only a CPU. To build a power 

model for this system, one would first design several training programs generat

ing different CPU loads. Then one would run each training program and exploit 

some measurement tool, like Monsoon Power Monitor [12], to provide correspond

ing power value P.

Assuming that power consumption of the CPU has a linear relationship with 

CPU utilization, a power model can be formulated as Pc%ni =  a * +  b, where a

and b are constant, {7^ is CPU utilization, and Pcpu is the estimated power con

sumption. Here, Ucpu is called a predicator, as it is used to indicate the power 

consumption of the CPU. There can be multiple predicators in a power model. For 

example, if Dynamic Frequency Scaling (DFS) is enabled on the CPU, one may 

use two predicators, the frequency F^  and 1 /^ , to estimate the power consump

tion. Besides LR, other techniques (e.g., non-linear regression) can also be used 

to build alternative (often more complicated) power models.

Once a power model is generated, it can be used in a power estimation phase 

to predict the power consumption of the system without requiring additional power
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measurements. For example, if the CPU utilization of a program is 25% for a du

ration of T,  the the energy consumption of this program is E totai =  (a * 25 +  b) * T. 

More generally, one can monitor and calculate the total energy consumption of a 

program with dynamic CPU usages as E totai =  *  A T ,  where is the i-th

measurement of CPU utilization and A T  is the time interval of the measurement.

Similar to CPU, a power model can be built for other hardware components, 

such as the screen, Wi-Fi, GPS and so on. After power models of all the compo

nents are generated, a power model of the whole system (e.g., a smartphone) can 

be built on top of the component power models. It is also possible to perform the 

energy consumption accounting of individual applications or processes, as we will 

describe in Section 2.5.

While a power model can give absolute values of energy cost, in practice relative 

values are often more meaningful to end users. It is usually hard for most users to 

map absolute energy values (e.g., 10 Joules) to what they concern, such as what 

percentage of energy has been consumed by screen or an application. As a result, 

most power monitoring tools on smartphones show power consumption information 

to users in terms of percentages rather than absolute values [2].

From the above example, we can see that power measurement is the foundation 

and an essential part of power modeling. As we will see in Section 2.2, however, 

the ways in which power measurement is currently done introduces limits to the 

power modeling's usability and applicability.

2.2 Related Work and Motivation

System power modeling has been an active research topic and many approaches 

have been proposed. Based on how power consumption is measured, existing 

literature can be divided into two categories: external metering and self-metering.
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Table 2.1: Comparison of power modeling approaches

Self-modeling? Support most phones? Fast model adaptation?
External metering X V X

Self-metering except SOD V X V
SOD approach y/ y/ X

Ideal approach V V V

Once power consumption is measured, various training techniques to generate 

models have been studied.

External metering. Most existing work on smartphone power modeling relies 

on external and expensive power meter to build power models [23,28,38,69,81]. 

Those approaches are very accurate because a dedicated power meter can pre

cisely measure power consumption. However, they are labor-intensive and can be 

done only in a lab. Due to hardware and software diversity of smartphone, each 

type of smartphones may have a different power model. Any new configuration re

quires rebuilding the model back in the lab again. Therefore, these in-lab methods 

are very inflexible and thus not suitable to use in the wild across a large number of 

users.

Recently, BattOr [78] extended the external meter to mobile settings with a 

lightweight design. Nevertheless, it is not easy for a layman to operate BattOr be

cause it is not deployed on smartphones. In fact, more and more smartphones use 

non-replaceable batteries to optimize layout, so attaching any external equipment 

on them becomes difficult and even dangerous to end-users.

Self-metering. Self-metering approaches [35,39,45,94] collect energy informa

tion from smartphones' built-in battery interfaces to generate power models without 

requiring a power meter. The battery interface consists of battery status registers 

that the fuel gauge integrated circuit exposes to smartphone operating systems, 

including voltage, temperature, State-Of-Discharge (SOD), and sometimes current 

information. The power can be calculated if both voltage and current are provided
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by the battery interface.

However, many smartphones, including popular ones like the Nexus S and the 

Samsung Galaxy S2, provide battery interfaces that are only capable of sensing 

voltages. This means existing self-metering approaches, except [94], are unable 

to work on a large amount of smartphones (the number is still increasing) already 

in use.

Zhang et al. [94] proposed building power models based on SOD readings of 

batteries, which does not require current-sensing. However, the SOD-based ap

proach has a very long model generation time and is inaccurate due to its SOD- 

based nature. The approach measures the remaining battery capacity (a number 

from 0% to 100%) to estimate the energy consumption. The granularity of energy 

measurement is as coarse as 1% of the whole battery capacity. It not only takes 

tens of minutes to observe a change of battery capacity but also introduces large 

errors due to the coarse energy granularity.

Motivation of fast power model construction. Fast power model construc

tion is desirable because there are many cases requiring model rebuilding. Besides 

hardware and software changes, rebuilding is also necessary for changes of soft

ware configurations as a simple CPU policy modification may lead to up to 25% 

differences in power estimation [35]. The battery aging problem [4] also affects 

power modeling as battery capacity drops significantly with battery age. Thus, a 

power model needs to be rebuilt after a battery has been used for some time. Fur

thermore, Dong et al. [35] showed that power models also depend on device usage 

and demonstrated that a power model should be continuously refined based on 

usage. In addition, the complexity of modern hardware may require many training 

cases to generate accurate power models. For example, Mittal et al. [64] used 4096 

training cases (for different R, G, B color combinations) to generate a power model 

for AMOLED display. If it were to take 15 minutes to observe a change of SOD
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(the minimal time used by Zhang et al. [94]), then it would take the SOD-based ap

proach more than 1,000 hours to generate a single display model, making it almost 

impossible for end-users to build or rebuild power models on their smartphones.

In addition, the power measuring of a training program need to be performed 

in a controlled environment. In fast power modeling, short measuring time largely 

reduces the chance that the user takes the system control back during the running 

of a training program. Thus, the fast power modeling is more robust because of 

the tolerance of users' interruptions. Also, the fast one is more flexible because it 

is able to quickly suspend construction after the completion of a training program 

and resume later.

Ideally, besides accuracy, a good power model approach should be self-modeling 

(i.e., it should not depend on external power meters), work for most smartphones 

(i.e., it should not require current-sensing), and be able to generate models quickly. 

As shown in Table 4.2, no existing approach can meet all three requirements. This 

motivates us to look for a better power modeling approach.

Training techniques for power model construction. Besides LR, other train

ing techniques can also be used for power model construction. For example, Dong 

et al. [35] used Principal Component Analysis (PCA) to improve the accuracy of a 

power model by identifying the most effective predicators. Pathak et al. [69] pro

posed to construct power models using system call tracing. They created Finite 

State Machines (FSM) for power states of system calls, thus achieving fine-grained 

power modeling. Our work is complementary to those advanced (and more com

plicated) model construction techniques. They can be used on top of our battery 

voltage dynamics based power measurement approach. In this paper, we show 

that accurate power models can be generated using our new power measurement 

approach even though we only use basic training techniques for model construc

tion.
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2.3 Sensing Current from Battery Voltage Dynamics

A smartphone is powered by the battery, where supplied voltage is not constant. 

The voltage dynamics of the battery are exploited here to achieve all desired ob

jectives of the ideal power modeling approach. We show that it is possible to infer 

discharging current information from instantaneous voltage dynamics of a battery. 

This inference is reliable enough to be used for power estimation. We also demon

strate that it is practical to detect instantaneous voltage changes by using battery 

interfaces on smartphones. Based on this, a new energy measurement system is 

introduced in the next section.

2.3.1 Battery Voltage Dynamics

The left part of Figure 2.1 shows the equivalent model of battery electrical cir

cuit [51]. It indicates that at a certain point in time, the voltage reading V of the 

battery interface can be obtained using

V =  OCV - V c- R b* I

where OCV  is the open-circuit voltage determined mainly by the remaining capacity 

of battery, Vc is the voltage drop on the capacitance, Rb is one of the two internal 

resistors, and /  is the discharge current.

When encountering a notable amount of current change, OCV  and Vc remain 

roughly the same value in a short time frame, but the multiplication of Rb and I  is 

sensitive to this current change. As illustrated in the right part of Figure 2.1, we 

can observe a sharp edge of voltage readings from the battery interface immedi

ately after the current change. This is known as internal resistance effect. After 

the instantaneous change, the voltage then slowly decreases due to the current
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Figure 2.1: Battery voltage dynamics. Left: Equivalent electrical circuit model for batteries. 
Right: Battery voltage curve when discharge current is changed. The deep drop of voltage 
is caused by current increasing on resistor Rb.

discharging on the battery. We define this instantaneous voltage change, Rb * A I,  

as V-edge, which is in volts. Clearly, the value of V-edge has a linearly proportional 

relationship with the change of current. If we measure the V-edge values with the 

same baseline current I 0 (this can be achieved by starting all the training programs 

from the same baseline when generating a power model), V-edge has a one-to-one 

mapping with the current.

Via this relationship, we can quickly determine the current value given the V- 

edge. Next we show that this linear relationship is reliable (Section 2.3.2) and 

V-edge can be detected accurately (Section 2.3.3). Thus, we can use V-edge to 

further estimate the power consumption and construct power models (Section 2.4).

Vedje — Rb * A /  — Rb * I  Rb * I q

Or,
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Battery Slope a Intercept ft R2
1 0.0048 103.4 0.9987
2 0.0054 100.9 0.9945
3 0.0050 103.3 0.9992
4 0.0054 101.8 0.9991
5 0.0054 102.3 0.9985
6 0.0057 158.9 0.9978
7 0.0056 154.5 0.9979
8 0.0051 157.0 0.9976

Table 2.2: Linear mapping between V-edge and current on eight batteries of two different 
smartphones, in the form of current I  =  a * Vedge +  P- R2 is the metric indicating the 
goodness of fitting.

2.3.2 Reliable Relationship between V-edge and Current

The linear relationship between V-edge and current is evident in theory, but be

cause it requires a simplifying assumption about the battery, we seek to under

stand whether the relationship holds in practice. To this end, we design a set of 

test trials that run various tasks with different stable workloads on the smartphone. 

Five batteries for a Google Nexus S phone and three for a Samsung Galaxy Nexus 

phone were picked for experiments with consideration of different aging stages and 

manufactures1. We ran all tests on these batteries and measured their V-edge val

ues (in (j,V) respectively. The corresponding current levels (in mA) of these tests 

were obtained on a Monsoon Power Monitor at a constant voltage level. We then 

modeled the relationship between V-edge and current using LR for each battery.

Table 2.2 shows the regression results of eight batteries. The first five batteries 

are for the Nexus S and the last three are for the Galaxy Nexus. R2 is the Coefficient 

of Determination, a widely used measure of how well the LR is [66]. We can see 

that R2 values of these eight fittings are all above 0.99, indicating very good fitting 

results. More concretely, Figure 2.2 shows how well the regression fits the data of 

battery 2, of which the R2 value is smallest.

1new to one-year-old batteries from four manufactures
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Figure 2.2: Sampling vs. fitting on battery 2.

Those real-world experimental results demonstrate that the relationship between 

V-edge and current is indeed reliable. This provides the foundation of our proposed 

fast and accurate power modeling approach.

2.3.3 Detecting V-edge

We show in this subsection that V-edge can be easily and accurately captured by 

battery interfaces on smartphones. Figure 2.3 illustrates the curve of voltage read

ings from the battery interface of a Nexus S, when CPU utilization was increased 

from idle to 95%. We can see a clear voltage drop immediately after CPU utiliza

tion (thus the current) was increased. After the instantaneous drop, the voltage 

decreases very slowly, even with the high discharging current of 95% CPU utiliza

tion (the slope will be even gentle if the current draining is smaller). By sampling 

voltage values from the battery interface before and after the instantaneous voltage 

change, we can calculate the value of V-edge. Depending on how soon we sam

ple the voltage value after the instantaneous voltage drop, the calculation leads to

* samples 
—fitting

3 41 2
V-edge value (uV) . Q
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Figure 2.3: Voltage curve on a Nexus S smartphone when CPU utilization is increased from 
idle to 95%. Sampling rate is 1 Hz.

Table 2.3: Sampling error of V-edge in different sampling delays

Sampling delay (s) 1-3 4 5 6 7 8 9 10
Sampling error (%) 0% 2.94% 5.88% 5.88% 8.82% 11.76% 11.76% 11.76%

certain error. Table 2.3 shows the errors when the sampling happens at different 

times (i.e., sampling delay) after the instantaneous voltage drop.

We can see that the error is zero if the sample is taken within three seconds 

of the instantaneous voltage drop. The error increases when the sampling delay 

becomes larger. If the sampling delay is 10 seconds, the error is 11.76%. Clearly, 

to reduce error, we should sample voltage value as soon as possible after the in

stantaneous voltage drop.

The battery interface of smartphones typically updates the voltage value pe

riodically but the updating rate may vary drastically across different phones. For 

example, the Galaxy S2 updates ten times less frequently than the Nexus S (one 

update every ten seconds versus one per second). In the case of a low update 

rate, we should align our voltage sampling with the voltage updating. To achieve
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this, we employ the following procedure to detect battery interface parameters - the 

updating interval and time.

We first put the smartphone into idle for a time period longer than its battery 

interface updating interval (e.g., tens of seconds), then (at time tQ) we increase 

CPU utilization to a high level and immediately start sampling voltage values at 

a rate of 1 Hz. Once we detect a voltage value change larger than a threshold 

(i.e., the instantaneous voltage drop caused by increased CPU utilization) at time 

ti, we put the CPU into idle again and continue to sample voltage values at 1Hz. 

When we detect a voltage value change larger than the threshold again (i.e., the 

instantaneous voltage increase caused by decreased CPU utilization) at time t2, 

we stop sampling. Figure 2.4 describes this procedure. Then we treat A t =  t2 -  tx 

as the updating interval of the battery interface where tx and t2 are the times when 

voltage updates are triggered. With the sampling rate of 1Hz, the estimation error 

is within two seconds. Once we know the updating interval and time of the battery 

interface, we can align V-edge detection with the voltage updating so that the delay 

of V-edge detection is limited to two seconds. Thus, we can accurately measure 

the value of a V-edge.

The value of a V-edge is decided by the corresponding current change. If the 

current change is very small, it is hard to detect the V-edge. To study how likely we 

can detect a V-edge, we conducted a set of tests with different current changes. 

Table 2.4 shows the results. For each current change, we repeated the test 50 

times and report the probability that the change was detected. We can see that 

there is about a 64% chance that the V-edge is detected along with just a 7.5 m A  

increment of current value. With a 30 m A  change we achieve up to 98% and 100% 

with 37.5 m A.  On a Nexus S smartphones, 37.5 m A  can be caused by a small 

change of only 4% CPU utilization. To build a power model, we can easily design 

training programs with a current change much larger than 37.5m A.  We conclude
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Figure 2.4: Estimate the voltage updating interval and time of battery interface.

Current increment (mA) Probability (%)
7.5 64%
15 90%

22.5 98%
30 98%

37.5 100%

Table 2.4: Probability of capturing current changes

that V-edge is sensitive enough for component level power modeling.

2.4 V-edge Energy Measurement System

Once we derive the current information from V-edge, it is feasible to calculate the 

power information and further generate power models on top of it. Thus, in this 

section, we show how to build an alternative energy measurement system based 

on V-edge that is equivalent to the traditional energy measurement systems. In 

traditional energy measurement systems, the energy cost E  of a task is measured 

by power P  and time T, E  =  P  * T .  Power is decided by current I  and voltage V, 

p  =  /  * v \ For simplicity, we assume that a task has a constant power consumption
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during its execution time. The same analysis below can be easily extended to a task 

with dynamic power consumption by dividing the whole execution time into small 

time slots with a constant power consumption and using £ \  (p* * p*) to replace 

P * T .  That is, the total energy cost E  =  (P* * T*) =  (P * V* * T*), where i

indicates the zth slot.

In our new energy measurement system, we introduce a new term, the V-edge 

power Pedge, to replace the traditional power. The V-edge power is defined as

P°dge =  Vedge * V

where Vedge is the V-edge at the corresponding voltage level V  and the unit of Pedge 

is square volts. It does not matter whether the value of V  is the voltage value before 

the instant voltage drop or after the instant voltage drop (see Figure 2.1) because 

the difference between the two voltage values is fixed as Vedge. That is, the two 

voltage values are interchangeable. In our implementation, we choose the voltage 

value before the instant voltage drop.

Similarly, we define the V-edge energy as

Eedge =  Pedge * T  ~  Vedge * V  * T

to replace the traditional energy.

As we show in Section 2.3.2, V-edge and current have a linear relationship

I  =  a *  Vedge +  P- Thus, we have

P  =  i * v  =  { a * V edge +  P ) * V  

=  a * P z d g e  "H  P e d g e o

where Pedge0 <s a constant value denoting the baseline V-edge power. That is, we
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can calculate the real power consumption of a task from the V-edge power of the 

task. Similarly, we have

E  = P  * T  =  (a *  Pedge +  Pedge 0) * T  

— OC * Eedge "I" Eedgeo

where Eedge0 is the baseline V-edge energy.

During power model generation, we can directly measure Pedge but not PedgeQ- 

To calculate PedgeQ, we employ the following procedure in the power model training 

phase. We first design two tasks with constant but different stable workloads. We 

then run the two tasks to consume the same amount of energy in terms of per

centage of battery capacity (e.g., 2% of battery capacity which can be achieved by 

reading SOD information provided by the battery interface). The V-edge power of 

the two tasks is P̂ dge and P 2dge, their traditional power is P 1 and P 2, and their exe

cution time is T 1 and T 2. Without loss of generality, we assume that T 1 is smaller

than T 2. As the tasks consume the same amount of energy, we have

P 1 * T 1 =  P 2 * T 2

( a  *  P e d g e  +  P e d g e o )  *  T 1  =  (a *  P 2d g e  +  P e d g e o )  *  T 2

Pedgeo ~  Ct * ©

p i  f p l  p 2 t p 2

where 9  =  ed9C Ti _T\dsc—  is a known constant value determined by running the 

two tasks. Note that here we only need SOD readings to derive the value of baseline 

power, which is done only once. In SOD-based power modeling approaches, every 

model training program depends on SOD readings, making the model generation 

time unacceptably long as shown in Section 2.7.

In fact, even the determination of Pedgeo can be skipped if we are only interested
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in the energy profile excluding baseline, as is usually the case for end users and 

application developers. Thus, the V-edge energy system is a linear transformation 

of the corresponding traditional method.

After knowing Pedgeo, in the power estimation phase, when a set of tasks run 

together (e.g., multiple components or processes), we can obtain energy percent

age consumed by each task, even without knowing the value of a. For simplicity, 

let us assume that there are only two tasks, i  and j .  We can calculate their power 

percentage from their V-edge power as follows. The energy consumption of task i  

is

T  = P U T  = (a * P idge + Pedgeo) * T  

=  a * (P idge + e ) * T

The calculations of task j  are similar to task i, so they are omitted due to space 

limitations.

Thus, the energy percentage of task i  is

o/o E i  =  E i  = ___________________________ +  Q ) * T i _________________

E i  +  E j  E L 9e * T *  +  H d g e  * T *  +  (T* +  T*) * ©

In addition, we can also estimate how long the remaining battery will last. If X%  

of battery has been used by tasks i  and j ,  we have

X % * C  =  E i +  Ej

( i o o - x ) % * c  =  (p { +  p j ) * r Lj

where C is the battery capacity and is the remaining time of the battery if we 

continue to run both task i  and task j  at the same time. By solving the above
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equations, we can get

TlJ __ 100 - X  ^ P e d g e  * T i +  Ptdge* T i  +  (T i +  T i ) * e  

X  * PL9e +  PL9e +  2 * 9

If t  =  Tj =  T, we simply have Tj' =  * T.

And if we run only task i in the future, the remaining battery time will be

J-» _  100 ~ X  * Cl i P̂ dge +  ® x ^n - x *(1+/»eds« + e)*r
In summary, the V-edge energy system is able to measure and estimate the 

power consumption of a system. In the following section, we will develop a system 

based on V-edge that can address common user concerns such as how much 

energy a particular application consumes, or how long the battery will last if the 

user continues running one or more applications.

2.5 Power Modeling Based on V-edge

We model the power consumption of four major hardware components of smart

phones: CPU, screen, Wi-Fi and GPS. The main purpose is to demonstrate the 

usability of the V-edge energy measurement system underlying, so we do not intro

duce new power models. Instead, we use existing or modified ones which are sim

ple and able to capture the main power characteristics of the hardware. In addition, 

we describe how to do per-application accounting based on generated component- 

level power models. Power value is provided in the V-edge power Vedge * V.

CPU Model. DFS is available on most CPUs and often enabled to save power. 

Thus, for the CPU power model, we consider both CPU frequency and CPU utiliza

tion. For each possible CPU frequency, we model the power consumption of the
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CPU as a linear function of

PCpU =  d * Ucpu "I- b

where is the CPU utilization.

Screen Model. The power consumption of a screen is decided not only by 

the brightness of backlight but also by the pixel colors. For example, at the same 

backlight level of 255, the power consumption of full-screen white is almost three 

times that of full-screen red.

Dong et al. [34] used RGB values to create a linear model of OLED (Organic 

Light-Emitting Diode) type displays' power consumption. However, because this 

model is not suitable for AMOLED (Active-Matrix OLED) types, Mittal et al. [64] pro

posed another model to also capture the non-linear properties of AMOLED. How

ever, the full model requires 4096 colors, leading to high training overhead. This 

neutralizes the advantage of self-metering approaches, timely model adaptation. 

Therefore, we provide a simplified yet effective alternative using the function

Pscreen — f  (P') * (t-r * P  ”1“ ^  “I” Q> * P')

where Pscreen is the screen power consumption, f (L)  is a quadratic function of the 

brightness level L, (R , G, B) is the average RGB value of all pixels, and Cr, cg and 

cb are the coefficient of R, G, and B.

The goal of this screen model is to reduce the number of colors tested. Based 

on the above function, we derive a preliminary model from only 216 measured RGB 

colors (6 x 6 x 6) by first assuming the linear relationship between the power and 

RGB color. Obviously, this preliminary model does not work well on AMOLED. 

Additionally, we measure the power of another 125 samples uniformly distributed 

in the RGB color space. Then we can obtain the power differences of these 125 

colors between measured and modeled values. Because the power of AMOLED
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gradually changes among similar colors, the difference of one in these 125 colors 

can roughly represent the average offset between measured and modeled power 

values for all colors nearby. Therefore, the final estimated power value of a RGB 

color is the calculation of the above function plus the difference of one of the 125 

color samples that is closest to this estimated color. In this way, the modeling error 

decreases to a low level, while a lot of training time is saved.

