9 research outputs found

    Power-aware Performance Tuning of GPU Applications Through Microbenchmarking

    Get PDF
    Tuning GPU applications is a very challenging task as any source-code optimization can sensibly impact performance, power, and energy consumption of the GPU device. Such an impact also depends on the GPU on which the application is run. This paper presents a suite of microbenchmarks that provides the actual characteristics of specific GPU device components (e.g., arithmetic instruction units, memories, etc.) in terms of throughput, power, and energy consumption. It shows how the suite can be combined to standard profiler information to efficiently drive the application tuning by considering the three design constraints (power, performance, energy consumption) and the characteristics of the target GPU device

    Analysis of DVFS Techniques for Improving the GPU Energy Effi-ciency

    Get PDF
    Abstract Dynamic Voltage Frequency Scaling (DVFS) techniques are used to improve energy efficiency of GPUs. Literature survey and thorough analysis of various schemes on DVFS techniques during the last decade are presented in this paper. Detailed analysis of the schemes is included with respect to comparison of various DVFS techniques over the years. To endow with knowledge of various power management techniques that utilize DVFS during the last decade is the main objective of this paper. During the study, we find that DVFS not only work solely but also in coordination with other power optimization techniques like load balancing and task mapping where performance and energy efficiency are affected by varying the platform and benchmark. Thorough analysis of various schemes on DVFS techniques is presented in this paper such that further research in the field of DVFS can be enhanced

    Adaptive Knobs for Resource Efficient Computing

    Get PDF
    Performance demands of emerging domains such as artificial intelligence, machine learning and vision, Internet-of-things etc., continue to grow. Meeting such requirements on modern multi/many core systems with higher power densities, fixed power and energy budgets, and thermal constraints exacerbates the run-time