Note that when we train a screen power model, the power consumption of train

ing programs will include the power consumption of the CPU because the CPU 

cannot be turned off to run any training program. Thus, we need to remove the 

power consumption of the CPU from the total power consumption of screen train

ing programs. This is done by generating the CPU power model first and applying 

it in training screen power model.

Wi-Fi Model. We employ a simple model that considers the data throughput of 

both directions. A linear power function

P w i f i  —  ^  ^  P  ” f~ 6

is selected where D  is the application data, incoming and outgoing, through the Wi

Fi interface. Similar to the screen model, we also remove the power consumption 

of the CPU in training the power model of Wi-Fi.

GPS Model. We model the power consumption of GPS based on the ON/OFF 

states, following the work [45,93]:

P g p s  =  S g p s  *  S

where / GP5 is the the power coefficient and S' is 1 when GPS is enabled or 0 oth

erwise.

Per-application Accounting. Users often want to know the power consump
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tion of each individual application so that they can identify where the energy was 

spent. This per-application power accounting can be done on top of the component- 

level power models. We can monitor the activities of a process on each component 

(CPU, screen, Wi-Fi and GPS) and account corresponding power consumption as 

a function of

Pprocess —  ^  ^ P<ypu +  ^  ]  P$creen +  ^  1 P w if i  +  J y  ^  ^ P G P S  
i j k I

where i, j ,  k, I are the ith, jfth, fcth and Ith time when the process uses CPU, screen, 

Wi-Fi and GPS, respectively. N  is the total number of processes using GPS at the 

same time. Zhang et al. [94] found that the sum of all component estimates is 

sufficient to estimate the whole system consumption. Thus, we also adopt this 

assumption. The power consumption of an application is the sum of the power 

consumption of all its processes.

2.6 System Design and Implementation

We have designed a general V-edge-based architecture, illustrated in Figure 2.5, 

to run on typical smartphone operating systems. In our design, V-edge runs as a 

system service in the background, collects data on system resource utilization and 

activities, generates power models and uses them for power consumption estima

tion. It also provides a tool with a GUI for users to review the power consumption 

information of each component and application.

Data Collection. The data collection part is designed to run in the kernel due 

to two considerations. First, running in the kernel gives us more flexibility and less 

latency compared with the user space. Second, it avoids the expensive user-kernel 

mode switching, thus introducing less system overhead. We collect three types of 

data: voltage readings from the battery interface, utilization information of each
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Figure 2.5: System architecture based on V-edge.

hardware component (CPU, screen, Wi-Fi and GPS), and process execution and 

switching information. For Wi-Fi utilization, we capture the data packets transmitted 

over Wi-Fi by intercepting the network stack. For process execution and switching 

information, we hook the kernel scheduler to collect thread scheduling information. 

We add a new system call to fetch the collected data from the kernel where power 

model generation and power estimation are done. Voltage information is only used 

in generating power models, while process information is only used in estimating 

per-application power consumption. Hardware utilization information is used for 

both power model generation and power estimation.

Power Model Generation. The system, on top of V-edge, automatically gen

erates component-level power models for CPU, screen, Wi-Fi, and GPS as for

mulated in Section 2.5. This is done by running a set of training programs for 

each component in a controlled way. For example, to build the power model of 

the CPU, we run CPU training programs with other components in their baseline 

power states. All training programs of a component run from the same initial state 

to ensure their measured V-edge values are consistent. For example, each CPU
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training program starts when the CPU is idle. The model generator also aligns 

runs of training programs with the voltage updating of the battery interface as we 

described in Section 2.3.3, to reduce errors of the voltage sampling. The model

ing procedure is done without user awareness when the smartphone is idle and 

not plugged in. If the user suddenly interrupts the generation by using the phone, 

the procedure can suspend and resume later with little time penalty, thanks to the 

short estimation time of V-edge. We also allow power model updates adaptively or 

through a GUI tool described later in this section.

Power Consumption Estimation. Power estimation is done by tracking hard

ware resource usage and applying generated models. When users use their smart

phones as normal, the data collector keeps running in the background to collect 

the usage information of each component (frequency and utilization percentage 

for CPU, brightness level and pixel colors for screen, packet size and number for 

Wi-Fi and usage of GPS). Thus, the power profiler is able to calculate the power 

consumption of each component. By tracking process switching, we can know 

which process is using the resources at a given time. Therefore we can associate 

resources usage and thus power consumption to the corresponding process, for 

per-process and per-application accounting.

Power Profiling GUI Tool. On top of the power profiler, we design a GUI tool to 

show the percentage of the energy consumed by each hardware component and 

provide a rebuilding option to users.

We have implemented the V-edge-based power modeling and monitoring sys

tem on the Android platform. Our implementation in total consists of 2k lines of code 

for the core components (data collection, model generation and power estimation) 

and 4k+ lines of code for the training programs.
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2.7 Evaluation

We evaluate our implementation of the V-edge-based system by answering the fol

lowing questions. 1) How fast can power models be generated? 2) How accurate 

is the power estimation using the generated models, both at component-level and 

in per-application accounting? 3) How much system overhead does the implemen

tation introduce in terms of CPU and memory usage?

2.7.1 Experimental Setup

Devices. We conduct all experiments on a Nexus S smartphone running Android 

4.0. We use a Monsoon Power Monitor to measure the actual power consumption 

of the experiments as the ground truth and for comparison.

Training programs for model generation. We develop a total of 412 training 

programs to generate power models for CPU, screen, Wi-Fi, and GPS. For each 

CPU frequency (there are five configurable CPU frequencies on a Nexus S), we use 

eight training programs with CPU usages randomly picked from eleven possible 

values (idle to full). Similarly, for the screen we use 347 training programs with 

different brightness levels and RGB colors of different pixel blocks. For the Wi-Fi, 

we use 24 training programs with different packet sizes and transmission rates. 

Finally, we use one training program for the GPS module.

Benchmarks. We design a set of benchmarks to evaluate the accuracy of our 

implementation on component-level power estimation. For the CPU we use four 

benchmarks running for 60 seconds at a CPU frequency of 200 MHz, 400 MHz, 

800 MHz and 1000 MHz. For the screen, we use 15 benchmarks. Each of them 

displays a different picture, as shown in Figure 2.7, for 10 seconds. For Wi-Fi, 

we use a benchmark which sends UDP packets with a randomly selected packet 

size of 50, 100 or 1000 bytes and a random packet inter-arrival time from 1 to 50
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milliseconds. The total run time of the Wi-Fi benchmark 2 is 60 seconds. For the 

GPS, we use a benchmark which uses the location service for 60 seconds.

Applications. We use six real applications to evaluation the accuracy of our 

implementation on power estimation of real world applications. These applications 

are Gallery where we use the default photo viewer on Android to show 20+ photos 

(randomly taken by the camera on Nexus S) in slide show mode, Browser where we 

use the default Android browser to read news on Bing News, Angry Birds where we 

play this free version game with commercials, Video where we watch a homemade 

video clip on the default player, Skype where we make a VoIP call through Wi-Fi, 

and GPS Status where we run a popular GPS-heavy app from Google Play [7]. 

Each test performs for one minute.

2.7.2 Model Generation Time

Model generation time is the time period to run all the training programs and con

struct power models. It is mainly decided by how quickly power consumption can be 

measured. In the V-edge approach, as shown in Section 2.3.3, we can detect the 

instant voltage changes and consequently measure power consumption in several 

seconds. However, in a SOD-based approach, power measurement time is much 

longer because it measures power consumption by observing changes of SOD, at 

least 15 minutes [94]. Given our 412 training programs, it takes the V-edge-based 

system for 1.2 hours in total (including the stabilization time between the training 

cases which can be further optimized) to generate the power models. However, it 

would take more than 100 hours for the SOD approach to generate the same power 

models. Our proposed approach is two orders of magnitude faster than the SOD 

approach.

More importantly, the long model building time of the SOD-based approach de

2For the experiment purpose, a stable wireless environment is expected in order to remove the 
influence of outside factors

37



mands multiple rounds of the battery recharging, thereby requiring the user inter

vention. As such, the SOD-based approaches are difficult to automate. With the 

short modeling time, our approach can be easily done without the user involve

ment. For the sake of optimization, we can further split the whole procedure into 

small pieces and manage to complete them one by one. Each piece of modeling 

tasks just takes minutes of the smartphone idle time and consumes little energy. 

Thus, the V-edge-based system is transparent to end users.

2.7.3 Accuracy

We evaluate the accuracy of the V-edge approach by comparing its energy con

sumption estimations with both ground-truth measurements and estimations from 

power-meter-based models. These power-meter-based models are built by mea

suring power consumption of training programs using an external power meter in 

the model generation phase. This external-metering approach represents the high

est accuracy that one model can achieve because its inputs are precise. Note that 

the energy comparison is stricter than direct model parameter comparison because 

model errors can be magnified.

Accuracy of CPU modeling. Figure 2.6 shows the energy consumption of 

the CPU benchmarks, including the ground truth and the estimated results of the 

V-edge approach and power-meter-based approach. Compared to ground truth, 

the errors of the V-edge approach are 1.45%, 7.89%, 9.71% and 4.18% (5.79% 

on average). The corresponding numbers of the power-meter-based approach are 

1.32%, 5.28%, 5.92%, and 1.54% (3.51% on average). The average difference 

between our approach and the power-meter-based approach is only 3.65%.

The stable relationship between CPU usage and power consumption introduces 

small errors to both V-edge-based and power-meter-based approaches.

Accuracy of screen modeling. Figure 2.7 shows the results of the screen
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benchmarks. Compared to ground truth, the average error of the V-edge approach 

is 5.77% (max 15.32%, min 1.22%) and the power-meter-based approach is 5.55% 

(max 15.81%, min 0.11%). The average difference between our approach and 

power meter approach is only 3.49%. Note that Figure 2.7 shows normalized re

sults. The absolute energy consumption of the pictures are very different, as large 

as 3.3 times.

Our screen model is one of the most sophisticated smartphone screen models 

considered in self-metering approaches. Nonetheless, our experiments show that 

it is of limited accuracy (relatively wide error range). The reason is that this model 

relies on a small number of reference colors to correct initial estimations and pro

vides final answers. Therefore, if a photo has an average pixel color similar to one 

reference, its estimation error is low. Otherwise, it is a bit high. The model could 

be optimized, but it is out of the scope of this paper.

Accuracy of Wi-Fi modeling. Figure 2.8 shows the results of the Wi-Fi bench

mark. Compared to ground truth, the error of the V-edge approach is 14% and the 

power-meter-based approach is 10.65%. The difference between two modeling 

approaches is only 3.75%.

The error of Wi-Fi benchmark is relatively large. This is because our model is 

simple and served as the comparison platform of two modeling approaches. More 

predicators like packet numbers per second may improve the accuracy of modeling. 

Additionally, there are more CPU activities involved in both building and using the 

Wi-Fi model, compared with other components. Thus, some error is contributed 

from the CPU model.

Accuracy of GPS modeling. Figure 2.8 also shows the results of the GPS 

benchmark. Compared to the ground truth, the error of the V-edge approach is 

10.6% and the power-meter-based approach is 4.1%. The difference between our 

approach and power meter approach is 6.5%.
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Figure 2.6: Energy consumption of CPU benchmarks. Results are normalized relative to 
ground truth values.

Accuracy of real applications. Figure 2.9 shows the results of the six real 

applications. Compared to the ground truth, the errors of the V-edge approach are 

19.5%, 8.6%, 0.2%, 1.6%, 14.7% and 15.5% (10% on average). The corresponding 

numbers of the power-meter-based approach are 15.6%, 12.5%, 4.2%, 2%, 18.3% 

and 12.2% (10.8% on average). The average difference between our approach 

and the power-meter-based approach is only 3.8%.

The accuracy of each component model has an impact on application exper

iments. For example, the Wi-Fi estimation errors are accumulated quickly in the 

communication-intensive applications like Skype, leading to the relatively large dif

ference between modeled and real results. So is the case of GPS Status that has a 

lot of interactions with the GPS module. As to estimation errors of Galley, displayed 

photos are randomly picked, so it is possible that many of them have average col

ors not similar to any of 125 references. Another reason is that the average RGB
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Figure 2.7: Energy consumption of screen benchmarks. Results are normalized relative to 
ground-truth values.

color over all pixels may not be a good predictor. We will investigate this in future. 

In addition to the individual model accuracy, errors are also introduced by the as

sumption that the linear combination of all component energy consumption is equal 

to the whole system consumption. Besides, we do not include power models for 

other minor energy consumers such as disk I/O.

Summary. All experimental results show that the accuracy of our approach 

is very close to the power-meter-based approach. The total average difference 

is only 3.7% for all component-level and application-level power estimations. This 

demonstrates V-edge's strength in facilitating the self-constructive power modeling.

2.7.4 System Overhead

Our implementation introduces a very small system overhead in terms of the usage 

of the CPU and memory. To evaluate, we measured the system CPU and memory 

usage when V-edge is enabled and disabled for monitoring system energy con

sumption. With V-edge enabled, the smartphone used only 2 MB more memory to 

run background V-edge code and store the collect data in memory. Such a small 

memory footprint is negligible compared with the large memory size of 512MB or

I V-edge W  power meter I I ground truth
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1GB on today's smartphones. We did not observe any noticeable difference on 

CPU usage because of its event-driven implementation like the work [69]. Thus, 

our implementation is lightweight and introduces low system overhead.

2.8 Discussions and Future Work

V-edge provides prior power modeling techniques an opportunity to work on most 

smartphones on the market. Our power modeling system is one simple example 

that is built upon V-edge. It is intended to demonstrate the implementation feasibility 

and exhibit benefits that V-edge offers. Therefore, we only cover major energy 

consumers, such as the CPU and screen. In the future, we plan to complete our 

models by adding more components, like a 3G module, in order to create a useful 

system tool.

Another issue worthy of investigation is the model optimization for self-metering
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truth values.

approaches. Usually, the more accurate estimations are expected, the more pre

dictors a model need to consider, and thus the more overhead the building pro

cedure has. For example, if we only use the backlight level to model the screen 

like previous work, 83% building time is saved for our whole system. However, the 

accuracy is not acceptable. We therefore plan to study how to select more efficient 

predictors to balance this accuracy and overhead trade-off.

In addition, although our implementation is based on Android platform, the V- 

edge approach is general enough and not limited to only the Android platform. 

We plan to implement the V-edge-based system on other mainstream smartphone 

platforms such as Windows Phone.

2.9 Conclusions

In this chapter, we propose a new approach called V-edge for fast and self-constructive 

power modeling on smartphones. The V-edge approach is novel because it builds 

power models by leveraging the regular patterns of the voltage dynamics on battery- 

powered devices. Different from most existing self-modeling approaches, the V- 

edge-based approach does not require current-sensing of battery interface so that 

it works for most smartphones on the market. We have designed and implemented
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a V-edge-based modeling prototype. It performance demonstrates that V-edge can 

facilitate fast and accurate power modeling with low overhead.
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3 Optimizing Email Snyc on Smart 

phones

Standby time, a battery's life in standby mode, is important for smartphones to 

provide good power performance to users. Even though many smartphones claim 

a standby time of more than 10 days in their technical specifications, in practice 

their standby times are often much shorter, e.g., only two or three days or even 

less. The main reason for such a big gap is that when a smartphone remains in 

standby mode, it stays connected to the Internet through its cellular data interface 

(e.g., 3G), waiting for various incoming events, such as emails, short messages, 

instant messages, notifications of social applications (e.g., Twitter and Facebook), 

and many other push notifications.

This connected standby state, in which the screen is off while the network con

nectivity stays active, is of fundamental importance for mobile devices. Most users 

keep their phone in connected standby for a large fraction of time during the day. 

In this state, the reception of an incoming event (email, instant message...) wakes 

up the cellular data interface as well as the phone’s operating system (OS), to 

receive the set of packets over the network and process received data. Collec

tively, these operations consume a significant amount of power. For example, our 

measurements show that the energy cost of receiving a small email on an Android 

smartphone is more than 14,000mJ, which is as high as the energy consumed by a
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typical smartphone in standby mode for 10 minutes. In other words, the reception 

of a single email reduces the standby time of a smartphone by 10 minutes. As

suming the phone has a standby time of 10 days without receiving any events, its 

standby time will be reduced to less than 6 days (a reduction of more than 40%), if 

it receives 100 emails per day. This is despite the screen being off during the entire 

duration, and without any user interaction.

In this chapter, we study the power performance of email sync in connected 

standby on smartphones. Email is a killer application on smartphones for most 

users, who expect their email clients to keep synchronized with one or more email 

servers even when the phone is in standby mode. We measure the energy con

sumption of existing email clients on two major smartphone platforms: Android and 

Windows Phone (WP). Our results show that email sync is indeed a major drain on 

existing platforms, and we observe that existing mobile email clients do not han

dle incoming emails in an energy-efficient way. The reason is that the underlying 

protocols, and the overall design of today’s mobile email clients do not take into 

account the specific characteristics and needs of operation in connected standby 

mode: data processing is not sufficiently de-coupled from network communication 

(thus preventing the 3G interface from quickly going to sleep), memory manage

ment and storage input/output (I/O) are un-optimized, and network protocols and 

interface operations are tailored for operations other than event reception.

Based on our findings, we formulate new design principles for energy-efficient 

event handling (and specifically email sync) on smartphones in connected standby. 

Applying these principles to the case of email sync, we develop 5 new techniques, 

each one addressing one of the shortcomings we have identified in existing sys

tems.

• In current systems, long 3G tail times keep the 3G interface on for longer than 

is necessary. We advocate fast dormancy and adaptive 3G tail times based
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on email arrival patterns, to reduce the energy cost of the 3G tail.

• In current email clients, data transmission and data processing are coupled 

together, e.g., a final ACK packet is sent to the email server once the received 

email has been completely processed. Depending on the amount of process

ing time required to handle an incoming email, this coupling can prevent the 

3G interface from going to sleep for a long time. We propose decoupling the 

data transmission from data processing to improve energy efficiency.

• In some email clients, the amount of data processing and memory/storage 

I/O required to handle an incoming email depends on the size of the inbox, 

leading to a particularly high energy cost for receiving emails when there are 

many of them in the email client’s inbox. We mitigate this problem by using a 

small cache for incoming emails, to enable fast email processing.

• Flash storage operations on smartphones are slow, which leads to long data 

processing times, thus keeping the OS awake longer. We show that in con

nected standby, it therefore makes sense as a design principle to perform 

email reception entirely in-memory.

• Finally, in some clients, a new secure network connection is established for 

receiving every new incoming email, resulting in repeated TCP and SSL hand

shakes and a waste of energy. We solve this problem by reusing network 

connections across the reception of multiple emails.

Collectively, these techniques achieve significant reductions in the energy cost of 

email syncing. Specifically, we have implemented them by modifying an existing 

email client on commercial smartphones. Experimental results show that our re

vised email client is able to significantly improve email sync’s energy efficiency, 

reducing the average energy cost by 49.9% and up to 77.9% if we put the 3G in

terface into sleep immediately after an email is received.

47



The chapter is organized as follows. Section 3.1 gives background information 

on email sync in smartphones. In Section 3.2, we present a measurement study 

on the email-sync energy cost of existing smartphone email clients, and derive 

general guidelines to make event reception energy-efficient in connected standby. 

Section 3.2 describes our novel techniques. We describe our implementation and 

evaluation results in Sections 3.4 and 3.5, respectively. In Section 3.6, we demon

strate that our techniques can also be used to improve energy efficiency when 

receiving events in other event-triggered applications. Section 3.7 surveys related 

work before we conclude in Section 3.8.

3.1 Background on Email Sync

Similar to desktop or laptop PCs, smartphones usually use a client application to 

sync email from a server. Typically email sync can be done in one of two ways: 

polling or pushing. In polling, a client proactively connects to a server to check for 

new emails. The client can be configured to automatically poll the server period

ically (e.g., every 10 minutes), or the user can manually start a polling operation. 

Polling has two disadvantages. First, it wastes energy if a server does not have any 

new emails, particularly if polling is too frequent. Second, because a new email may 

arrive before a client polls its server, polling causes a delay in receiving the email, 

in the worst case as long as the polling time interval. As a result, users may find it 

hard to set a proper polling time interval to balance the energy cost and email re

ceiving delay. For these reasons, push email is widely used on smartphones. Most 

popular email services, such as Microsoft Exchange, Gmail and Hotmail, support 

push email. The Gmail application on Android supports push email, but not poll 

email.

In push email, instead of polling from a client, emails are received by pushing
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from a server. Once a server receives a new email for a client, it pushes the new 

email to the client through a previously established TCP connection. Consequently, 

the client is able to immediately receive new emails as soon as they arrive. Push 

email not only has minimal delay but in some cases also saves energy since a client 

does not need to poll a server when there is no new email. As smartphones are 

usually behind a Network Address Translator (NAT) and a firewall, they often use 

a private IP address rather than a public one. As a result, an email server cannot 

initialize a TCP connection to a smartphone. Therefore, push email requires a 

persistent TCP connection between a client and a server so that the server can 

send new emails to the client over the persistent TCP connection. For example, 

Microsoft Exchange supports push email by Direct Push [1]. A client first connects 

to a server using TCP. To receive push emails, the client uses a long-standing HTTP 

POST (the protocol used by smartphones to talk to a Microsoft Exchange server 

is called Exchange ActiveSync [10] which is on top of HTTP) request to ask the 

server to respond within a time period, e.g., 15 minutes. Then the smartphone can 

go to sleep or standby mode. If the server has new emails within the 15 minutes, 

it pushes the emails to the client. Otherwise, the server will send a HTTP 200 OK 

message to the client who then sends another long-standing HTTP POST to the 

server.

Push email usually works only on cellular networks (e.g., 3G) but not on Wi

Fi. This is because the coverage of cellular networks is pervasive, and the cellular 

module of a smartphone can work independently from the smartphone’s Operating 

System. When the OS is in sleep mode, the cellular module remains connected 

and can receive data from the cellular network. After receiving a data packet from 

an email server (or any other servers), the cellular module will generate an interrupt 

to wake up the OS. The execution of the email client is resumed, and the email can 

be pushed from the server. In contrast, Wi-Fi networks usually have a small amount
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of coverage and roaming between different Wi-Fi networks breaks the persistent 

connection required by push email. Furthermore, on some smartphones, the Wi-Fi 

interface is usually turned off when the OS is asleep, and hence the Wi-Fi interface 

cannot receive any data. Therefore, in this chapter, we focus on studying email 

sync on cellular networks. Even on a cellular network, the carrier operator may 

tear down a TCP connection if it is idle for too long (a common timeout threshold is 

10 minutes), to release the resources allocated for the TCP connection in the NAT 

and firewall. Email clients on smartphones handle this issue by sending a keep

alive message to the server before the timeout is reached, e.g., a PING message 

used in Direct Push [11].

3.2 Profiling Energy Cost of Email Sync

In this section we measure and analyze the power performance of existing email 

clients on smartphones. We first describe the experimental setup and then report 

the results and findings.

3.2.1 Experimental Setup

We have studied email sync behaviors on two smartphone platforms: Windows 

Phone and Android. For the WP platform, we used a Samsung Omnia 7 smart

phone running Windows Phone 7.5. We used the built-in email client provided by 

WP. For the Android platform, we used a Samsung Nexus S smartphone running 

Android ICS 4.0.4. We also used the built-in email client provided by Android. Both 

email clients support different email services.

Our study uses two popular email services: Microsoft Exchange and Google’s 

Gmail, examining both push email and poll email. All experiments were conducted 

in Beijing, China, using the 3G network of China Unicom. Monsoon Power Mon
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itor [12] was utilized to measure the power consumption of smartphones. We fo

cused on the power consumption of the connected standby mode. That is, we 

measured the energy cost of receiving emails without any user interaction and the 

screens of the smartphones were off while receiving email. The disruption from 

other concurrent operations is rare in this situation, so we do not consider it in this 

work.

3.2.2 Measurement Results

3.2.2.1 Stages of receiving an email

We measured the power traces of receiving an email on the two platforms. Fig

ure 3.1 shows the power trace of receiving a small-push email using the Exchange 

email service on Android. This email consisted of 2 KB random text content and 

the total data received was 10 KB including all headers and metadata. We can see 

there are several major stages in receiving this email. At the beginning, the smart

phone was in sleep mode with little power consumption (about 30 mW). When the 

server pushed the email to the smartphone over the 3G network, the 3G interface 

and operating system of the smartphone woke up. We call this the Wakeup stage. 

Then the email client received and processed this email, which is called the Re

ceive stage. The last stage was 3G tail time when the 3G interface stayed in a high 

power state but no network traffic was occurring. We call this the Tail stage. After 

the Tail stage, the 3G interface and the operating system went back to sleep. The 

total time duration of receiving the email is 18.42 seconds.

The 3G tail time is controlled by the cellular module using a timer. When there is 

no data packet transmission, the timer starts to count down. If the network remains 

idle after the timer expires (e.g., after 10 seconds), the 3G interface goes to sleep. 

If there is a data packet that is sent or received, the timer is reset. The 3G tail time
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is designed to reduce network latency. From Figure 3.1, we can see that it takes 

about two seconds for the 3G interface to wake up from sleep mode. During the 3G 

tail time, the 3G interface can keep active for continuous network traffic, avoiding 

wakeup latency.

We also measured the power trace in receiving the same email on Android 

through polling. The overall procedure is very similar to the pushing case and 

consists of the same three major stages (i.e., Wakeup, Receive and Tail). The 

difference is that, in the polling case, the operating system first wakes up itself (via 

a timer based on the email polling interval) and then proactively wakes up the 3G 

interface for querying the email server instead of being interrupted by the 3G in

terface passively. The total time duration of receiving the email is 18.54 seconds, 

similar to the push email scenario.

We further measured the power trace when receiving the same email on WP 

through pushing. Again it consists of the same three major stages. However, com

pared to the Android cases, the total time for receiving the email on the WP device is 

much shorter, taking only 7.24 seconds. One reason is that the WP smartphone we 

used has a much shorter 3G tail time than the Android smartphone. To confirm this, 

we conducted experiments to measure the 3G tail time on the two smartphones. 

We found that the WP smartphone has a 3G tail time of about 5 seconds but the 

Android smartphone has a 3G tail time of 10 seconds. This shows that the WP 

smartphone enables fast dormancy (see more details in the following section), a 

technique to shorten 3G tail time, but the Android smartphone does not.

We also measured power traces of other combinations for receiving email. For 

example, using Gmail email service and pulling on WP, we observed the same three 

major stages in all the other power trace curves. We conclude that it is a common 

pattern of receiving an email. Note that the stage markers in Figure 3.1 are just for 

illustration purposes, used instead of showing the exact duration of each stage. In
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particular the Tail stage and the Receive stage may be overlapped. For example, 

the 3G tail time may start immediately after all data transmissions are finished but 

before the data processing is done. In addition, in all the above experiments, when 

the email was received, the email clients on both Android and WP had already 

stored 200 other emails. Later in this Section we will see that the energy cost of 

receiving an email may depend on inbox size, particularly with WP.

3.2.2.2 Energy cost of receiving an email

To study the email receiving performance of different configurations, we measured 

the energy cost of receiving the same 10 KB email using various combinations of 

the two platforms (WP and Android), two email services (Microsoft Exchange and 

Google Gmail) and two email receiving approaches (push and poll), with an inbox 

of 200 messages. Table 3.1 shows the average results.

Our first observation was that we can see that the energy cost on Android is 

much higher than the one on WP. Aside from hardware differences, one reason is 

that the WP smartphone has a shorter 3G tail time than the Android smartphone as 

aforementioned. The 3G tail time is five seconds shorter on WP, leading to about 

2,736 mJ energy saving. In addition, as we will show later, WP has low energy cost 

of email receiving when the inbox size is small. Second, we could see that push 

email and poll email have very similar energy costs given the same email service 

and platform. On Android, the difference between push and poll is only 2% for 

the Exchange service, while this difference is less than 4% on WP. For Gmail, the 

difference on WP is 13%. This is reasonable because push email and poll email 

are fundamentally very similar: they receive the same emails and do the same data 

processing work. On Android, the default email client does not support push email 

for Gmail service and thus we do not have the number in Table 3.1.

We also found that the energy costs of two email services are similar on the
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same platform, although the Exchange service always consumes less. For exam

ple, polling-based Gmail on Android takes 20,750mJ energy, but Exchange ser

vice with polling consumes 14,674 mJ. On WP, push-based Gmail service takes 

6,235mJ energy but the same service of Exchange requires 5,429 mJ energy. De

spite this, different email services might be different in implementation details; they 

are expected to have similar patterns due to the nature of the email service. In 

fact, Microsoft Exchange ActiveSync (EAS) protocol has been widely used for the 

synchronization of emails, contacts, calendar, tasks and notes from a messaging 

server to a mobile device. Many companies, including Google [6] and Apple [3], 

have licensed and adopted EAS in their own email services for mail sync on mobile 

devices.

We also evaluated the Gmail application that is specifically designed for the 

Gmail service by Google on Android, which only supports push email. The last row 

of Table 3.1 shows the result. We can see that it requires less energy, compared 

to the default email client on Android. This suggests that Google does some Gmail 

specific optimizations, probably on both the client side and the server side. How

ever, we do not know the technical details because the Gmail application is not 

open source.

Due to the similarity of push email and poll email, and the similarity of Exchange 

service and Gmail service, in the rest of this section, we focus more on Exchange 

push email.

3.2.2.3 Energy cost vs. inbox size

We measured the energy cost of receiving the same email in different inbox sizes. 

Inbox size is measured in terms of the number of emails already received in the 

inbox on a smartphone. We used the same small email of 10 KB that we used in 

the aforementioned experiments.
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Figure 3.2 shows the results using Exchange push email. Interestingly, we can 

see that the energy cost of receiving the same email on WP highly depends on the 

inbox size. When the inbox size is small, the energy cost is small and increases 

with the inbox size significantly. For example, the energy cost when the inbox 

has 10,000 emails is more than three times the energy cost when the inbox is as 

small as 20 emails. This is probably found by updating the metadata of the inbox 

database. For example, to support “conversation view”, the email client needs to 

group all the emails of a conversation thread together.

Compared to WP, Android has a much flatter energy cost in different inbox sizes. 

However, when the inbox size is small, the energy cost on Android is much higher 

than WP. For example, when the inbox size is 20 emails, Android consumes 190% 

more energy than WP. Even if we exclude the extra energy cost (2,736 mJ) of the 

long 3G tail time on Android, Android still needs 137% more energy than WP. For 

large inbox size like 10,000 emails, Android and WP have similar energy cost, with 

a small difference of 7%.

One may argue that 10,000 emails are too many for smartphones as many users 

only download a small part of their whole inbox onto their smartphones, e.g., only 

the recent emails in the last few weeks. However, with an informal survey, we found 

that some people do download a large number of emails or even all their emails 

onto their smartphones. The main reason is that they can easily search emails on 

smartphones, particularly when their smartphones do not have a data connection. 

Furthermore, email clients on smartphones usually store only email headers and 

limited text content of email bodies (e.g., up to 5 KB bytes text). By default, at

tachments or embedded images are excluded. Thus, today’s smartphones have 

enough storage space to store a large number of emails.
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3.2.2.4 Energy cost vs. email size

We measured the energy cost of receiving an email with different email sizes. As 

previously mentioned, smartphone email clients usually download the email header 

and a limited amount of the email body for a new email. Users cannot specify the 

amount of data to be downloaded in both built-in email clients on the two platforms. 

Based on our observation, the email client on WP receives very limited email data, 

about only 10 KB including all email headers. The email client on Android can 

receive up-to several hundred KB of data (see more details in Section 3.2.6), more 

suitable for testing. Consequently, we only measured the energy cost of receiving 

an email with different sizes on Android.

Figure 3.3 shows the results with an inbox of 200 emails. The email size is 

defined as the total received data size if the email is completely received, includ

ing email content, headers and metadata. We decided the size of an email using 

Outlook email client on a PC. Outlook email client can download all the email data 

and show the received data size. We can see that the energy cost increases as the 

email size gets larger but the difference is small, not proportional to the difference in 

email sizes. For example, when the email size is changed from 11KB to 107KB, an 

increase of 873%, the increase in energy cost is only 31 %. This is for two reasons. 

First, the email size mainly contributes to the energy cost of receiving and process

ing the data, which is only a small part of the total energy consumption. Second, 

for large emails the Android email client does not receive all the email data. For 

instance, an email with a size of 500 KB and an email with a size of 1,000 KB have 

similar amounts of data written to the flash storage (336 KB vs. 340 KB).

3.2.2.5 Network activities in receiving an email

To find out what happened behind the energy cost, we profiled the network activities 

of the email clients when receiving an email. To do that, we captured the network
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data packets received and sent by the email clients. On Android, we used Tcpdump 

to save all the network packets for offline analysis. For WP, we did not have a 

tool to capture packets. Thus, instead of using 3G, we conducted experiments on 

receiving emails over Wi-Fi. To make push email work over Wi-Fi, we kept the 

smartphone on at all times so that it could receive emails pushed from the email 

server. Then we used Wireshark on a laptop to capture all network packets of the 

smartphone transmitted in the air.

Figure 3.4 shows the packets (excluding TCP ACKs) transmitted in receiving 

the small email sized 10KB on WP pushed from the Exchange server. Basically, 

the email client first received notification of the new incoming email from the server 

over the previously established TCP connection. Then it started to fetch the email 

from the server and processed it. After that, the client sent out a PING message 

packet to the server to wait for the next incoming new email.

We can see that there is a network-idle time period between the PING packet 

and the prior burst data transmission. During this time period, the email client is 

processing the received email. We found that this processing time increases with 

inbox size. As shown in Table 3.2, with an inbox size of 200 emails, it was 0.5 

seconds but increased to 10 seconds when the inbox had 10,000 emails.

Figure 3.5 shows the network packets transmitted on Android when receiving 

the same push email from the same Exchange server. Compared to WP, the net

work activities on Android are different as follows. First, instead of using the same 

TCP connection to fetch a new email, after receiving a notification over the exist

ing TCP connection, the Android email client establishes a new TCP connection to 

the email server to receive the new email. Doing so introduces some overhead on 

TCP and SSL handshakes between the client and the server, where 12data pack

ets (6.9KB in total) are transmitted. Second, on Android there are two network-idle 

time periods. One is between the email sync request sent from the client to the
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server and the server’s reply. The other one is after receiving the burst event data 

and before the final PING message sent from the client to the server. However, 

unlike WP, the network-idle time periods do not depend on inbox size. Table 3.2 

also shows the total network-idle time on Android. It bears no obvious relationship 

to the inbox size, ranging from 3 seconds to 4.6 seconds (3.6 seconds on average).

3.2.2.6 Storage activities in receiving an email

Besides the network activities, we also profiled the storage activities in receiving 

an email. For Android, we developed a tool to intercept the storage access APIs 

(e.g., file reading and writing) to capture all the flash-storage operations of the email 

client. For WP, we couldn’t develop such a tool due to the limited programmabil

ity offered by Windows Phone. Therefore, we only conducted the flash-storage 

experiments on Android.

Table 3.3 shows the total amount of data written to flash storage for different 

incoming email sizes. We can see that the amount of data written to flash storage 

increases with email size. This is because the email client needs to write the re

ceived email data into the inbox database. Thus, more data were written to flash 

storage for larger email. However, when the email is very large, the data amount 

written to flash storage does not increase any more. This is because the Android 

email client limits the maximum data received for emails. Unfortunately it does not 

provide an option for users to configure such a behavior.

The results show that the Android email client immediately writes received email 

data onto flash storage. All flash operations in receiving an email were distributed 

in a time period of one to two seconds, each writing a small amount of data. As 

we will show in Section 4.3, small flash writes are time and energy expensive and 

should be avoided in receiving emails.
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3.2.2.7 Energy distribution

Finally we studied how the total energy cost of receiving an email is distributed in the 

three stages of the power curves: Wakeup stage for the 3G interface and operating 

system to wake up, Receive stage for the email receiving and processing, and Tail 

stage for the 3G tail time. We denote the time duration of the Wakeup stage as the 

time period between the time when the smartphone wakes up and the time before 

receiving the notification packet from the server. We define the time duration of the 

Tail stage as the time period between the time when the last packet is transmitted 

and the time when the smartphone goes to sleep again. We treat the rest of time 

as the time duration of the Receive stage.

Figure 3.6 shows the results. We can see that the Wakeup stage takes stable 

and fixed energy costs on both WP (907-936 mJ) and Android (979-1,022 mJ) no 

matter how big the inbox is. The energy cost of the Tail stage is also quite stable 

on the two platforms. On WP, the Tail stage takes 2,419-3,427 mJ (2,866 mJ on 

average) of energy but on Android it takes 5,832-6,307 mJ (5,962 mJ on average) 

of energy, due to the difference of 3G tail time on the two platforms. Different from 

the Wakeup stage and the Tail stage, the energy cost of Receive stage depends on 

the inbox size. Particularly for WP, the energy cost increases significantly with the 

inbox size, from only 144mJwhen the inbox size is 20 to 10,944 mJ when the inbox 

size is 10,000. For Android, the numbers are relatively flat: 7,387 mJ for inbox of 

20 and 11,002 mJ for inbox of 10,000.

In addition, we can see that the Receive stage and Tail stage take more energy 

than the Wakeup stage. The Receive stage takes 30% - 71% (49% on average) of 

the total energy cost on WP, and takes 52% - 61% (57% on average) of the total 

energy cost on Android. For the Tail stage, it takes 22% - 51% (38% on average) 

of the total energy on WP, and takes 33% - 42% (37% on average) of the total 

energy cost on Android. Therefore, to reduce the energy cost of receiving emails,
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we should focus on optimizing these two stages.

3.2.3 Summary of Findings

Based on above measurement results in above Section, we can see that the exist

ing smartphone email clients are not energy efficient in following aspects.

First, the 3G tail time takes a large part of the total time of receiving an email. 

The 3G tail time is designed to reduce the network latency for burst data trans

missions. However, the inter-arrival time of incoming events is not short in the 

connected standby mode. Occasional transmissions make the 3G tail time unnec

essary in most cases. Therefore, the energy is wasted on the 3G interface.

Second, the data transmission and processing are coupled together, leading to 

more wasted energy. Receiving an email is composed of the following steps: first 

is communicating with the server to receive some data, processing the received 

data locally, and then communicating with the server again. The second step of 

the communication resets the 3G tail timer, causing the 3G interface on for longer 

time and thus wasting energy.

Third, the email clients write data onto the flash storage when receiving an email. 

As we will show in Section 4.3, flash operations are energy-expensive and should 

be batched together to save energy.

Fourth, when the inbox size is large, receiving an email costs more energy than 

small inbox case. It is desirable to reduce the energy cost for a large inbox size.

Finally, on Android, the email client always initializes a new TCP connection to 

the server to receive an email. Doing so wastes energy due to the duplicated TCP 

and SSL handshakes.

Next in Section 4 we propose techniques to address above energy inefficiency 

and reduce the energy cost of receiving email. Those techniques can also be used 

as general design guidelines to improve power performance of other applications
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Figure 3.1: Power trace of receiving a push email on Android using Exchange email service 

Table 3.1: Average energy cost of receiving a small email with various configurations

Configuration Energy Cost (mJ)
Android + Exchange + Push 14,976
Android + Exchange + Poll 14,674

Android + Gmail + Push N/A
Android + Gmail + Poll 20,750

WP + Exchange + Push 5,429
WP + Exchange + Poll 5,659

WP + Gmail + Push 6,235
WP + Gmail + Poll 7,027

Android + Gmail App (Push) 12,931

on smartphones.

3.3 Reducing Energy Cost of Email Sync

From Figure 3.1, we can see that the baseline power, when the system is active but 

idle (e.g., during the 3G tail time), can reach over 200 mW. This means that once 

the 3G interface and the OS wake up, the smartphone will consume a large amount 

of energy even without doing any tasks. Therefore, to reduce the energy cost of 

receiving an email, one effective way is to shorten the total time period of email 

receiving as much as possible. In this section we show how we achieve it with five
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Figure 3.2: Energy cost of receiving a push email of 10 KB using Exchange service with 
different inbox sizes (five trials per experiment)

Table 3.2: Network idle time during email receiving

Inbox size (number of emails)
Network idle time (seconds)
W P Android

20 0.4 3.5
200 0.5 4.6

1,000 0.9 3.0
4,000 3.5 3.4
10,000 10.0 3.5

techniques, each of them addressing one energy inefficiency issue we observed in 

Section 3.

3.3.0.1 Reducing 3G Tail Time

The 3G tail time causes a lot of energy to be wasted in receiving emails. After a new 

email is received and processed, the 3G interface enters the tail state in which the 

whole smartphone does nothing but consume energy. While the 3G tail is designed 

to save energy and reduce latency in continuous network data transmissions, it is 

not suitable for the connected standby mode. In the connected standby mode, the 

events received by a smartphone are pretty sparse, often arriving at a time period 

much longer than 3G tail time. Thus, it is likely that the 3G tail time cannot cover 

multiple events. To verify it, we measured the inter-arrival time of the emails of four 

researchers at Microsoft Research Asia. In total 31,303 emails, only 1.3% emails 

come within a ten-second time frame of previous one. Therefore, a 3G tail time
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Figure 3.3: Energy cost of receiving an email with various email sizes (five trials per exper
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Table 3.3: Data size written to flash in email receiving

Email size (KB) 10 50 100 500 1,000
Data size (KB) 139 156 188 336 340

of ten seconds rarely covers more than one incoming emails and thus wastes a 

considerable amount of energy.

The problem of wasted energy caused by the 3G tail time has already been 

identified recently. To solve the problem, a technique called fast dormancy [13] has 

been proposed to force the 3G interface to quickly sleep faster than before, e.g., five 

seconds rather than ten seconds. However, rapid dormancy increases the signaling 

overhead of cellular networks if the sleep timers are too short. In fact, in the early 

days of fast dormancy, some popular smartphones using aggressive timers have 

led to severe signaling channel congestion [8]. Later the network-controlled fast 

dormancy was adopted by 3GPP in Release 8 [1] to reduce the signaling overhead 

caused by the fast dormancy. Researchers have proposed to adaptively use the
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Figure 3.4: Network packets transmitted in receiving a push email using Exchange service 
on WP

fast dormancy based on application traffic patterns [18,30,72,73]. For example, 

in [72] the authors proposed a tail optimization protocol based on fast dormancy. 

In [18] a system has been built to predict the end of communication to invoke the 

fast dormancy without increasing the network signaling load.

We advocate for the fast dormancy to be used in connected standby. As shown 

by our measurement results in Section 3, the WP smartphone we used enables 

fast dormancy and thus has a shorter 3G tail time than the Android smartphone. 

We also agree with the authors in [72] and [18] for adaptive 3G tail time based on 

application traffic patterns.

In particular, because that network events are very sparse in the connected 

standby, 3G tail time still wastes energy even if fast dormancy is enabled. In an 

ideal case, the 3G interface should go to sleep immediately after the event receiv

ing is finished. However, to avoid interference with other applications, individual 

applications must not directly control the 3G tail time. Instead, we propose that the
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Figure 3.5: Network packets transmitted in receiving a push email using Exchange service 
(the same one used for Fig. 3.4) on Android

OS should provide a global service that collects the network usage information of 

all the applications running in connected standby, decides the shortest length of 

3G tail time, and collaborates with the cellular network to put the 3G interface into 

sleep mode as quickly as possible, minimizing the energy waste of 3G tail time. 

Due to the long inter-arrival time of network events in the connected standby, the 

signaling overhead is small.

3.3.1 Decoupling Data Transmission from Data Processing

Due to the 3G tail effect, data transmission should be decoupled from data process

ing to save energy. In an ideal case, an email client should first finish all network 

communication with a server and then process the received data, so that the 3G 

interface is able to go to sleep as soon as possible. In receiving a push email,

i .  >
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there are three steps: 1) fetching the email content from the server, 2) process

ing the received email locally (e.g., updating the inbox database), and 3) telling 

the server that it is ready to receive the next push email and then go to sleep. As 

we show in Section 3, in such a “transmission-processing-transmission” process, 

existing email clients do the second transmission part after the processing part is 

finished, which seems a natural design choice due to the sequential nature but is 

not energy efficient. During the data processing part, the 3G interface stays awake 

unnecessarily and the second data transmission resets the 3G tail timer, wasting 

energy. For example, assume that the data processing needs two seconds and 

the power is 200 mW, 400 mJ energy will be wasted. Therefore, to save energy, 

an email client should batch all its data transmissions together. It should first fetch 

new email content and immediately tell the server that it is ready to receive the next 

push email before waiting for the email processing to be finished.

Batching all data transmissions together may be difficult if a network protocol 

depends on the result of data processing. For example, if an email server requires 

an email client to tell whether the email processing is successful or not, the email 

client cannot start the second data transmission part before the data processing 

part is finished. We propose to solve this problem using speculative execution [50]. 

That is, we predict the result of the data processing part and send the predicted 

result to the server without waiting for the data processing part to be finished. If we 

find that the predicted result is wrong after the data processing part is finished, we 

can re-sync with the server. If we can correctly predict the data processing results 

with a high probability, we can still batch data transmissions together to reduce the 

3G tail effect. To determine feasibility, we conducted an experiment to measure the 

failure rate of receiving and processing 10,000 emails. We found that all the 10,000 

emails were successfully processed without any error. This indicates that the email 

receiving is reliable and we can correctly predict the email processing results with a
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high probability. Therefore, it is possible to leverage speculative execution to save 

energy. Furthermore, for Microsoft Exchange and Gmail services on smartphones, 

they do not depend on the email processing results. Thus, we can easily batch 

data transmissions and decouple them from data processing.

3.3.2 In-Memory Data Processing

Writing data to flash storage is slower than writing data to memory, particularly 

for small, random data writes [24,30,47]. We conducted experiments to measure 

the performance difference of the flash storage and memory. We used a Nexus S 

smartphone running Android 4.0.4. We inserted an email of 270 bytes into a SQLite 

database for 1,000 times and measured averaged energy and time cost of inserting 

one email. We used the SQLite database because the Gmail client and the default 

email client on Android use SQLite to store emails. The SQLite library provides two 

types of APIs to write data into a database: individual writes and batching multiple 

writes together as a transaction. Thus, we measured the performance of writing 

the 1,000 emails one by one and batching the 1,000 email writes together.

Table 3.4 shows the results. For individual writing, when the entire database 

was loaded in memory, the average energy and time cost per email was just 1 mJ 

and 1 ms. When the database was stored on the flash storage, the corresponding 

energy and time costs increased to 32 mJ and 55 ms. For batching writes, when 

the database was loaded in memory, the average energy and time costs were 0.59 

mJ and 0.58 ms. When the database was stored on flash storage, the correspond

ing figures were 0.64 mJ and 0.65 ms. Those results show that for small writes, 

flash storage costs much more energy (32 times) and takes much more time (55 

times) than memory. However, for writing a large amount of data together, the 

flash storage and memory have similar performance in terms of the energy and 

time costs.
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Therefore, to reduce the energy and time cost in email receiving, an email client 

should not issue many small flash writes. Instead, it should batch multiple small 

writes together and commit them to flash in a batch. As mentioned before, email 

clients on smartphones only download email headers and up to several kilobytes 

of email bodies. Thus, the data received for a new email is small. However, as we 

show in Section 3, existing email clients write received data of every email to the 

flash storage immediately, which is not energy efficient. Therefore, when an email 

client receives a new email, it should cache the received data in memory rather 

than writing them to flash immediately. Once the client has received a sufficient 

number of emails (e.g., 10 emails) or the cached data are larger than a threshold, 

it can flush all the data to flash storage together. Furthermore, the client may also 

piggyback data writes with other activities. For example, when the user turns on the 

smartphone to check emails or use other applications, the client can write its cached 

data to flash. As those flash writes share the same baseline power with other 

activities of the user, they will not introduce much extra energy or time overhead.

Delaying flash writes may cause data loss if the email client or the smartphone 

crashes before the cached data are written to flash storage. However, modem 

smartphone operating systems including Windows Phone, Android and iOS all run 

each application in a separate protection domain (i.e., the so called “application 

based security model”). Failures of one application will not affect other running ap

plications. As a result, today’s smartphones are more reliable and crash less than 

before. Even when running out of battery, the operating system will terminate appli

cations gracefully, to give them chance to save data onto flash. Smartphone email 

clients are also pretty reliable. We measured the default email client on Android 

by receiving 10,000 emails and did not observe any failure or crash. In addition, 

even if the email client crashes before writing the cached data to flash storage, it 

can re-sync the emails with the server. Therefore, in-memory data processing is
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able to reduce the energy cost of email receiving.

3.3.3 Reusing Existing Network Connections

In receiving emails, email clients should reuse existing network connections rather 

than making new ones. In particular, for the push email, because an email client 

already maintains a persistent network connection with a server to receive notifi

cation of new incoming emails, it should receive a new email over the continuous 

network connection to save energy. Even for a poll email, when an email client 

does a second polling before the network connection of the last polling times out, 

it should also reuse the previous network connection.

While it may be easy and natural to make a new network connection to receive 

every new email, the energy cost may not be negligible. As most email services 

require a secure network connection, making a new network connection includes 

not only TCP layer handshakes but also SSL layer handshakes to negotiate the 

encryption method and exchange security keys. As shown in our experiments on 

Android in Section 3, the overhead of making a secure TCP connection is not neg

ligible. Without transmitting any application data packets, it consumed 1,757 mJ 

energy to make a TCP/SSL connection. In total 6.9 KB data were transmitted be

tween the client and server. WP is more energy efficient. It always reuses the same 

TCP connection to receive new emails.

3.3.4 Data Structure Partitioning

One interesting finding on WP is that the energy cost of receiving the same email 

increases significantly when the inbox size is large. On Android, the energy cost 

also increases with inbox size but the increase is not as significant as WP. The 

possible reason is that when storing a new email into the database of an inbox, 

it takes more time to update the metadata. For example, the email client needs
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Table 3.4: Energy and time cost of database writing

Energy cost per email (mJ) Time cost per email (ms)
DB in mem DB on flash DB in mem DB on flash

Individual writes 1 32 1 55
Batch writes 0.59 0.64 0.58 0.65

to search the whole inbox to associate the new email with the right conversation 

thread. The cost of doing so depends on the inbox size. In addition, when the inbox 

is too large to be loaded into the memory of the email client, searching the inbox 

takes more energy and time due to the frequent flash operations.

To solve this problem and reduce the energy cost of receiving an email, we pro

pose partitioning a large inbox into two parts: one small inbox with recently received 

emails (e.g., emails received in last two weeks) and one large inbox containing all 

remaining emails. The email client only uses the small inbox to handling email re

ceiving. That is, when receiving an email, the client only inserts it into the small 

inbox and updates the metadata without using the large inbox. Thus, the energy 

cost of receiving emails is reduced even if a smartphone stores many emails. This 

approach is based on a key observation: most of the time users only need to check 

recent emails on their smartphones. Therefore, it is not necessary to touch all the 

emails already stored in a smartphone in receiving new emails. When a user does 

need to access all the emails, e.g., in searching the whole inbox, the client can 

search both the small inbox and the large one to return the combined results. As 

searching a whole inbox happens much more rarely than receiving emails, inbox 

partitioning is able to save energy.

3.4 Implementation

Implementing the techniques proposed in Section 4 only requires modifications on 

the email client side. Since the Gmail application on Android and the built-in email
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client on WP are not open source, implementation is done on the built-in email 

client of Android, which is accessible and widely used. The source code we used 

is vanilla Android 4.0.4 with kernel 3.0.8.

Figure 3.7 illustrates the architecture of our implementation, focusing on email 

syncing and processing. On Android the built-in email client consists of two parts, 

each running in a separate process. The first part is the network communication 

part which implements the email protocol and handles all the communication details 

with the email server to receive and send emails. For Exchange email service, 

this part runs as an app named "Exchange". It runs in the background without 

a Ul. The other part is the data processing which processes received emails and 

provides user interfaces to handle all the interaction details with users including 

reading emails and composing emails to send out. It also deals with email storage, 

saving emails to and loading emails from the SQLite database. This part runs as 

an app named "Email". The Email app process and the Exchange app process 

exchange data through Remote Procedure Calls (RPCs).

To decouple data transmission from data processing, we revised the Email Pro

tocol Handler in the Exchange application to do all data transmissions without wait

ing for the Email Processor to finish processing a received email. Specifically, PING 

messages are sent via the PING Engine in Figure 3.7. In the original client, the 

PING Engine checks up in a two-second interval whether the Email Protocol Han

dler allows it to resume PING messaging after an email-receiving event ends. So 

there is a delay between the completion of receiving an email and the start of PING. 

The energy is wasted because the cellular module has to delay its sleep mode. We 

improved the signaling between the Email Protocol Hander and the PING Engine 

so that a PING message can be sent out immediately. Thus, all data transmissions 

are batched together to save energy. We also revised the Email Processor to re

port an error if anything is wrong in processing an email so that the Email Protocol
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Handler can re-sync with the email server. In addition, we revised the Email Proto

col Handler to receive emails by re-using the existing TCP connection rather than 

making a new one, avoiding energy waste of TCP/SSL handshakes.

In the Email application, we added a new Database Manager, loading a small 

cache inbox into the memory to implement in-memory email receiving. On the 

flash storage, all the emails are stored in a big database. The Database Manager 

manages the data sync between the in-memory cache inbox and the persistent one 

on the flash storage. When the user interacts with the smartphone or we receive 

more than a customized number of emails, the Database Manager commits the 

new email data onto the flash storage.

Android does not provide an API for fast dormancy and we cannot control the 

3G tail time on the fly. We have managed to enable fast dormancy on the Nexus S 

smartphone by flashing a new baseband firmware.

3.5 Evaluation

We evaluate our implementation by measuring the total energy saved in receiving 

an email and the individual ones contributed by each technique we proposed and 

implemented. For all the experiments, we used Exchange push email service with 

the original built-in email client provided by Android and our revised one on a Nexus 

S smartphone. For each experiment, we repeated for the procedure five times and 

report the average results with standard deviations.

Total energy saving. Figure 3.8 shows the total energy saving of our revised 

email client, compared to the original one when the inbox size is 200 emails but 

the new incoming email has different sizes. On average the total energy saving is 

44.3%, with a narrow range from 41.2% to 46.9%. These results demonstrate that 

our proposed techniques are able to significantly reduce the energy cost of email
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receiving. The energy savings mainly come from the shortened email receiving 

time. On average our revised email client reduces the time period of receiving the 

emails by 47.6%, compared to the original one.

Figure 3.9 shows the total energy savings of our revised email client in receiving 

a small email of 10 KB with different inbox sizes. Similar to Figure 8, we can see that 

our revised email client is able to effectively reduce the total energy cost of email 

receiving no matter how many emails the inbox has. The average energy saving is 

45.8%, also with a small range from 39.9% to 51.3%. Compared to Figure 8, the 

average energy saving is higher because when the email is large, the received data 

volume becomes large and more energy will be saved by our proposed techniques, 

as shown later in this Section.

Energy saving of each technique. Figure 3.10 shows the anatomy of the total 

energy saving in receiving the 10 KB email with an inbox of 200 emails. For the total 

energy savings of 7,690 mJ, the largest part comes from reducing 3G tail time which 

saves 2,448 mJ (32%) energy. Decoupling data transmission from data processing 

part and reusing TCP connections also save a significant energy cost, each with 

1,757 mJ (23%). The in-memory processing part and using small cache inbox 

part reduce relatively less energy, saving 806 mJ (10%) and 922 mJ (12%)energy, 

respectively.

Reducing the 3G tail time and reusing the TCP connections have fixed energy 

savings, independent from incoming email size and inbox size. However, the en

ergy saving of other techniques may depend on the email size or inbox size. Figure 

11 shows how much energy can be saved by decoupling data transmission from 

data processing for different email sizes. We can see that generally the energy 

saving increases when the email size becomes large. The decoupling technique 

tries to batch all data transmissions together. When the email is large, more data 

is transmitted over the network and thus the energy saved by batching becomes
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large.

Similarly, Figure 3.12 shows how much energy can be saved by in-memory 

processing for different email sizes. We can see that the energy saving is high for 

large emails. This is because the processing cost (e.g., writing operation) heavily 

depends on email size. Thus, when the email size is large, processing the email 

entirely with memory operations will save more energy.

Figure 3.13 shows the benefit of using a small cache inbox for email receiving 

when the total inbox size is different. The size of the small cache inbox we used 

is 20. Thus, the benefit for the inbox size of 20 in Figure 3.13 is zero. For a larger 

inbox size, we can see that the extra energy saving caused by using the small 

cache inbox increase as the total inbox size becomes large. For the total inbox size 

of 10,000 emails, the extra energy saving is 2,750 mJ. These results demonstrate 

the effectiveness of using the small cache inbox.

Note that in all the above experiments, we measured the energy cost of receiv

ing individual emails without counting the energy saving of batch writing multiple 

emails onto flash. In our implementation we batch 20 emails together for writing 

their data onto flash. By doing so, we can further save 634 mJ energy per email. 

On average this increases the total energy saving of receiving a 10 KB email to 

49.9% in different inbox sizes.

Furthermore, we also calculate how much extra energy can be saved if we can 

put 3G interface into sleep immediately after the end of receiving an email. Doing 

so we can further save 2,448 mJ of energy. For receiving a 10 KB email with an 

inbox size of 200, this will increase the total energy saving by 77.9%.
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3.6 Event Receiving in Other Applications

Despite this chapter focusing only on email receiving, the techniques we proposed 

may also be applied to other applications. Example applications include various 

social network applications such as Facebook and Twitter, locations based appli

cations which receive notifications upon location changes, and many other appli

cations which receive push notifications when new updates or new in-application 

content are available. Similar to email, when in standby mode, those applications 

maintain their own persistent connection or use a separate push notification service 

like Google client notification service [16] to keep connected to a server for receiv

ing various events or poll changes from a server. Such event receiving is very 

similar to email receiving and follows the “transmission-processing-transmission” 

pattern. Each event receiving also wakes up the 3G interface and a smartphone’s 

entire operating system for a small amount of data transmission and processing. 

Due to the similarity between receiving emails and receiving other events, those 

applications may also have the issues with energy inefficiency we found in email 

receiving, such as sparse data transmissions resetting 3G tail timer, frequent small 

flash writes, and making new network connections unnecessarily. Therefore, our 

proposed techniques can be used as general design guidelines for those applica

tions rather than specific techniques designed for email receiving only.

We plan to investigate more applications to further study how the techniques we 

proposed in this chapter may be used to reduce the energy cost of receiving events 

in connected standby. In addition, recent tablet devices and other types of mobile 

devices have started to function like smartphones, keeping connected in standby 

mode to receive various network events including emails. For example, Windows 

8 introduces a new connected standby power mode [82] to provide such support. 

We also plan to study the power performance of applications on those devices and
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look for potential improvements.

3.7 Related Work

System power management. Power management is important to mobile devices 

including smartphones due to the limited power supply of batteries. All smartphone 

operating systems come with components to leverage hardware capabilities and 

manage system activities to save power, e.g., adjusting screen backlight levels, 

running CPU at low frequency, putting network interfaces into sleep or killing power- 

hungry applications in low battery mode. Various techniques have been proposed 

to reduce the power consumption of each key component of a smartphone such as 

the screen [64], CPU [74] and network communication [33,42]. However, even with 

good system-level and component-level power management, applications that are 

not well designed can still cause high energy consumption.

Finding energy bugs of applications. Recently researchers have started to 

study how to improve the power performance of mobile applications by finding en

ergy bugs. Energy bugs are not real program bugs causing failures but they lead 

to unnecessarily high energy consumption. For example, in [70] the authors pro

posed techniques for automatically finding non-sleep energy bugs in applications. 

However, such a tool depends on pre-configured program patterns to find energy 

problems, e.g., requiring a Wakelock to prevent the system from sleeping with

out releasing it, and only works for serious non-sleep bugs. Authors in [64] built 

tools for developers to estimate the energy consumption of their applications and 

find potential energy inefficiency issues. Our work focuses on finding energy in

efficiency when receiving email by measuring the energy performance of existing 

email clients. The techniques we proposed are complimentary with existing work 

and can be used as general design guidelines for other applications.
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Fast dormancy. The problem of the cellular data network tail has drawn a lot of 

attention. Smartphone manufacturers have developed their own and inconsistent 

ways to reduce the energy cost of a cellular tail, which results in the standard ap

proach called network-controlled fast dormancy in 3GPP [13,72], Researcher also 

proposed schemes to reduce the power consumption of applications by using fast 

dormancy adaptively [18,72]. We believe that fast dormancy should be used in con

nected standby. However, even with fast dormancy, there is still wasted energy in 

the event receiving during the connected standby due to very sparse network activ

ities. We propose that the OS should provide a global service to collect the network 

usage information of all the applications running in the connected standby. When 

all the applications finish their event receiving, the service works with the cellular 

network to immediately put the 3G interface into sleep mode and thus minimizes 

the energy waste of the 3G tail time in connected standby.

3.8 Conclusion

In this chapter we have studied the power performance of email sync on the Win

dows Phone and Android operating systems. We conducted experiments to mea

sure the energy cost of email receiving in existing email clients, using both push 

and poll emails, with different email services, email sizes and inbox sizes. Together 

with our analysis of the network and flash storage activities, the measured results 

indicate that existing email clients are not energy-efficient in several aspects. Be

sides 3G tail time, the main source of inefficiency stems from the coupling of the 

data transmis-sion and data processing, which is a bad design choice in connected 

standby mode. Frequent storage access, making new TCP connections to receive 

new emails and updating a large inbox are further components that increase the 

time duration of email sync and lead to energy waste.
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Based on the experiment, we advocate that the fast dorman-cy should be used 

in the connected standby and propose other techniques to address the energy in

efficiency of ex-isting email clients, including the decoupling of data trans-mission 

from data processing, in-memory processing, reus-ing existing network connec

tions and using a small cache inbox to handle the email sync. We have imple

mented these techniques and evaluation results show that average energy sav

ings reach 49.9%. If we can put the 3G interface into sleep mode immediately after 

receiving an email, the total energy savings can be increased to 77.9%.
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4 Access Point Association in Wire 

less LAN

It is already very common for Wireless LAN clients like mobile phones and laptops 

to face multiple choices of APs because of the high density deployment. Which AP 

to attach is not a trivial question especially when there are a lot of nearby users who 

may inference with each other. A user selecting an inappropriate AP will experience 

bad service, or even hurt other users' throughput. The current technique of AP 

selection is for the user to selfishly pick the AP with the strongest signal, or RSSI 

value. The intuition is that factors like multipath effect and path loss which reduce 

throughput's will have a smaller effect when the user is communicating with an AP 

with a larger RSSI.

This simple strategy might fail when there is a large number of users crowded 

together. Consider the case when we have two APs on orthogonal channels, one 

with much stronger signal strength than the other, and a collection of users. All 

the users will simply pick the same AP (with the largest RSSI), so that the actual 

throughput of each user is very small because of channel contention between users. 

Based on this observation, alternative criteria such as selecting the AP which yields 

the largest throughput have been suggested.

However, it is unclear how well this selfish strategy will perform when every 

user attempts to connect to the AP which is able to maximize their own throughput.
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Unlike an AP's RSSI value measured by a user which is not affected by additional 

users associating with that AP, the AP's throughput will change as more users join 

in. Therefore, a user selecting an AP based on throughput may have to switch APs 

constantly, hence lowering overall performance.

In practice, we believe a good performance is to achieve the maximized mini

mal throughput for all clients. Using this simple but reasonable metric, we seek to 

design a practical distributed protocol for AP association. We theoretically analyze 

the worst-case performance of the selfish strategy, and introduce an online algo

rithm that achieves a better worst-case performance. Incoming user employing this 

algorithm determines an irrevocable association, only making use of the load infor

mation on the nearby APs, in order to minimize the L p  norm of the loads on all APs 

at the moment. Based on our online algorithm, we have implemented an associa

tion protocol, SmartAssoc, for commodity hardware driver at the client side. This 

protocol works well with current legacy 802.11 APs. Using a combination of real 

experiments and extensive simulation, we demonstrate that our online association 

protocol performs better than the RSSI-based and selfish AP selection.

The rest of this chapter is as follows. We give an overview of the related work 

in Section 4.1, and explain our motivation in Section 4.2. Section 4.3 examines the 

selfish strategy in distributed wireless AP selection scenario in a quantitative way. 

Section 4.4 proposes our online algorithm as the association strategy for the pro

tocol design of SmartAssoc, and characterize its performance properties through 

theoretical analysis in a realistic model. We present the practical and efficient im

plementation of proposed association protocol on the off-the-shelf wireless LAN 

adapter in Section 4.5. SmartAssoc is demonstrated through real experiments in 

Section 4.6, and simulation results are provided in Section 4.7. Finally, Section 4.8 

concludes.
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4.1 Related Work

AP association plays an important role in improving wireless performance [43,48, 

55,60,62,67,75,79,84,90]. The signal-noise ratios, which is popularly used for 

access point selection in 802.11, has demonstrated as a bad idea by G. Judd et 

al. [44]. In their paper, some other criteria like AP load information are taken into 

consideration for improving the network performance and achieving load balanc

ing. Metrics evaluating the AP load are interested by both academic community 

and industry. [86 ] relies on passive measurement of delay intervals between the 

time when a beacon is scheduled for transmission and its eventual transmission to 

estimate an AP's load. In [68 ], a combined metric is applied, which includes the 

number of stations associated, mean RSSI for the station set of AP and regular 

RSSI. Similar AP-assisted approach is proposed in [29], to give associated clients 

the information about load through beacons.

Some solutions concerning this association issue are proposed in other direc

tions. [26] creates multiple virtual interfaces based on one single wireless card, 

and make them communicate with associated APs like simultaneously. However, 

it needs an efficient association mechanism to define which AP and how long to 

connect, as well as a low handoff overhead. [46] aggregates the bandwidth avail

able at accessible APs and also balances their loads by introducing a fast switching 

and a scheduler to distribute client's time across APs so as to maximize through

put. Both of them differs from techniques above in that they do not pick a single 

AP, but rather multiplexes the various APs in a manner that maximizes throughput. 

In paper [21]and [65], however, they believe association decisions must rely on a 

global view of the entire WLAN, rather than the local viewpoint of an individual client 

or AP. [65] introduces a central controller to aggregate information received from 

all APs and also control them based on this information. In paper [21], more com
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plicated central scheme for AP association is theoretically discussed. It claims to 

achieve both balanced load and max-min fairness by providing central algorithmic 

solution according to a formulation indicating strong correlation between AP loads 

and clients' bandwidth allocations. And it concerns multiple association model, 

which is not mentioned in [65]. Actually it is hard to change a wireless network 

architecture already deployed, and not practical as all users are operating in the 

decentralized manner.

The selfish behavior of users in a congestion game has been studied theoret

ically. A special case where each user's decision is a singleton set is considered 

in [85], while [61] describes a class of congestion game where the payoff function 

associated with each resource is user specific. The convergences under different 

load balancing scenarios are provided in [36], In this work we model the decentral

ized AP selection with selfish users as an extension of the weighted singleton con

gestion game in which the weight of a user varies as the associated AP changes. 

Other modelings of the wireless infrastructure selection include [63] and [25], tar

geting at different scenarios and goals. The major distinction of our work is that we 

design and implement on the commercial chipset an online greedy AP selection 

protocol in the distributed manner. The performance is supported by theoretical 

proof and demonstrated both in real experiments and simulations.

Compared with decentralized methods, work by [21] and [65] uses the idea that 

better AP association decisions can be obtained by relying on a global view of the 

entire WLAN, or an extra centralized controller. AP side system is modified in [65] 

to aggregate workload information and provide association control according to it. 

In [21], a more complicated central scheme for AP association is discussed.

There are also other papers discussing how to multiplex multiple APs. In [26], 

it created multiple virtual interfaces based on one single wireless card, and made 

them communicate with associated APs like simultaneously. The paper [46] built a
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multi-interface association mechanism to distribute a client's data traffic on multiple 

accessible APs in a scenario where the backhaul link is the bandwidth bottleneck.

We take a practical wireless model that well capture the complicated interfer

ence among APs and clients. Considering interference like [89] makes great impact 

on the real world performance of algorithms designed upon this model. From the 

technical perspective, the load balancing literature provides the foundation of our 

solution to the formulated problem of AP association. We borrow results from the 

literature [19,53,80] to better understand the hardness of our formulated problem. 

We elaborate each work later when it is used. Load balancing also finds applica

tions in other fields, such as wireless sensor networks [56].

4.2 Motivation

We consider an IEEE 802.11 infrastructure network [59], in which there are m  APs 

and n  stationary clients or users. Given no central controller and local information, 

All the clients are allowed to freely choose an AP within the transmission range 

to associate with. The goal of this project is to maximize the minimum throughput 

over all clients. Through this chapter, we consider the MAC layer throughput if no 

specification.

The AP association protocol currently employed in IEEE 802.11 networks lets a 

client associate with the AP that gives the strongest signal. We term this the Best- 

RSSI strategy. However, the Received Signal Strength Indication (RSSI) may not 

be a good indicator of throughput changes. [91] provides an experimental example 

to demonstrate this poor correlation between RSSI and throughput.

It is easy to observe that the relatively stable state of the RSSI does not reflect 

the relatively intensive fluctuation of the sampled throughput. Thus, RSSI is not 

suitable and accurate enough to evaluate an AP's performance. It is possible to
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end up with a situation in which all clients connect to a single AP. In this case, the 

competitive ratio1, in terms of average client throughput, can be as bad as l/m . 

When m  is large, this plummeting performance becomes unacceptable.

4.3 Selfish User Strategy

One natural alternative to solving the above problem, with respect to our goal, is to 

let the clients behave myopically by applying in decentralized AP selection the best- 

reply policy. Explicitly, it means that every user keeps moving to associate with the 

AP that could offer it the best throughput until no user can gain higher throughput 

by unilaterally deviating from its current decision (Nash Equilibrium).

To simplify the analysis for selfish users, we make two assumptions in this sec

tion. In the next section, we will use a more realistic assumptions. First, we assume 

that the interference between the communications of two APs is not considered, 

i.e., the nearby APs operate on orthogonal channels. Second, the association pro

cedure of a user is considered as an atomic operation, so only one user perform 

association at a time. The time at which a user makes a decision to change APs 

is marked as a decision step. However, we do not require users to follow a cer

tain decision order, which means in each decision step the user who is picking a 

new AP could be any one. Under these assumptions, we will show that such selfish 

user game converges to a Nash Equilibrium often having non-optimal performance. 

More complicated scenarios even cannot grantee the existence of the Equilibrium 

state [36,61].

We denote by Ua the set of users connecting with AP a. So let na =  \Ua\ repre

sent the cardinality of this set. We designate by stu the percentage of service time

1 competitive ratio is the performance ratio, with respect to some metric, between worst outcome 
of certain association protocol and the optimal strategy case. Here we mean the competitive ratio in 
terms of throughput. Later, after we transform the problem, we mean the competitive ratio in terms 
of load.
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the user u gains from associated AP, and Tu corresponds to the throughput of u. 

And for any user u and AP a, we use Rua to denote the transmission rate under the 

situation only u is associating with a. varies even for the same user. For the rest 

of this section, unless otherwise specified, the transmission rate refers to the effec

tive transmission rate, which considers the overhead caused by retransmissions, 

random backoff and so on.

To examine the performance of this protocol, we consider two aspects: conver

gence and competitive ratio. The competitive ratio here is equivalent to the price of 

anarchy2(PoA) using minimum user throughput as social cost. The following sub

sections show first whether the selfish user protocol will eventually stabilize and 

how fast the protocol will achieve convergence in general, and after that give the 

competitive ratio of the protocol.

4.3.1 Convergence of the Selfish Strategy

In this subsection, we will show how to mode! this selfish throughput strategy as a 

special case of the weighted congestion game, where the weight of a user varies 

as the associated AP set, which is singleton, changes. This game is proved to be 

converged with not ideal speed by leveraging the technique similar to [36]. We start 

with a lemma to characterize the throughput calculation.

Lemma 1. All the users on an AP a have the same throughput Ta

Ta =  1 (4.1)
2-̂ ieUa Ria

Proof. Owing to Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA) 

protocol, all the users associated to the same AP, no matter what their transmission 

rates are, have a fair chance to seize the channel for packet transmission.

2the ratio of the worst-case social cost among all Nash Equilibria over the optimal cost
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Therefore, given the same packet size 2 , any user u connecting to AP a with a 

transmission rate Rua is assigned a portion of service time from a:

stu =  ^  (4 -2)
iZ ia  & ia

It is obvious that every user on the same AP has throughput:

Ta =  Tu =  stu x  Rua=  — — j ~  (4.3)
2->ieUa Ria

□

Given the Lemma 1 and assumptions we made, the selfish AP selection can be 

modeled as an extension of the congestion game. For sake of clarity and consis

tence in terminology, we describe this model in the wireless LAN scenario. Con

sider a set M  of APs, each having a load function depending on the total weight of 

the users associated (Definition 1), and a set U  of users, each of whom only can 

choose one AP from a permissible subset of M  (in the absence of a coordinating 

authority). The weight of a user i on AP j  (i.e. the load imposed by the user) is de

fined as the reciprocal of the transmission rate, Accordingly, maximizing

the minimum throughput over all clients is equivalent to minimizing the maximum 

load over all APs.

Definition 1. The load of an AP a, L a> is

La =  E  L -  =  E  7T
ieua i€U a

For the convergence proof, we introduce a sorted vector (in ascending order) 

of all users' throughput as the potential function. According to Lemma  1, we can 

simplify this vector to a new one 7* by using Ta above to represent respectively the 

current throughput of every user associated with AP a (for V a 6  M ,  where M  is the
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set of all APs). Put differently, given a user i  associated with AP a, its throughput 

is replaced with Ta in the 7*.

The following defines the lexicographic order on different vectors (7*).

Definition 2. One vector 7* defined above is called lexicographically larger than 

the other one 'f ' if^f's first unequal element is larger than its corresponding position 

index one in 7 *', where both vectors are in ascending order.

Definition 3. In 7*, Ta(s) denotes the throughput Ta at the decision step s.

We show the convergence of the protocol by identifying a potential function and 

showing that this potential strictly increases after each step. Consider the vector 

7*, in an ascending order of all users’ throughput.

Theorem 1. 7* lexicographically increases when a useri moves from AP j  to k for 

better throughput.

Proof. Based on the assumption that interference is not considered in this sec

tion, we know this migration only influences two components of 7*: one corre

sponding to the throughput for AP j  that user i  just left, while the other corresponds 

to the AP k that i has joined. Other components remain unchanged. Suppose 

this is the s +  l-th decision step. Because user i  moves for a higher throughput, 

Tk(s +  1) >  7}(s); and because AP j  has one less client, its throughput increases: 

Tj(s  +  1) >  Tj(s) .  In a word, if 7)(s) is theptft component in 7* at step s, T j (s  + 1) 

and Tk(s + 1) reside at two positions whose indexes are no smaller than pth (at the 

right side of pth position including p).

Assume in 7* at step s, (m -  q)th (recall m  is the number of APs) is the first 

position in which the value is larger than the one in position p, i.e., there are q 

throughput larger than T)(s) in 7*. Note that only if no throughput is equal to T)(s) 

in 7* at step s, m  -  q =  p. After step s +  1, this number q increases by 1 for the 

reason mentioned above (7} moves to the right). Thus, the (m  -  q -  l ) th position

92



becomes the first position that holds different values for step s and step s + 1  in 7*. 

Obviously, according to the definition of lexicographical order, the vector 7* at step 

s +  1 is larger. □

Above theorem is also applicable to the extended scenario that there are new 

users coming into the network.

Since we have shown that users' migration always increases the potential - 7*. 

this gives us an upper bound (Theorem 2) on the convergence time in general.

Theorem 2. Without specifying the concrete underlying configuration, this network 

(m APs and n clients) reaches the equilibrium in at most m n steps.

Proof. It is equal to the number of different sorted vectors, which is bounded by 

the number of network topology snapshots. In other words, after performing at most 

mn steps, this potential function 7* will come to a state at which it will not be larger 

any more. This means that no matter which user has the chance to make a decision 

at the next step, it will stay on its current AP from its selfish point of view. □

We have shown that the network will finally converge to an equilibrium within 

bounded steps. However, the number of steps may be exponentially growing with 

respect to the network size, which is presented in the following theorem. Whenever 

an AP accepts a new user (maybe users from other APs), we count it as a new AP 

association.

Theorem 3. For a network with m  identical APs and m 2 users, there exists a sce

nario where the number of AP associations is at least 2m.

Proof. Our construction is inspired by, but quite different from, the identical ma

chine scheduling in [37].

The network is as follows. The users are divided into m  groups G u G2, . . . ,  Gm, 

each of which has m  users. Users in the same group have the same weight.
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We set the weight of each group recursively. For G x, its weight is 1. For Gu its 

weight is set as more than the sum of the weights of previous groups' users, say 

WGi — wGj +  1. Such weight setting can guarantee that two APs have the

same load if and only if they serve the same number of users from each group. 

In the equilibrium after all users join the network, each AP serves m  users, each 

of which comes from a different group. Since each user's choice is deterministic, 

i.e., it chooses the lightest load AP (note here APs are identical), the number of 

AP associations is determined by the order in which users join the network and the 

order in which they make adjustments. In the following, we construct an adversary 

that controls such orders to cause more than 2m AP associations. Whenever the 

adversary releases a user, the user can join the network, or adjust APs, based on 

the best-reply policy.

Let F(m)  be the resulting number of AP associations for an m-AP network under 

the adversary's strategy S(m)  described as follows. We will prove F(m )  > 2m by 

induction.

For m  =  2 , the adversary's strategy S (2) is to release users in an arbitrary order 

(e.g., light weight first). It holds trivially that F (2) > 22 since there are 4 users and 

each of them invokes at least one AP association.

Suppose F(k )  >  2k and this is resulted from the adversary's strategy S(k).  Con

sider the case when m  =  k + 1. Now each group has k + 1 users. The adversary will 

use the following strategy S(k  +  1). First, it applies the following strategy, creating 

a k-AP network sub-problem.

• Release one user from Gk+i.

• Select k users from each G{ where i  =  1, 2 , . . . ,  k, making k2 users. Apply 

S(k ) to them.

The user from Gk+1 will occupy an AP. Denote this AP by A P a. The later released k2
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users will only consider the other k APs, because even the sum of their weights is 

less than APa's current load. Therefore, these k2 users, together with the k available 

APs, create a k-AP instance, and the number of involved AP associations is F(k).

In the next, the adversary releases several users, whose associations we ignore 

but will lead to an interesting equilibrium.

• Release the rest users from Gu G2, ■■■,Gk (i.e., one user per group).

• Release k -  1 users from Gk+i- Wait until equilibrium.

Consider the equilibrium. There must be k APs, each of which serves exactly one 

user from Gk+i and does not serve other users. All the k(k + 1) users from the first 

k groups are crowded in one AP (denote it by APb).

At last, the adversary creates another k-AP sub-problem.

• Release the last user. It is from Gk+1 , and it will choose APb.

• For users at APb, select k users from each Gi where * =  1,2 , . . . , k ,  making 

k2 users. Apply S(k) to them.

The released user from Gk+1 will choose APb due to lightest load. After it asso

ciates with APb, all the other users at APb have the incentive to move to the other 

k APs. None of the selected k2 users will associate back with APb at any time until 

the equilibrium, because APb has at least k +  1 users (one user per group) so that 

there must be some AP that is less loaded. (Consider i from i =  fc +  1 to i =  1. If 

there exists an AP serving two users from Git then there is at least one AP serving 

no user from Gi. This AP is less loaded than APb.) The k2 users and the other k 

APs create a k-AP instance, contributing to F(k)  AP associations.

We can see that, under strategy S(k +  1), the resulting F(k  +  1) is composed 

of at least two F(k), so we have F(k +  1) >  2F(k) >  2k+l. The theorem follows 

immediately. □
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Note that this theorem considers identical APs, a special case of our model that 

assumes unrelated APs. The implications of the theorem are two folds. First, it is 

impossible to bound the convergence time by polynomials of m  and n. Second, 

some user may need to change AP for exponentially many times (2m/m 2), which 

significantly degrades performance.

4.3.2 Competitive Ratio

In the following, we obtain the competitive ratio with respect to the minimal through

put over all clients in the selfish protocol. We still assume that the number of APs 

is m  and the number of clients (or users) is n. We also assume that, among all 

users, the maximal available transmission rate is Rmax and the minimal available 

transmission rate is Rmin. Recall that we define the load a client imposes to an 

AP as the reciprocal of the transmission rate of a client when connecting to an AP. 

Therefore, we define TLmax =  p-3—, and L min =  -^L~.
*+ m in  * *m a x

in a Nash Equilibrium of the selfish strategy, suppose the most loaded AP is k, 

which has a load L s, i.e., L k. Since this selfish user game reaches the equilibrium, 

any client connecting to AP k is not willing to move to any other AP j .  That is,

L 5 <  Lmaa:+ L j forV? e {a|a € M&a ^  k}. Thus, L s-m < ’L rnax-(m — l)+ Y l1jL i^ ‘j ^

L m a x  ' 1 )  IL 'm ax  ‘ r i

^  L m a i ‘ ip "t" m  1 )

— m

Then in the optimal strategy, the maximal load over all the APs is L °  >  In 

sum, the price of anarchy is

L ^ Tl -|- Tfl 1 

L °  Ti JLmjn

This bounds the PoA from above. In the following, we bound the worst-case

96



PoA from below.

Theorem 4. There exists a scenario where the competitive ratio is no smaller than 

(m -  l ) / ( l  +  e) where m is the number of APs and e is a small positive constant.

Proof. The example below first appears in [17], and recently in [52] for slightly 

different purposes (centralized greedy load balancing and sequential load balanc

ing game). We show that this example also works in our context (distributed selfish 

user association).

Suppose there are m  APs and m  - 1 users. Each user i  e U can only associate 

with two APs, i and i +  1. The weights are set as follows. For i  e U, L i>i+l =  i  and 

Liti =  1 +  e. For this example, the maximum load of the optimal solution is 1 +  e.

The adversary can release users sequentially as 1, 2, . . . , m — 1. It is easy to 

see that user i  will associate with AP i  + 1  in the equilibrium, causing the maximum 

load to be m  -  1. Therefore, its competitive ratio is (m -  l ) / ( l  +  e). □

The theorem shows that the price of anarchy is In the following section, 

we use an online algorithm with competitive ratio 0 (log m), which is an exponential 

improvement.

In summary, the selfish user protocol has a high convergence time and a poor 

performance in some network scenarios.

4.4 Online Algorithm

We have shown that both the Best-RSSI and selfish user protocols perform poorly 

under certain scenarios. In this section, we introduce our practical online associa

tion strategy. Our online algorithm considers merely communication load including 

interference and congestion, which provides a more realistic model.

The protocol is simple without assuming a complex interaction among clients 

and APs. We merely assume that, when a new client joins the network, it can
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measure the loads (recall the Definition 1) of all APs within its hearing range. If 

the client does not affect an AP, or does so with negligible influence, it does not 

need to know the load on that AP. For example, if a client is far away from an AP, 

the interaction between them or the influence would be marginal and the client will 

not consider the information on that AP when it makes its AP association decision. 

We will show by implementation in section 4.5 that this assumption can be approx

imately achieved through a practical and low-overhead measurement method. We 

do not even assume how the loads will be changed when a client joins -  although 

we do assume the load on each AP will be non-decreasing when a client joins.

In the following, we examine several scenarios to show the ramifications of our 

assumptions and demonstrate how much our assumptions conform to the reality.

• Interference with APs: When client i joins the network, it might interfere with 

the transmission and reception on several APs. We denote the loads imposed 

on AP j  after i makes its association decision as L y . Note that j  may not be 

the AP that client i associates with.

• Interference with clients: When client i joins the network, it might interfere 

with another client k. Even though i may not directly interfere with the AP 

(say AP j )  that k is associated with (possibly due to being out of transmission 

range), the interference of i on k's communication may change the load on 

AP j .  If the load on AP j  is visible to client i, this scenario is amenable to our 

analysis; otherwise, we will ignore the load imposed by this indirect influence 

because the load change due to this rippling effect is marginal.

• Myopic network configuration: When a client i joins the network, it may not 

see all the APs because of the limited communication range. If the client does 

not see an AP, we assume the load change on that AP owing to the joining 

of client i is negligible. Furthermore, in this case, client i will not be able to
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associate with that AP because there is no usable bidirectional link between 

the client and the AP.

In summary, we study a more practical and complicated wireless LAN model 

here than the one used in the previous section. The weight (communication load) 

a user adds on the associated AP might vary as the local network configuration 

changes or new incoming clients appear.

We now formally define the problem. Due to interference, a user may increase 

load to other APs, in addition to the AP that it associates with. To capture such 

interference effects, we denote by 5hjtk the increased load to AP j  if user i chooses 

AP k. The generalized AP association problem (GAS) can be formulated as an 

integer linear programming problem.

min max x^ i,j,k
i , k

subject to
(GAS)

^  % i ,k  =  1 )  V i  ^  U

k

x i>k e { o , l } ,  V i e U , k e M

where x e {0 , is the association matrix with elements xiik. The two con

straints force each user to associate with exactly one AP.

This model generalizes the previous model in Section 4.3. If each user can only 

increase its associated AP's load, i.e.,

{Lj i if j  =  k
’

0 otherwise

then it becomes the previous problem.

In the new problem, for a specific user i and an AP j ,  even if i is not associated99



AP 1 AP 2 
AP 1 3,3 4,2
AP 2 4,2 3,3

Table 4.1: The cost matrix for two users under different AP associations (left for user 1, and 
top for user 2). Each entry (a, b) is the cost for users 1 and 2 respectively.

with j ,  the exact load induced to j  is dependent on which AP user % associates 

with. Specifically, 6i>jtk may be different from 5iyj<l for k ^ l .  We do not assume any 

relationship between different only assuming that they are non-negative (a 

new association won’t decrease any AP's load). To see the difficulty of this problem, 

we should note that the input information can no longer be modeled by a bipartite 

graph.

The selfish strategy in the previous section has worse performance under this 

general model. There may not exist an equilibrium. To see this, we encode the 

classic game, matching pennies, in the model. Consider the 2-user and 2-AP sce

nario. Let <51,1,1 =  61,2,2 =  #2,1,2 =  #2,2,1 =  2 and all others are set as 1. The resulting 

cost matrix is in Table 4.1. We can see that user 1 prefers to have the same choice 

as user 2 does, while user 2 prefers to differ. In distributed scenarios, they will keep 

switching APs forever.

In fact, the problem is a generalized version of unrelated machine load balancing 

problem. Therefore, all the hardness results of the latter problem trivially hold for the 

new problem. Specifically, no polynomial algorithm can achieve a competitive ratio 

less than 3/2 unless P =  N P  [53]. No online algorithm can achieve a competitive 

ratio less than [log(m +  1)] [19].3 For the load balancing problem, all the constant 

approximation algorithms are based on linear relaxations. There are two kinds of 

rounding techniques [53,80]. Among them, [80] is not applicable to our problem. It 

requires to sort the users by their loads to the same AP, while in our case, one user

3Their work considers a special case of unrelated machines. The machines have identical speed 
but each user can only select a subset of the machines. This case can be easily encoded by our 
model.
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may contribute different loads to the same AP. The algorithm in [53] is applicable 

to our problem, but it is Q(m)-competitive, not a constant approximation algorithm, 

as shown in the following theorem.

Theorem 5. To solve problem GAS, algorithm [53] is (m +  l)-competitive where m 

is the number of APs. The bound is almost tight in that there exist a class of GAS 

instances that the algorithm gives m-competitive solutions.

Proof. We first show how the algorithm works, then prove its competitive ratio, 

and then construct the set of bad input instances. The competitive ratio is proved 

by following the same procedure as in [53], where they proved the 2-approximation 

ratio for the traditional load balancing problem.

The algorithm performs binary search for the optimum load. In each iteration, it 

checks whether the optimal solution could yield maximum load T.  To answer this 

question, it drops the integral restrictions and checks the feasibility of the following 

linear program.

^  x i,k$i,j,k V? € M
i , k

=  Vi € U
* k

%i,k > 0 ,  Vi £ U,k E  M

kxitk =  0 if 3j € M , S i i j i k> T

It is easy to see that, if the optimal solution yields maximum load T, then the lin

ear program above is feasible. Suppose the linear program is feasible. We can 

find an extreme solution x (a vertex of the polytope defined by the constraints). 

The algorithm then rounds fractional solution to integral assignment by finding a 

maximum matching for the fractionally assigned users (users correspond to frac

tional variables in x). We relax the maximum matching requirement to an arbitrary
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semi-matching if no maximum matching exists.

We now prove the competitive ratio. We will prove that the rounding of the 

fractional extreme solution x produces an integer solution x such that

Xi,k$i,j,k < T  +  m T , V j €  M
i,k

* =  l, Vi e U
k

k € {0,1} Vi <E U, k G Af

The extreme solution x contains at most m + n  non-zero variables, among which 

the non-integer variables correspond to at most m users. To see this, note that by 

definition an extreme solution must have ran2 (the total number of variables) linearly 

independent constraints satisfied with equality. Among the constraints appeared in 

the linear program, at most m +  n o f  them could yield non-zero solution (the m  

constraints for APs and the n  constraints for users). Therefore, there are at most 

m  +  n  non-zero variables in x. Since each user who corresponds to non-integer 

variables could contribute at least 2 non-zero variables, there are at most m  such 

users by a counting argument.

Now we assign users with integer variables in x to the corresponding APs. After 

this assignment, the load at any AP is at most T . Then we assign users with non

integer variables. Recall that we assign fractionally assigned user to any machine 

that they have positive fractional assignment to, thus each fractionally assigned 

user contributes at most T  load to each AP. Otherwise, we should have xi<k =  0 due 

to the existence of j  such that Sitjtk >  T. Given that there are at most m  fractionally 

assigned users, the additional load to each AP can not exceed m T . Thus the claim 

is proved.

In the following, we construct the class of bad instances. On these instances, 

the algorithm gives m-cornpetitive ratio (even with maximum matching strategy).
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Consider the network with the same number of users and APs, i.e., n =  m. We set

m—1

OO

\i k — i  

if k =  i  +  1 

otherwise

where sid are to be defined later and i  +  1 is defined to be 1 for i  =  m. In other 

words, we set each user i  to be able to associate with two APs, APs i  and i  +  1. 

For sitj , we set

1 \f i  +  j  <  m  +  1 

0 otherwise

Now we have finished constructing the set of instances. We show an example of 

the inequalities imposed by APs for m  =  3.

Si,j

^ 1 0  oo oo 1 0  0  oo 1 ^

\

1 0 o o o o l  0 |  0 0 O  

1 0 0 0 0 0 O  5 5 0 0 O

Xl,2

\  X3’3 /

<

\ T /

For the constructed instance, the optimal solution is to assign user i  to AP i  +1 , 

yielding maximum load 1. In the following, we show that the algorithm may assign 

user i  to AP i, resulting in maximum load m, which is a m-cornpetitive solution.

Set T  =  m. Consider the solution

=

— if k =  im

if k =  * +  1m

0 otherwise
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It satisfies with equalities all the non-zero constraints imposed by the APs and 

users. We can check that it is an extreme solution (note that it is the unique solu

tion to the 2m, non-zero constraints). Since the algorithm only requires an arbitrary 

maximum matching from the fractional assignment, we can see that setting xiyi =  1 

gives a maximum matching. □

Since the known constant approximation algorithms in load balancing literature 

fail to provide constant approximation guarantee for our problem, it is natural to ask 

whether constant approximation algorithm exists. Answering this question leads to 

the work of [95], and we report it in a separate work due to independent interest.

Theorem 6  ([95]). For any constant c >  1, there does not exist a polynomial time 

algorithm that is c-competitive for GAS, unless N P  =  ZPP.

In this work, we are more interested in online algorithms, since users in a wire

less network may come at any time. Currently, one of the best online algorithm 

for load balancing on unrelated machines is due to [22]. Their solution is e log m- 

competitive. We show in the following that this algorithm is still applicable to our 

problem. More importantly, we prove that competitive ratio is still e log m. This result 

is surprising in that (1) the competitive ratio is irrelevant of (2 ) the generalization 

does not increase difficulty for online algorithms. In addition, this competitive ratio 

is not far from the best we can do (up to a multiplicative constant e) for an online 

algorithm, since no online algorithm can do better than pog(m +  1)] as mentioned 

before.

The online AP selection algorithm runs as follows. When a new client appears 

(in online fashion), it will make an irrevocable association with one of the visible AP 

so that the Cp norm of the loads on all the APs within its transmission range, after 

its join, will be minimized at the moment. Since the client is unable to affect the 

other APs that are not in its hearing range, this algorithm will minimize the Cp norm
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of all the APs' loads in the system (C\ + ------\------- v £ pm)l/p in each new association

event. Then we have

Theorem 7. if the protocol is to minimize the Cp norm of the loads (rather than to 

minimize the maximum load), then the online protocol gives a r <  2l/p̂ -competitive 

ratio

Proof. Suppose client 1,2,3, • • • , i , i + 1, • ■ ■ , n join the network sequentially. Con

sider the situation when client i is joining the network. Let be the resulting load of 

AP j  if users 1 to i all follow our protocol (i may not select j) .  Let xiik be the indicator 

variable for the optimal choice such that xi)k =  1 if and only if user i chooses AP k 

in the optimal solution. With a little abuse of notation, we let 8itj =  Y,k xi,k8ij,k- Let 

Cj be the load on AP j  in the optimal solution for minimizing the £ p norm. We have 

C] =  $i,j- If users 1 to i - 1  follow our protocol but user i chooses the optimal AP,

then the load of the current system is ( A - 1,1 +  A - 1,2 +  ^,2, • • •, A - i j  +  5id, ...).

Following the main idea of [22], we derive that

-  c u j
j

<  + s<>r -  c U j )
j

<  +  <s«)p -
3

The first inequality is true because in this step client i tries to minimize the Cp 

norm. The second one is true because (x  +  8)p -  x p is increasing with x  when p >  1

and 8 >  0 .
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E X

* i

s E E d ^ + y '- ^ )  (4-4>
t j

= E E K ^ + W X )
j *

< ((Ex)’+(Exy) -ix (4.6)
where (4.4) is due to (4.4); (4.5) is due to the fact that X)*=1((a: +  5j)p -  xp) < 

(x +  J2i=i Si)p - x p forp >  1, x  > 0, and S( >  0;4 (4.6) is due to Minkowski Inequality. 

Then

Let r  =  (J2j c?)>- We then have 2rP ^  (r +  X)P and r ^  w b i-

Thus, our protocol is a ^-competitive online algorithm to minimize the

Lp norm. □

Theorem 8 . The online protocol is a e log m  competitive protocol for minimizing the 

maximal load (or w r±  maximizing the minima! throughput).

Proof. Let the heaviest load among all APs running our protocol be £ m and the 

heaviest load among all APs in the optimal minimizing heaviest load protocol be L*m.

4lt can be proved by considering the function f ( s  +  t) — f (s )  -  / ( f )  where f (s )  =  ( x  +  s )p -  xp.
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T h u s . m ^  =  {m-C*Jg ) l /p >  ( E ,  £ ;P)^ >  H ' Z j Cnj )*  >  i W l/p =  lno ther 

words, the Cp norm protocol is a rm 1/p-competitive online algorithm for minimizing 

the heaviest load on all APs. r m l/p <  p =  Inm, m1/p^

reaches its minimum value, elogm, in the positive real number domain 1l+. Thus, 

we choose Cinm norm, and the competitive ratio, correspondingly, is e log m. □

Instead of being related to the number of APs and the ratio between the maximal 

and minimal rates, the competitive ratio of this protocol is linear to the logarithm of 

the number of APs, an almost constant competitive ratio for a small number of 

APs, which is deemed very promising since a constant competitive ratio algorithm 

usually gives a very good practical performance.

Furthermore, this algorithm has the advantage of computational simplicity and 

feasibility for practical implementation. The expected performance bound, for each 

client joined, is ensured just by the local network information at the moment it was 

coming as a new client. It is not necessary to reconsider its decision once a new 

association event occurs. In other words, our online algorithm takes exactly n  steps 

to finish. In the next section, we demonstrate that this algorithm can be employed 

as a practical and light-weighted association protocol for off-the-shelf wireless LAN 

adapters.

4.5 Protocol Implementation of SmartAssoc

In this section, we describe how to efficiently realize SmartAssoc with low costs. 

Although aforementioned online algorithm is carefully designed to avoid large over

head caused by the measurement of nm? input parameters Sitjtk, SmartAssoc still 

needs to address the real-world issue before we apply it in practice. That is how 

to estimate APs' load within a short time frame. It should not require any modifi

cation at the infrastructure side, so our implementation can be used in any open
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802.11 networks or networks the client is able to access. To solve this problem, 

we propose a distributed light-weight AP load probing method in our SmartAssoc 

implementation, so that message exchanges between users and/or APs are not 

necessary. The load information is obtained by the user from target AP without 

association.

We consider the scenario that wireless link is the bottleneck of a communica

tion connection. The discussion of other cases is out of the scope of this chapter. 

Thus, the workload of an AP is reflected by the wireless traffic on air for this AP. 

Here we monitor the uplink stream traffic, ignoring the downstream, because ac

curacy improvement of throughput measurement is small compared with the extra 

complexity in the implementation experience of [46]. Every channel is considered 

to be interference-free with others, as this type of interference is ignorable com

pared to interference inside the channel. Thus, the computation of the Cp norm 

of the AP's workload can be reduced to per-channel based computation, while the 

comparison is still among all channels.

The implementation of SmartAssoc is taken on the popular commercial wireless 

LAN adapter by taking advantage of the legacy standard 802.11 protocol. User 

space control is provided by the Click Modular Router toolkit [5], while association 

functionality of the MadWifi driver vO.9.4 [9] is directly taken over by SmartAssoc in 

the monitor model.

As mentioned above, SmartAssoc requires to measure every AP's load on the 

same channel when a client i joins a candidate AP j  5. A natural way to obtain 

this information is to let the client i perform an association operation with j ,  and 

generate traffic on j  while at the same time capturing an uplink data stream for 

each AP by passive listening. The packet retransmission and duplication does not 

count. However, the association process consumes a lot of time, especially for

5Assume i always has some communication demand after association
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encrypted wireless networks. When the set of association candidates is not small, 

the user is not able to bear waiting so long. Nevertheless, sending data packets 

without association will lead to rejection from the object AP because of the IEEE

802.11 standard. Thus, we find a more light-weight way to obtain the equivalent 

load information without association. Currently 802.11 standards require an AP to 

respond to probe requests, even if the request is sent by a station not associated 

with the AP 6. We leverage this to create a packet type to replace the real data 

packet in the MAC layer. The intuition is to generate modified probe request traffic 

to the object AP j ,  similar to the data traffic, to estimate other APs' loads as if the 

client % is associating with j .  The detail modifications of the probe request packet 

are made as follows.

• We make the probe request uni-cast, forcing the target AP to return an ACK 

upon receiving the packet. This behavior is similar to a station transmitting 

data packets to an AP. And this process is important as well for calculating 

the throughput.

• We change the subtype flag in the packet header to prevent the AP from 

returning a probe response, in order not to introduce unnecessary traffic to 

the network.

• The packet size, transmission rate, and inter-arrival time of modified probe 

requests are packet-wisely customizable by the user, which is able to pro

vide more accurate throughput information for specific estimation based on 

upper-layer applications. This feature is implemented in the probing genera

tor module. Its performance is shown in the next section.

We also implement an AP filter to make the candidate AP list programmable. The 

user can select a preferred channel, network, and minimal RSSI threshold to cus

6lt is done automatically by the firmware, transparent to the upper layers
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tomize the list. Only qualified APs will be considered for estimation to reduce over

head.

The implemented protocol is described as pseudo code (Algorithm 1). A list of 

candidate APs is determined in the first place for estimation according to the bea

cons. In the list, the candidates from the same channel i group as a set Ct. For 

each target AP j  in Cu the user injects a probing traffic, which consists of modi

fied probe request packets, to the AP j ,  while measuring all members' loads. After 

these measurements, the user can calculate the Cv norm loads for all members 

within this channel set, (52keCi £ P)1/p- where p is the natural logarithm of the num

ber of APs. This Cp norm value, influenced by association with the target AP, will 

be compared with the current best candidate AP among all channels. The compar

ison strategy applied in the best candidate updating stage is controlled through two 

programmable parameters. The first one is the norm-difference threshold Tnd, and 

the second one is RSSI-difference threshold Trd. If the norm for the target AP are 

at least Tnd smaller than the norm for the current best AP, the target AP will be the 

best candidate AP instead of current one. Otherwise, the algorithm continues to 

check whether this norm is just smaller than the current best candidate's, as well as 

whether the target AP's RSSI is at least Trd more than the best candidate's. If so, 

the target AP will be the best; for all other cases, we keep the current best AP with

out updating. The user treats every member of a channel set as the target member 

respectively, and repeats this process for each channel set. After the evaluation of 

all candidate APs, the user will associate with the final best candidate AP.

4.6 Evaluation

We verify the feasibility of our online algorithm and demonstrate the performance of 

SmartAssoc implementation in this section. Each client is powered by a 1.6 6 GHz
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Algorithm 1 Protocol Description
Discovers all available APs 
Applies the filter on discovered APs 
Puts all filtered APs into candidate list 
for each C{ do 

for each AP j  in C* do 
Generates a probing traffic to j  
Estimates the new load of each AP within Q 
Calculates the Cp norm change 
Updates the best candidate AP according to Tnd and Trd 

end for 
end for
Associates with the best candidate AP

CPU with 1 GB RAM, running on Linux kernel 2.26.24. A D-Link WNA-2330 with 

Atheros 5312 chipset wireless card is used.

4.6.1 Application Aware Probing

Since our modified probing stream, used to emulate the real data stream, is pro

grammable in terms of the packet size, inter-arrival time, and transmission rate, it 

is easy to generate specific streams to mimic the data stream of a certain applica

tion. Thus, the client is able to find out the "best" association AP with respect to the 

application it wants to use. Figure 4.1 demonstrates how similar our probing can 

be to the secure copy (SCP) and VoIP protocols, respectively. The SCP protocol 

used is the Unix scp command line program. SCP transfers a single file from a 

laptop to a remote desktop on the Internet through a commercial AP on the chan

nel 6  with RSSI -58. The packet size of the probe emulating SCP is 1500 bytes, 

and the inter-arrival time is presented at the right of Figure 4.1. On the left side of 

Figure 4.1, we choose Skype as the VoIP application to set up a communication 

between two laptops through the same commercial AP on the channel 1 with RSSI 

-33. The probing packet used in this experiment is 200 bytes on average. For both 

experiments, we first brought up our driver module to create virtual interfaces in
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the kernel for all upper-layer applications. Then a script was executed to associate 

with the target AP in each experiment. After association and IP assignment, we ran 

the application and our probing generator to generate the traffic, respectively. The 

traffic traces are captured by Wireshark for cumulative distribution function (CDF) 

calculation of the inter-arrival time. In these two experiments, the transmission rate 

for all streams is fixed at 36Mbps.

1

0.8

0.6
LL.QO

0.4 

0.2

°0 0.02 0.04 0.06 0.08 °0 0.02 0.04 0.06 0.08
inter-arrival time inter-arrival time

Figure 4.1: Upper-layer application stream emulations.

4.6.2 Measurement Accuracy

The APs' load information needed in SmartAssoc is derived by monitoring the wire

less channels. Although it is not necessary for monitoring to capture all packets on 

the air, a relatively accurate measurement can help to make a better association 

decision. Thus we conducted a series of experiments to investigate the capture 

missing, which is the main factor to cause the measurement error of the load. In 

this chapter, we are focusing on the Atheros 5212 chipset, while other chipsets can 

be easily studied like this as well. We set up two laptops with a distance of 10 feet 

between them. One is the target laptop, which is used to generate a data stream for 

measurement. The other laptop acts as the monitor to estimate the data throughput
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from the target laptop. To make our experiment comprehensive, we use different 

transmission rates when transmitting the data streams. The rates used are 1 Mbps, 

2Mbps, 5.5Mbps, 11Mbps, 18Mbps, 36Mbps, and 54Mbps. We also use different 

inter-packet times of 5ms, 10ms, 15ms, and 20ms at each rate, respectively. The 

packet size in all trials is 1000 bytes, and every trial last 5 seconds for data stream 

generating and capturing. The experiment results are shown in Figure 4.2. The x  

axis presents the captured packet number in each trial at the monitor laptop side, 

while the y axis presents the number of transmitted packets counted at the target 

laptop side. It is clear that if there is no error, all points (star or circle) should fall on 

the green dash line y =  x. Based on these experimental results (excluding the six 

outliers), we are able to calculate the best linear fitting by using the Least Square 

method, which is shown as the red line, y =  0.8806 x x . 0.8806 is used for estimation 

calibration with respect to the Atheros 5212 chipset, i.e., estimation =  meaQÛ e~

1000
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c
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■§ 400
£

I  200
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°0 200 400 600 800 1000
captured packet number

Figure 4.2: Calibration Experiments for Atheros 5212 chipset

4.6.3 Measurement Duration

The long measurement time of channel traffic, although it benefits the accuracy of 

workload estimations, extends the delay time before associations and consumes

normal result 
outlier
best linear fitting
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more power. Thus, we conducted experiments to find out what is the minimum 

measurement duration given certain measurement error. To facilitate experiments, 

we implemented a testing program based on lib p c a p . It has two functionalities. 

The first one is a standalone component of AP workload estimation described in 

our protocol. The second one is a wireless traffic generator that can assemblies

802.11 packets of our choice and transmits them at given traffic patterns. Two lap

tops installed this testing program are set in 5.18 GHz of 802.11a. One of them 

is used to generate a traffic to one AP set in the same channel. The inter-arrival 

time of generated wireless traffic follows the exponential and normal distributions 

respectively. The other one is to estimate this AP's workload in different time win

dows. The experimental results are illustrated in Fig 4.3 and Fig 4.4. We found out 

50 ms is a proper duration that can achieve less than 3 percent estimation errors.

2
probing duration probing duration

Figure 4.3: Estimation of workloads generated by two traffic patterns following exponential 
distributions with mean of ^  and respectively. X axis is different traffic measurement 
time from 0.001 seconds to 2 seconds. Y axis is the estimated workloads in packets per 
second.
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Figure 4.4: Estimation of workloads generated by two traffic patterns following normal dis
tributions. In the left figure, the mean of distribution is 961 with standard deviation of 1, 
while in the right one, the mean is 964 with standard deviation of 4. X axis is different traffic 
measurement time from 0.001 seconds to 2 seconds. Y axis is the estimated workloads in 
packets per second.

4.6.4 Comparison Experiment

We conduct an experiment to compare our association method of SmartAssoc 

with other practical ones, the Best-throughput and Best-RSSI strategies. Best- 

throughput here is one special case of the selfish strategy, of which the conver

gence speed can be bad. It means every client will make an irrevocable association 

decision to maximize its own throughput. In the experiment, there are three APs 

consisting of an extended service set (ESS) and four wireless LAN clients. Two of 

the APs (AP-1 and AP-3), whose process capabilities are relatively stronger than 

the thirds , are set in channels 1 and 11, respectively, and the third one (AP-2) is 

set in channel 11 as well. Three of the four clients, STA-1, STA-2 and STA-4, are 

put close to each other. Detailed settings are shown in Table 4.2.

The experiment includes four trials. In each trial, clients came to join the ESS 

one by one by using the same association strategy. It is reasonable because that, 

in real world, the time to perform the association operation is statistically much
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Table 4.2: Comparison Experiment Settings

APs
ID Model Channel
AP-1 LinkSys WRT54G CH 11
AP-2 D-Link DI-713P CH 11
AP3 LinkSys WRT54G CH 1

Clients
ID Adapter Pkt payload 

(byte)
Inter-pkt
time(ms)

Transmission
rate(Mbps)

STA-1 internal 1000 5 2
STA-2 internal 1000 5 11
STA-3 external 1000 5 11
STA-4 external 1000 5 11

smaller than the inter-arrival time between new users, so the possibility that two 

clients will want to join the ESS at the same time is low. After joining, the client will 

generate traffic using the configuration in table 4.2 to the associated AP. A trial was 

repeated three times, one for each association strategy.

The minimum client throughput for each strategy in the four trials are presented 

in Figure 4.5. Our algorithm performs better than the other two because it can 

balance the APs' workloads and reduce the interference among all wireless nodes. 

The performance of the Best-throughput is unstable, and it also indicates that the 

selfish strategy cannot compete with ours under similar overhead costs. Meanwhile 

the Best-RSSI strategy often makes all clients associate with the same AP.

4.6.5 Overhead

All three protocols mentioned above need an AP discovery phase. However, Best- 

RSSI does not have any other overhead, whereas Best-throughput and our protocol 

need extra time to evaluate every discovered AP. For each channel, our protocol 

only spends a small amount of time on the channel measurement, compared with 

the Best-throughput one. Nevertheless, the Best-throughput protocol requires real 

de-association and re-association operations, including the IP assignment, before 

every measurement. These operations consume a lot of time, from 3 sec to 8 sec.
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Figure 4.5: Comparison Experiment Results

When the AP number grows, the Best-throughput protocol spends much more time 

than ours. Therefore, the overhead of the selfish protocol, which is equivalent to 

multiple runs of the Best-throughput protocol, is even worse. Thus, our protocol is 

the most efficient one.

4.7 Simulation Result

We use simulations to evaluate our association protocol SmartAssoc on a larger 

scale with more wireless nodes and various configurations. We use NS2 version 

2.33 as our simulator. The multiple channel feature is patched into the NS2 wireless 

portion following the instructions of [76]. The MAC layer type is 802.11, while the 

radio propagation model is two-ray-ground. Ad-Hoc routing protocol is disabled 

since we are focusing on the infrastructure type of wireless LAN. The RTS/CTS 

mechanism is also disabled. The data traffic for users is a UDP stream with a 

packet size of 1000 bytes and average inter-arrival time of 1 ms. The transmission 

rate is set to 11 Mbps. The selected channels include 1,4, 5 ,6 , and 11 for covering 

the orthogonal and adjacent channel cases. The throughput measurements are
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between the wireless nodes.

We implement the following three practical association protocols for compari

son.

1. Online. This is our proposed online algorithm in SmartAssoc. It is imple

mented as described in Algorithm 1.

2. Selfish. The behavior of Selfish is defined in section 4.3. For the same reason 

that the convergence speed of selfish strategy can be very bad, we demon

stratively run the protocol for 5 rounds. In the first round, the clients come to 

join the wireless LAN one by one. Each client will associate with every AP to 

measure the UDP throughput and pick the one who is able to offer the high

est value. In each of the next four rounds, every client will repeat the above 

process to adjust its association based on current wireless LAN association 

topology. Finally, every client will keep its association with the AP it picks in 

the last round.

3. Ideal. This is the globally optimal association solution in terms of maximizing 

the minimum throughput over all clients. Ideal is obtained by enumerating all 

possible association topologies, given a specific scenario setting only includ

ing the location and channel assignment information. In the real world, it is 

not practical because of its complexity.

Every experiment conducted below consists of many trials. Each trial has its 

own scenario configuration. The configuration provides the locations of all wireless 

nodes and the APs' channels. Both of these two information are randomly gener

ated. Every throughput measurement, no matter whether it is for a data stream or 

probing stream, takes 3 seconds in the simulation.

The first simulation is to study the competitive ratio of online compared with 

ideal from the perspective of empirical experiments. The experimental value of the
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competitive ratio is a good indicator of the performance gap on average between 

the online and ideal. The statistically stable performance is also a concerned issue 

to the users in the real world. This experiment randomly picked 50 scenarios for 

testing. For every scenario, the competitive ratio in terms of the minimal client 

throughput, shown in Figure 4.6, is calculated based on the test result of online and 

ideal. The theoretical upper bound is also provided for comparison. The simulation 

results shows that about 86  percent of competitive ratio is above 0.47, and 70% are 

quit stable, just around 0.5. The worse competitive ratio among these 50 trials is 

0.313, while the theoretical upper bound, computed from is 0.232.

30

• experimental result 
theoretical upper bound

trials

Figure 4.6: Competitive ratio results, w.r.t. minimal client throughput, for 5 clients and 3 
APs within 20 x 20. The simulation repeated 50 times with different configurations.

Next, we conducted a scale-up comparison simulation between online and self

ish, which includes three experiments to show the performance in large scale de

ployments. In the first experiment, there are 10 clients and 3 APs within a rect

angle of 30 x 30; the second one has 20 clients and 6  APs located in a rectangle 

of 90 x  90; 30 clients and 9 APs are involved in the third experiment within a rect

angle of 150 x  150. Each experiment ran 30 trials. For each trial scenario, both 

our strategy and the selfish strategy were applied for the association processes 

of all clients on this setting, respectively. After finishing all users' association pro

cesses, we measured the UDP traffic throughput for every client and found the 

minimum, T^ne for online and Taelfish for the selfish strategy. Then the minimal
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Figure 4.7: Simulation result for 10 clients and 3 APs within 30 x 30. The simulation repeated 
30 times. Each bar is the representative of minimum throughput difference for each trial. 
The results are sorted in ascending order

client throughput difference, shown in Figures 4.7, 4.8, and 4.9, is calculated by 

using d i f f  =  -  Taetfish. These figures show that, even through the selfish

protocol is allowed to consume more time, our strategy is more often to perform 

better in terms of maximizing the minimum client throughput.

In the online strategy, since every client only needs to run our association once, 

the following clients in the future will not affect the behaviors of current associated 

clients. Meanwhile, for the selfish protocol, the unexpected new clients can easily 

break the current equilibrium into an unstable state, which will interrupt the usage 

of users. Thus, the online is more practical and less-intrusive. From the figures, it is 

shown that ours can, despite not knowing who will come to join the network, reduce 

the performance downgrade for the client who has the minimum throughput.

4.8 Conclusion

In this chapter, we consider the problem of AP association in WLAN. We present a 

theoretical analysis of the performance of two commonly used AP selection proto

cols, and propose an online algorithm with a provable good competitive ratio. The
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Figure 4.8: Simulation result for 20 clients and 6 APs within 90 x 90. The simulation repeated 
30 times. Each bar is the representative of minimum throughput difference for each trial. 
The results are sorted in ascending order

association protocol based on this algorithm is implemented on the real testbed in 

a light-weight way. We evaluated our scheme using a combination of implemen

tation on commodity hardware and extensive simulation. We demonstrate that it 

is promising that by combining our theoretical understanding and real system im

plementation experience, a new, practical, and better AP association protocol is 

possible.
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Figure 4.9: Simulation result for 30 clients and 9 APs within 150 x 150. The simulation 
repeated 30 times. Each bar is the representative of minimum throughput difference for 
each trial. The results are sorted in ascending order
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5 Implantable Medical Device Secu

rity

The rapid advances of bioengineering are introducing a boom of wireless accessi

ble IMDs. Millions of patients experience the benefits from IMDs in regulating heart 

rhythm, controlling blood pressure, improving hearing, providing visual sight, and 

so on. In the near future, IMDs are expected to be Internet aware, and become 

a crucial component in pervasive systems such as smart homes and hospitals, 

making IMDs' security important. Researchers have identified that IMDs are facing 

potential security threats which may cause life threatening consequences. Recent 

investigations on pacemakers [41] revealed security vulnerabilities on existing com

mercial offerings that allow, among other attacks, a malicious entity to reprogram 

the IMD. Thus, any vulnerability has to be addressed before further integration of 

IMDs into an intelligent environment can be realized.

Unlike conventional embedded systems, engineering security into IMDs presents 

the unique challenge. Security mechanism enforcing protection all the time may 

lead to troubles when safety tops secure operations of IMDs. To illustrate, consider 

an ER doctor, who is not recognized as legitimate operator in terms of security, 

may have to access the IMD to save the patient's life in an emergency situation. 

Temporary authorization to the doctor is not a reliable solution since the IMD owner 

in this circumstance may be physically incapable of doing this or remote trusted
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authority is not available.

Intuitively, we want a security mechanism resembling an on/off switch to con

trol security protections. The switch can be triggered off in an emergency without 

assistance from the patient, but in a non-emergency situation, the patient has full 

control over who has access to his device. (This does open the IMD to attack in 

an emergency, but life-threatening conditions trump such concerns.) Researchers
j

have advocated pairing the IMD with an external device to provide security for the 

IMD, where in an emergency, the doctors can simply remove the external device 

and proceed to interact with the IMD without further hindrance.

There are two challenges when using an external device to protect the IMD. 

First, the external device and the IMD should have a means of establishing a se

cret without prior knowledge. In other words, we should not pre-deploy any secret 

inside the IMD. This is to avoid situations where the user is unable to recall the 

pre-deployed secret and needs to rekey the IMD. The conventional solution is to 

use a manual switch to "reset" the IMD, but since the IMD is implanted inside the 

patient's body, this solution is unsuitable. The second challenge is to have a re

liable method to prevent an adversary from convincing the IMD that the external 

device is absent. Since the IMD is inside the patient's body and the external device 

is placed outside the body, we have to rely on the wireless communication to relay 

information. This opens up a possibility for the adversary to jam the channel to cre

ate the appearance that the external device is absent. Thus it is crucial to ensure 

IMDs to correctly distinguish between real emergency and an attack.

In this chapter, we propose IMDGuard, a security scheme for implantable car

diac devices1, which are implanted to monitor or treat cardiac medical conditions. 

Those IMDs are one widely utilized group of medical devices, and examples in

clude implantable cardioverter-defibrillator, pacemaker, and ECG (electrocardio

1 We refer IMDs as implantable cardiac devices in the rest of chapter
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gram) sensor. IMDGuard leverages the Guardian, an external wearable device, to 

coordinate interactions between the IMD and the doctor in such a way that provides 

the security in a regular condition, and safely allows access in an emergency. The 

patient's ECG signals are exploited to extract keys shared exclusively between the 

IMD and Guardian. This key extraction scheme does not need any pre-distributed 

secret so that it is easy to rekey the IMD when the Guardian is lost or malfunctioning. 

Moreover, it makes the adversary unable to forge fake Guardians except through 

physical contacts with the patient. IMDGuard also can effectively prevent the ad

versary capable of jamming from spoofing the IMD that the Guardian is absent. 

The adversary’s deception will be revealed by collaborations between the IMD and 

Guardian through the notification mechanism based on the defensive jamming.

The rest of the chapter is as follows. We review the related work in Section 5.1, 

and the background and problem formulation in Section 5.2. Sections 5.3 and 5.4 

detail the IMDGuard scheme including running time protocols and key initializa

tion between IMD and Guardian, and Section 5.5 describes our prototype imple

mentation. We provide evaluation on our scheme in Section 5.6, and conclude in 

Section 5.7.

5.1 Related work

The increase use of IMDs has motivated researchers to study the security issues on 

such devices [32,40,41]. Their proposed solution while secure, does not address 

what happens in an emergency situation where the doctors are unable to obtain 

the necessary keys from the patient.

Later work by [31] explored the concept of safety, and proposed the idea of 

fail-open, a property to physically circumvent the IMD's security protection in an 

emergency, through the use of an external device. This introduces a new security

125



threat whereby an adversary may attempt to induce the fail-open state to access 

the IMD. Our proposed protocol also provides the fail-open property, but differs 

from [31] in three aspects. First, our design avoids the periodic message broadcast

ing which consumes considerable battery power and exposes patients to privacy 

risks. Second, our solution protects the IMD without any assumption on the adver

sary's transmission capability. Third, our scheme is comprehensive and evaluated 

on resource constrained embedded systems.

Our solution includes a spoofing attack resistant mechanism related to jamming. 

Jamming in sensor networks have been studied by [49,58, 92]. However, such 

jamming protocols do not consider the features of the IMD, and cannot be directly 

used in our problem. Other anti-jamming strategies like [83] and Direct-Sequence 

Spread Spectrum modulation also cannot be applied because of the hardware lim

itation and the band regulation [15].

Our solution also includes a key extraction algorithm from ECG signals to secure 

the link between the IMD and the Guardian. The idea of using physiological signals 

to secure inter-sensor communications was first introduced in [27], and Poon etal. 

[71] put this scheme into practice for ECG and PPG (photoplethysmogram) signals. 

Inter-pulse intervals (IPIs) of heartbeats are exploited to extract keys in [20]. For 

16 consecutive individual IPIs, the ending time in millisecond (ms) of each IPI is 

calculated, setting 0 as the start time of the first IPI. Then the 7th and 8 th digits of 

the binary representations of the ending times are extracted to form the key. Even 

though the extracted binary sequences can pass several NIST [77] randomness 

tests, they are actually not random as what they look. Since the average IPI is 

about 850 milliseconds, the 7th and 8 th digits of the ending time are not random at 

all. The randomness lies in the lower digits, so does the error. Compared with it, 

our solution explored a new way to correctly utilize IPIs for extracting randomness.

A faster scheme was proposed by [87] where the coefficients of Fast Fourier
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Transform (FFT) on sampled ECG signals are used to extract keys, however, the 

paper also does not give a rigorous analysis whether input samples contain suffi

cient entropy to generate a key with required entropy bits, and it evaluates the key 

after hashing, which is not logically correct. Our key extraction scheme differs from 

this work in two facets. First, we give rigorous information theoretical study on the 

randomness of the physiological feature from which the key is extracted. Second, 

we show that the adversary cannot get any knowledge about the generated keys 

except he can measure the ECG signals simultaneously without being caught.

5.2 Background and Formulation

In this section, we first show the configuration of IMDGuard, then the adversary 

model, and finally the approach against the adversary.

5.2.1 IMDGuard Configuration

IMDGuard has three components, the IMD, Guardian, and programmer. The IMD, 

once implanted, is expected to remain inside the body for an extended period of 

time. The programmer, as an outside controller, provides doctors an interface to 

interact with IMD through radio frequency transmission for adjusting running param

eters, changing operation modes, or retrieving stored data. Above two are standard 

wireless programmable medical instruments. The Guardian is a wearable device 

with more power and computational resources than the IMD. This Guardian works 

as a proxy for the IMD and performs the authentication on its behalf. Both the 

IMD and the Guardian are capable of measuring ECG signals. The interactions of 

these components are illustrated in Fig. 5.1. Link a  represents the access control 

process between the Guardian and the programmer. Link f} represents the initial 

pairing process between the IMD and the Guardian. Link 7  represents the secure
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Figure 5.1: Communication interactions in IMDGuard.

communication protected by the key assigned by the Guardian to both the IMD and 

the programmer.

5.2.2 Adversary Model

We consider an adversary whose goal is trying to program to or retrieve data from 

the IMD without being caught. The adversary succeeds if he is able to access in

formation from the IMD in the presence of the Guardian. Disruption attacks like 

denial-of-service are excluded in our adversary model. We assume the adversary 

cannot physically measure the patient's real-time ECG signals without being de

tected. We also assume that there is no adversary in an emergency situation. This 

is reasonable since in such a scenario, the patient with the IMD is likely to be in a 

secure facility like an ER room in a hospital which can limit the presence of adver

saries.

We classify the attack strategy of adversary against IMDGuard into two aspects. 

The first is when the adversary tries to impersonate the Guardian by deriving the 

key shared between the IMD and the Guardian from either brute force searching 

or historic medical records of the patient. The second is when the adversary may
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spoof the absence of the Guardian by selectively jamming the messages from it, in 

order to convince the IMD to disable safety protection and switch to the emergence 

status.

5.2.3 IMDGuard Overview

In IMDGuard, the Guardian performs two essential functions. First, the Guardian 

is used to control which mode, regular or emergency, the IMD should enter. When 

the patient is wearing the Guardian, the IMD should function under the regular 

mode. In a regular mode, the programmer requiring to interact with the IMD will 

first be authenticated by the Guardian, which will then issue the appropriate keys 

to both the IMD and programmer. When the IMD does not detect the presence of 

the Guardian, the IMD should enter emergency mode. The advantage is that in 

an emergency, the doctor will be able to physically remove the Guardian and have 

unfettered access to the IMD.

Second, the Guardian will authenticate the programmer on behalf of the IMD. 

This will conserve the IMD's battery by reducing the number of operations per

formed by the IMD. This also simplifies overall IMD design, since the IMD does 

not have to maintain cryptographic materials such as asymmetric keys and access 

control lists.

We assume that the Guardian will always be worn by the patient. It is reasonable 

since the Guardian can take the form of a watch and the patient can wear it all the 

time. We also assume that the adversary cannot physically remove the Guardian 

without the patient being aware of it.

We do not assume the IMD must associate exclusively with one Guardian. Thus 

before making the Guardian effective, it needs to be initialized by sharing a secret 

key between the IMD and this Guardian, so that they recognize each other. More

over, in the extreme case that the Guardian current worn is broken or lost, a new
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Guardian can be paired with the IMD easily without the need of retrieving old key 

or resetting IMD.

To realize this functionality, one key feature of IMDGuard is a secure key estab

lishment scheme based on ECG signals. Both the IMD and the Guardian locally 

sample the same random source simultaneously, the patient's ECG, and then ex

tract a symmetric key from ECG features after ECG delineation. Unlike the Diffie- 

Hellman key exchange or wireless based key extractions, this scheme is robust 

against man-in-the-middle attacks as long as the adversary cannot physically mea

sure real-time ECG signals of the patient.

The other key feature of IMDGuard is the spoofing attack resistant mechanism. 

If the adversary attempts to persuade the IMD to enter the emergency mode by jam

ming all messages transmitted from the Guardian, the Guardian still can announce 

its presence to the IMD by jamming the IMD's transmission of the challenge mes

sage. The intuition is that the Guardian may hardly block the transmission from the 

adversary to the IMD, since it has no knowledge about the adversary's hardware 

and capabilities. Instead, the Guardian can be calibrated to the parameters of its 

own IMD, and can always successfully jam its IMD's transmissions.

5.3 Protocol Design in IMDGuard

Here, we present the protocols of IMDGuard. We assume that the IMD and Guardian 

have already paired with a shared secret key after key establishment phase, which 

is described in the following section. We assume the Guardian has a list of le

gitimate programmers and their corresponding public keys. This information can 

securely be installed when in the hospital. Table 5.1 summarizes the notations 

used.
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Table 5.1: Table of notations

G the Guardian
P the Programmer
nij the ith nonce generated by j ,  j  €  { I M D ,  G, P }
H( . ) standard cryptographic hash function, e.g., SHA-1
S K the shared secret key between the IMD and the Guardian 

using ECG based key extraction (Section 5.4)
P K f the public key of j ,  j  e {G,  P }

P K j the private key of j ,  j  e  {G,  P }
T K the temporary symmetric key used for one session
I D the identification of the IMD

5.3.1 Basic IMD Protocol

The IMD will periodically wake up to determine whether there is any request from 

the programmer. After the IMD receives a request from the programmer, the IMD 

will execute Algorithm 2. The IMD will send back its ID, and a random nonce uIimd, 

which is used as the session identity to resist against the replay attack. Then, the 

IMD starts a timer T i to wait for the Guardian, if present, to notify it to run the regular 

condition protocol. In the case that there is no message from the Guardian when 

Ti times out, the IMD will run the emergency condition protocol.

Algorithm 2 Basic IMD algorithm__________________________________________
1: Send back to the P,  ID and u I i m d  
2: Start waiting timer Ti

(Guardian, if present, will execute authentication protocol (Fig. 5.2) during T x) 
3: while T i time out == FALSE  do 
4: if receive valid message from G  then
5. Regular condition, not an emergency.
6: Execute Regular Condition Algorithm (Section 5.3.3)
7: end if
8: end while
9: Possible emergency condition.

Execute Emergency Condition Algorithm (Section 5.3.4)
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5.3.2 Guardian Authenticating Programmer

In Step 2 of Algorithm 2, the Guardian will authenticate the programmer within the 

time period Ti. The authentication protocol is shown in Fig. 5.2.

A random nonce n l G is signed by the programmer, and sent back to the Guardian 

along with another random nonce n l P. The signature of the programmer is veri

fied by the Guardian. If it is not valid, the Guardian will inform the IMD to deny the 

session request through the message { N O , n l I M D } s K  (it will also inform the pro

grammer the authentication is failed and session is denied). If valid, the Guardian 

will assign a temporary session key T K  to both the IMD and the programmer for 

the secure communication. We let the IMD use symmetric keys when communi

cating with the programmer and Guardian to reduce the computational load on the 

IMD. The Guardian and programmer use public keys to authenticate each other for 

better key management.

G : Overhears msg in step 1 of Algorithm 2 (5.1)
G -+ P  : n l G (5.2)
G i P  • { n l G} PK- , n l p (5.3)

G : Verify the signature withPATji (5.4)
If incorrect, then

Deny the request and inform IMD and P
Authentication phase completed

If correct, then
Accept the request, and continue step(5)

G -► I M D  : { Y E S , T K , n l IMD}sK (5.5)
G P  : {Y E S , T K ,  n l p } PK+ (5.6)

Figure 5.2: Guardian authentication Programmer
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G  -> I M D  : (5.1)
I M D  : Decrypt to derive R (5.2)

If R  = =  { N O ,  ti I i m d } ,  then
Deny the request from P, and go to sleep

If/? = =  {Y E S , T K ,  nl/Mz?}, then
Accept req from P, and continue step(3)

P  - *  I M D  : {command}TK (5.3)
P  <— I M D  : {response^TK (5.4)

Figure 5.3: IMD regular condition protocol

P  <— I M D  : t& im d (5.1)
I M D  : Wait for time T2 (5.2)

P  I M D  ti3j m d (5.3)
P  -» I M D  : ans (5.4)

I M D  : Check ans (5.5)
if <zns! =  H ( u 2j m d  © ri3/M£>),then

Deny the request from P, and go to sleep
if ans = =  H(n2iMD  © ri3/A/u), then

Accept req from P, and continue step(6 )
P  —» I M D  : command (5.6)
P  •<— I M D  : response (5.7)

Figure 5.4: IMD emergency condition protocol

5.3.3 Regular Condition Protocol

When the IMD enters the regular condition (Step 6  in Algorithm 2), it will execute 

the protocol shown in Fig. 5.3. After decrypting the message R, the IMD will deny 

access if it receives a NO message. Otherwise, a YES message indicates that the 

programmer has been authenticated, and the session key for Steps 3 and 4 is T K .
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5.3.4 Emergency Condition Protocol

When the IMD enters the emergency mode, it will execute the protocol in Fig. 5.4, 

and send the first portion of the challenge, a random nonce u2IMd • After waiting 

T2 time, the IMD sends the second portion of the challenge, n3IMD• Assuming that 

the Guardian has been physically removed, the programmer will transmit back the 

correct answer to the challenge, H(n2IMD © n3IMD)- If the Guardian is present, 

the programmer will be unable to return the correct answer. We explain how the 

Guardian disrupts this in the next subsection.

5.3.5 Spoofing Attack Resistant Protocol

Here, we show how our protocol is resilient to adversary's spoofing attack based 

on jamming. The adversary can attempt to jam the communications between the 

IMD and Guardian to induce the IMD to enter the emergency mode in Step 7 of 

Algorithm 2. In other words, the adversary will jam the channel for length of time 

period Tx. Since the IMD does not receive any response from the Guardian, the 

IMD will proceed to execute the emergency condition algorithm. For this scenario,

G : Overhear the msg in Step 1 of Fig. 5.4 (5.1)
G : Jam the msg in Step 3 of Fig 5.4 (5.2)
G : Raise a warning alarm if Step 1 occurs frequently (5.3)

Figure 5.5: The notification mechanism of the Guardian

the Guardian function, the defensive jamming described in Fig. 5.5, is triggered to 

block this session. When the Guardian hears the first portion of the challenge mes

sage (Fig. 5.4 Step 1) sent by the IMD to the programmer, the Guardian will realize 

that the communication link between the IMD and itself is blocked by an adversary 

with high probability. Then the Guardian will jam the second portion of challenge
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message from the IMD (Fig. 5.4 Step 3). This operation is feasible in practice based 

on the Guardian's loose synchronization through the message in Step 1 of Fig. 5.4. 

In other words, the Guardian will be aware that there is another message, which 

is the jamming target, going to send in T2 time later. This information can help the 

Guardian to jam the target message with less effort.

There are two advantages in letting the Guardian to jam the IMD's message 

instead of the adversary's message. First, the adversary's hardware may be much 

more powerful than the Guardian, making it difficult to calibrate the Guardian's 

broadcast strength needed to successfully jam the adversary's signal. Second, the 

the Guardian can time exactly when to be jamming since it is aware when the IMD 

will begin broadcast. This conserves the Guardian's power by reducing jamming 

period.

5.4 Key Establishment in IMDGuard

In the previous section, we assume there is a secret key already shared between 

the IMD and Guardian to secure their communication. However, this key establish

ment is challenging if the IMD and Guardian do not share any secret beforehand. In 

this section, we introduce a secure key extraction scheme based on the ECG delin

eation to establish a symmetric secret key bonding the IMD and Guardian together, 

making adversary impossible to forge the Guardian.

5.4.1 ECG Delineation

We conduct the ECG delineation with the wavelet-based algorithms mentioned 

in [54,57]. Fig. 5.6 shows an example result of our wavelet transform based de

lineation. Using the information of local maxima, minima and zero crossings at 

different scales in the wavelet transform, the algorithm is able to detect all the sig
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nificant points of ECG in a heart beat cycle, first the R peak, then Q peak and S 

peak, followed by T wave and P wave.

{SCOT— *—  ^

Scale!

Figure 5.6: Wavelet transform of ECG waves at the first five scales. The first panel is the 
ECG signal, the other five, from top to the bottom, are the corresponding wavelet transforms 
from scale 21 to scale 25.

As shown in Fig. 5.6, in each heart beat cycle, the three blue lines in the mid

dle denote the onset, R peak and offset of QRS complex respectively. The three 

cyan lines on the left denote the onset, P peak and offset of P wave respectively. 

The three red lines on the right denote the onset, T peak and offset of T wave 

respectively.

We implement the algorithms with TinyOS 2.1, with about 1200 lines of code. 

The high accuracy is achieved to reduce the mismatch rate of IPIs, making the 

following key extraction efficient.

5.4.2 An ECG Feature for Key Extraction

Given the two ECG measurements that are taken at different parts of the human 

body, we want to extract a symmetric key from them after the delineation. As a fun

damental requirement, the key much be random. Thus, the key must be extracted 

from an ECG feature such that: (1) the feature itself is random; and (2) the feature 

has common places for both the IMD and Guardian.
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Table 5.2: The quality of randomness of each digit.

* Poo(%) Poi Pio Pn
1 29.2 24.4 24.4 21.9
2 28.9 24.3 24.4 22.4
3 25.2 24.6 24.7 25.5
4 27.9 25.6 25.6 20.9
5 57.5 18.8 18.8 4.9
6 2.5 13.2 13.2 71.1
7 99.1 0.4 0.4 0.0
8 99.7 0.1 0.1 0.0
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Figure 5.7: The fluctuation of IPIs against the average, which is 294 in unit of 4 ms (250Hz 
sampling rate).
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I PI fluctuations against average

Figure 5.8: The normal distribution fitting to the fluctuation of IPIs against the average, with
[i =  0 and <r2 = 61.

After the ECG delineating, we have the timing information of all the ECG sig

nificant features, namely P wave, QRS complex and T wave, for every heart beat 

cycle. Since the ECG signals are periodic, to ensure the randomness, we cannot 

directly use all the delineation points at the same time. Once a feature is chosen, 

other features in the same heart beat cycle are not totally random any more. For in

stance, if we know the position of the R peak, we can easily guess into what ranges 

the Q peak, S peak, T peak and P peak in the same cycle fall. Even for features 

in different cycles, the positions of features are not totally random. For example, 

given the position of R peak in one heart beat cycle, that of the following R peak 

will fall into a small range because the common inter-pulse interval (IPI) is known. 

(For adults, the common IPI is about 850 ms)

We will use the information of R peaks, which is most salient, to extract keys. 

Given a consecutive sequence of R peaks, IPIs are obtained by calculating the 

difference in time of the two consecutive R peaks. Suppose Ri denoting the time 

of the ith R peak, then IP R  =  Ri+1 -  Ri. Since the average value of IPI is quite
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known, we have to exclude the average value when extracting the key. First we 

empirically estimate how many random bits can be extracted from each IPI value. 

We convert IPI values to binary representations, then examine the randomness of 

each digit of the binary representations. It is clear that the random bits lie in the low 

digits. For the ith digit, we count the number of samples for the following cases:

(1) noo-' if the ith digit of sample j  is 0, and so is that of sample j  +  1, then 

increment noo by 1;

(2) n0i: if the ith digit of sample j  is 0, and that of sample j  4-1 is 1, then increment 

noi by 1;

(3) ni0: if the ith digit of sample j  is 1, and that of sample j +1 is 0, then increment

n l0 by 1;

(4) nni if the ith digit of sample j  is 1, and so is that of sample j  +  1, then 

increment n n  by 1;

where 1 <  j  <  n, n  is the total number of consecutive IPI samples.

We then calculate the four possibilities Pik =  nik/ { n - 1), where Ik e {00,01,10,11}. 

If the ith digit is random and independent, all the four possibilities should be around 

25%. We list the possibilities for the lower 8 digits of IPI samples in Table 5.2. We 

set a threshold of 5%. As shown in the table, the last 4 digits are random, while 

the 5th digit is not. For the 5th digit, Poo is more than 50% while Pn is less than 

5%. We also calculate the entropy of the fluctuations directly from the original data, 

which is around 5. Therefore, we can confidently extract 4 bits from each IPI.

5.4.3 Quantization

This subsection will show how to extract 4 random bits from each IPI sample. We 

cannot use the last 4 digits of IPI's binary representations directly, because the 

slight difference between the data at both sides may cause big differences in the 

last 4 digits of the binary representations, leading the mismatch rate to as high
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as 20%. Actually, the lower 4 digits are the fluctuations of IPIs. Fig. 5.7 shows 

the IPI fluctuations against the average value. In terms of entropy, the fluctuations 

don't lose any entropy of IPI samples. Though the average IPI is quite stable, the 

difference between individual IPI and the average value is unpredictable. It can 

be positive, negative or zero. And the value of the fluctuation is quite random in a 

certain range. So the fluctuations can be chosen as the basis to extract the key.

In the perspective of statistics, the fluctuations shape into a normal distribution. 

Fig. 5.8 shows the histogram of the samples in Fig. 5.7, with a normal distribution 

fitting. The fitted normal distribution also results in an entropy \ log(2-rreS2) =  5, 

which is within the range of that resulted from the original data. And we have proved 

that the last 4 digits are random, which implies that the real entropy is at least 4. In 

this sense, the distribution of the fluctuations is indeed a normal distribution, or at 

least close to.

IMDGuard provides the following algorithm to do the quantization. This algo

rithm is based on the assumption that the fluctuations form a normal distribution. 

For a normal distribution JV(/z, a), given ^ and a, we can divide the probability den

sity function into 16 consecutive sections such that, in each section, the cumulative 

possibility density is 1/16. The domain of each section can be denoted by a function 

of a and n, as shown in Table 5.3. If /x or any starting/ending point of any domain is 

an integer, we split samples with that value into two portions, with each going into 

one of the nearby domain. The splitting depends on the sample index. The sam

ples with odd index form one portion, and those with even index form the other. 

Note that a is big enough such that every domain contains at least one integer, 

since the entropy indicates that a is not small. The purpose of the division is to 

roughly but not precisely equalize the number of samples in each domain, making 

the quantization unpredictable. The 16 domains are one-to-one mapping to the 

4-bit gray codes.
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Table 5.3: Normal distribution divided into 16 equal sections.

Domain Domain
1 (—oo, fi — 1.534cr) 9 (fi, fi +  0.157a)
2 (fi — 1.534a, n — 1.151 a) 10 (fi +  0.157a, fi +  0.319a)
3 (fi -  1.151a, n -  0.887a) 11 (fi +  0.319a, fi -1- 0.489a)
4 (fj, — 0.887a, fi — 0.675a) 12 (fi +  0.489a, fi -I- 0.675a)
5 (fi — 0.675a, fi — 0.489a) 13 (fi +  0.675a, fi +  0.887a)
6 (fi — 0.489a, fi — 0.319a) 14 (ft +  0.887a, fi +  1.151a)
7 (fi — 0.319a, ft — 0.157a) 15 (fi +  1.151a, fi +  1.534a)
8 (fi — 0.157a, fi) 16 (fi +  1.534a, + o o )

Since the IMD is measuring the ECG signals all the time, it is able to calculate 

a and fj, for a long period, say 15 minutes, and store it. During key generation, the 

IMD can send these parameters to the Guardian. This process doesn't leak any 

information about the key, since the adversary still doesn't know which sample is 

in which domain and how many samples are in each domain. The quantization is 

shown in Algorithm 3.

Algorithm 3 Quantization Algorithm_____________________
Input: n  consecutive IPIs from ECG, I P h ,  I P h , .... I  P h -  
Output: An bit binary string.
Obtain parameters fi and a
Calculate 16 domains based on Table 5.3: D x, D 2, ..., D i6 
Number the 4-bit gray codes: G u G2, ..., G lfi 
Output = (j> 
for i  <- 1 to n do 

for j  <r- 1 to 16 do 
if IP I i  falls into Dj then 

Output = Concatenate(Output, Gj) 
end if 

end for 
end for

5.4.4 Reconciliation

Due to the high accuracy of the ECG delineation, the two binary strings quantized 

respectively by the IMD and Guardian have a low mismatch rate. For two 4-bit
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blocks corresponding to the same heart beat cycle on both sides, one bit is different 

in most cases if there is a mismatch. In a very few cases, there are two bits different. 

There is no case that 3 or 4 bits are different. Based on these observations, we 

design a 2-round reconciliation algorithm. It carries out Round 2 only if Round 1 

fails.

Round 1: For each IPI, both the IMD and Guardian get a 4-bit block. Both sides 

calculate the parity of its own block and exchange this information. If the parities 

are different, the block is discarded. Otherwise, each side extracts the first 3 bits of 

the block; the 4th bit is discarded because the parity leaks one bit information. This 

process continues until both sides get 129 bits. The IMD then hashes it with SHA-1 

hash function and sends the hash value to the Guardian. The Guardian compares 

this hash value with its own, and notifies the IMD. If the two hash values match, the 

algorithm terminates. Otherwise, Round 2 will be carried out.

Round 2: For the 43 IPIs chosen in Round 1, both the IMD and Guardian calcu

late the parity of the last 2 bits of each 4 bit block, and exchange this information. 

Again those blocks whose parities don't match are discarded. For the blocks left, 

both sides extract the 2nd and 3rd bits; the first bit is discarded since the second 

parity also leaks one bit information. Obviously, the length of the key is less than 

128. Then both sides continue to analyze the following IPIs. At this time, they check 

two parities at the same time and extract 2 bits from each block which passes the 

parity check. The process continues until both sides get 128 bits.

5.5 Prototype Implementation

A challenge involving IMD experiments is the difficulty in obtaining source codes 

and open platforms from commercial vendors. In our prototype system, we choose 

the TelosB with TinyOS 2.1, an open research platform of the resource constrained
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embedded system as a replacement of the IMD. The related details are described 

below.

Transmitter Comparison: The TelosB utilizes the CC2420 transmitter for wire

less communication. The CC2420 is comparable to the typical Medical Implant 

Communication Service (MICS) radio like ZL70101 [14] used in IMDs. They both 

are low power radio devices with similar amount of power consumption during trans

mission. The ZL70101 expends 5 mA, while 8.5 mA is achievable for the CC2420. 

Besides, both of them share other common features such as multiple channel and 

duty-cycle support. The difference between CC2420 and ZL70101 is that MICS 

radio operates lower frequency band between 402-405 M H z  because of the rea

sonable signal propagation characteristics in the human body. This has no impact 

on our evaluation since our implementation does not rely on the frequency or num

ber of available channels.

Code size: The code size of each component after compilation is shown in 

Table 5.4. ECC [88] is the Elliptic Curve Cryptography we develop to provide public 

key scheme between the programmer and the Guardian. For reference, a typical 

IMD produced in 2002 is able to contain 2MB memory [31].

Table 5.4: Code size of our prototype implementation

Module ROM (bytes) RAM (bytes)
IMD 20656 1056

Programmer 20754 1060
Guardian 20614 1050

ECC 42190 1931
Key Extraction 10078 887

ECG Delineation 18720 9652
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5.6 Evaluation of IMDGuard

The performance evaluation of IMDGuard is divided into three portions. First, we 

comprehensively assess the quality of the key extracted from ECG signals. Then 

we conduct a series of experiments on the effectiveness of defensing adversary's 

spoofing attacks. Finally, we present the efficiency of each critical components in 

our implementation.

5.6.1 Key Establishment

In this section, we will evaluate the key generated according to the algorithms in 

Section 5.4. The ECG signals are from PhysioBank database (http://www.physionet.org/physio 

We will address three important characteristics of the key: (1) temporal variance;

(2) efficiency; (3) randomness.

5.6.1.1 Temporal Variance

Given a 128-bit key generated by the IMD and Guardian, we want to know whether 

the adversary can get any help if he can access historic/future records of ECG sig

nals of the patient. Metric used is the hamming distance between the key and any 

other 128 bit random string before or after it. The hamming distance between two 

binary strings of equal length is the number of positions at which the correspond

ing symbols are different. Given two random strings, if they are independent, the 

possibility of having hamming distance k follows a binomial distribution, which is 

p(k) =  ( £ ) p * ( l - £>)"“*, where n =  128 and p -  1/2. And the mean value of k, a.k.a 

expected value, is E(k) =  np -  1/2 x 128 =  64.

We examine these hamming distances. There is no signal value equal to 0 or 

128, and all the points lie between 45 and 85. The closer to the mean hamming 

distance, which is 64, the denser the points. We plot the possibility of the hamming

144

http://www.physionet.org/physio


distances, as shown in Fig. 5.9. As we can see, the measured data matches very 

well with the theoretical binomial distribution with n =  128 and p =  1 /2 . From the 

statistical prospective, the 128 bit key generated by our scheme does not relate to 

the historic ECG or future ECG signals. Thus, even the adversary gets historic or 

future ECG data of the patient, he cannot get any help from it. This also indicates 

the randomness of the 128 bit key.

We also conduct the same evaluation between keys generated from ECG sig

nals from different persons, and we get the same result as expected. The his

toric/future record of the same person does not help the adversary, neither does 

that of other people. [87] did similar evaluation about their scheme. However, they 

did so after hashing an identical string between two parties with a one-way hash 

function. Though they got similar results, their results could not prove what they 

claimed. Hashing will make a string random, no matter the original string is random 

or not.

5.6.1.2 Efficiency

In the reconciliation phase, there are two rounds. In the first round, 3 random bits 

are extracted from each IPI. So it needs 43 IPI to get a 128 bit key. If the first 

round fails, the algorithm will carry out the second round, extracting 2 bits from 

each IPI. In this case, it needs 21 more IPIs besides the 43 IPIs in the first round. 

In 88% cases, the first round succeeds. The second round succeeds all the time, 

at least we did not find a single failure in all our traces. Thus, on average, it needs 

45.5 IPIs, without counting the IPI discarded. During Round 1, about 25% samples 

are discarded, and during Round 2, only 0.3% samples are discarded. Taking into 

account the samples discarded, it needs 61 IPIs, corresponding to 45 seconds or 

so, to generate a key successfully.
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Figure 5.9: The hamming distances between the 128 bit stream from current ECG signal 
and those from historic records fit into a binomial distribution with n =  128 and p =  1/2.

5.6.1.3 Randomness

To evaluate randomness of the generated bit stream employed as secret keys, we 

run the randomness tests in the NIST test suite [77]. There are totally 15 different 

statistical tests, and we run 9 of them. The other 6 require a very long bit stream 

that we cannot generate from PhysioBank database. Our bit stream passes all the 

9 tests, showing a good quality of randomness.

Evaluations show that even the patient's ECG records cannot help the adver

sary to predict the key shared between the IMD and Guardian, unless he physically 

measure patient's ECG signals simultaneously during the key establishment. How

ever it is impossible for the adversary to physically measure patient's ECG without 

the patient being aware of it. This key establishment is robust to man-in-the-middle 

attack. If a symmetric key is successfully established, then the Guardian must be 

legitimate.
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Figure 5.10. Results for the effectiveness of Guardian's jamming when targeting at mali
cious programmer. X-axis represents the distance between the IMD and Guardian, and 
Y-axis is the success ratio of delivered messages. For each distance, ten trials were con
ducted.

5.6.2 Jamming Related Experiments

There are two jamming related experiments. First, we experimentally validate our 

decision to jam the IMD's communication instead of the adversary's messages. 

Second, we examines our defensive jamming method using different settings in 

terms of the power level and the distance.

We let three TelosB motes to act as the IMD, the Guardian and the malicious pro

grammer (adversary). To concentrate on the jamming performance of the Guardian, 

these motes are installed with the simplified IMDGuard which will be described in 

each experiment below, as well as the carrier sensing and random backoff on motes 

are disabled. All the experiments are taken on a large office table in an indoor en

vironment.

Experiment 1: We vary the distance between the IMD and Guardian from 0.5 

feet to 2 feet, and set the malicious programmer 11 feet away from the center point
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of these two devices. The transmission power of the Guardian is configured to be 

-15 dBm. This is 10 dB  higher than the power of the IMD but is 10 dB  lower than 

the malicious programmer's power. The transmission interval, i.e. the inter arrival 

time between any two messages, is 20 ms. We then let the adversary send mes

sages to the IMD, while the Guardian is jamming. After the transmission is over, we 

determine the ratio of messages successfully received by the IMD. The results are 

shown in Fig. 5.10. As we can see, messages toward the IMD are able to escape 

from being jammed with an uncertain probability, low in some cases but high in 

others. This observation indicates that jamming the adversary's transmission does 

not work in practice since our malicious programmer settings, such as the relative 

power strength (10 dB) and location (11 feet), or even more rigorous conditions, 

can be achieved by an adversary.

We then repeat the experiment again, this time letting the Guardian jam the 

IMD's transmission. The Guardian is able to successfully jam all the messages. 

This approach is more reliable and effective than jamming the adversary. We omit 

the figure for the results. The success of defensive jamming is due to the fact that 

the Guardian is aware of all of the IMD's settings, and that the Guardian is more 

powerful than the IMD by design.

Experiment 2: In this experiment, the Guardian jams the message the IMD 

sends to the malicious programmer in the same way as above experiment but under 

various settings. The distance between the IMD and the malicious programmer is 

fixed at 1 foot, which is considered as the closest position the malicious could have 

without being detected by the patient. The Guardian is placed away , from 1 foot to 

7 feet, from the center point of IMD and programmer at each different power level. 

The successful delivery ratios of all transmitted messages in every condition are 

recorded in Fig. 5.11. It is evident that, as long as the Guardian is close enough, 

e.g. within 2 feet to the IMD, the transmission from the IMD toward the malicious
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programmer is totally blocked even in the extreme testing case that Guardian's 

jamming power is 20 dB less than the IMD's. This observation is important because 

the IMD usually is fallen into this distance range if the Guardian is worn by the 

patient.
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Figure 5.11: Results of the effectiveness of Guardian's defensive jamming(acted as jam
mer) when targeting at the IMD. X-axis means the distance between the Guardian and 
center point of the IMD and malicious programmer in feet, and Y-axis is the success ra
tio of delivery. The transmission power of the IMD is set to be -5 dBm during the whole 
experiment. For each distance, two trials were conducted.
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5.6.3 Overhead Evaluation

Cryptographic overhead: We write a testing program on TelosB to record the 

average timing of ECC-based encryption/decryption, SHA-1 hash, Advanced En

cryption Standard (AES) for a 20 byte message, and data is shown in Table 5.5.

Table 5.5: Security Timing Information

Encryption Decryption SHA-1 Hash AES
3.3 s 1.7 s 4 ms 1 ms

Communication and Operation Overhead: The timing information for the crit

ical operations under different scenarios is provided in the Table 5.6. In an authen

tication case, on average the Guardian takes 3821 ms to authentication a pro

grammer in total. It is broken down to (1) 1550 ms for programmer to generate a 

signature of the given challenge (20 byte random data), (2) 2221 ms for Guardian 

to verify this signature, and (3) 50 ms for other communication overhead. When the 

Guardian is not present, the process of emergency condition (Fig 5.4) costs roughly 

512+14=526 ms before the IMD accepts the programmer. If the defensive jamming 

occurs, the session will be denied by the IMD in about 1501 ms since receiving the 

request.
Table 5.6: Prototype Timing Information

Overhead in Time (ms)
Situation Operation Overhead

Authentication
Signing(20bytes)
Verification(20bytes)
Others

1550
2221
50

Guardian Removed Challenge Transfer 
Others

512
14

Guardian Jamming Session Deny 1501
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5.7 Conclusion
/

In this chapter, we propose IMDGuard, a comprehensive security scheme for pro

tecting implantable cardiac devices in terms of both security and reliability. Proto

type of IMDGuard is implemented to demonstrate its functionality of securing IMDs 

in practice.
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6 Conclusion

More and more people rely on pervasive computing systems, including smart

phones, body area sensors, laptops and so on. The performance of these sys

tems directly influences user experience, and some of their drawbacks may cause 

serious outcomes in the real world. Among all the existing problems, security and 

energy efficiency are the most critical because of following reasons. First, personal 

computing devices consume a lot of energy in order to complete desired heavy-duty 

tasks. The lifetime of a battery is reduced a lot because of this and users are not 

satisfied. Second, many personal mobile devices access a lot of valuable user data 

under risky circumstances, but they are not protected by comprehensive security 

schemes because of their limited resources. These two serious problems make 

people hesitant to adopt and further depend on pervasive computing systems.

There are four projects involved in our research. We introduce a new way to 

measure the power consumption of smartphones without any external hardware 

assistance. This enables self-constructive modeling for every individual phone. 

As such generated power models are accurate and can adapt to any system con

figuration changes in real time. Based on this technique, we improve the energy 

efficiency of smartphone applications, taking the email sync over the cellular net

work as one example. The findings of our study on email sync can guide appli

cation developers to improve the energy efficiency of their codes. Additionally, 

we are the first to investigate the energy consumption of smartphones in the con
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nected standby mode. We also study the network performance of the wireless 

LAN, which is another popular communication approach employed on pervasive 

computing systems. Proposed access point selection algorithm can help to save 

power and secure the communication. Lastly, we propose a new security scheme 

for IMDs. An external device is introduced to act as a security proxy for the IMD 

inside the patient's body. The advantage of this design is that the patient's safety is 

still effectively protected in unexpected situations. In order to apply this scheme in 

the real world, we solve two challenging problems, secure key pairing without any 

prior knowledge and defense against powerful spoofing attacks.

From our studies we also derive some valuable knowledge that may benefit 

the general research area of pervasive computing. First, our new power model

ing method provides the necessary tool and foundation for energy issues on all 

battery-powered devices. Second, as the first investigation of the sleeping mode 

on smartphones, our findings are helpful to research that explores comprehensive 

energy solutions for pervasive computing systems. Third, our solution for IMD se

curity can be the framework to manage and protect various similar devices as well. 

We hope our research experience can help shed light on intriguing studies in the 

future.

In summary, we improve the energy efficiency of power-hungry pervasive com

puting systems and extend their battery lifetime; we also enhance the security 

mechanism of other resource-limited personal mobile devices in order to protect 

valuable and sensitive information. Our research efforts advance existing perva

sive computing systems and can help design the next generation of pervasive com

puting systems.

In the future, we will continue to work on the security and energy problems of 

smartphones. The specifications of smartphones keep changing, e.g., from single 

core to multiple cores. Complicated hardware means simple power models are
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unable to capture all consumption variations. We would therefore like to research 

these emerging hardware and provide more accurate estimations of power con

sumption. Additionally, we want to enable the ” Bring-Your-Own-Devices" paradigm 

by enforcing strong isolation of system activities in real time.
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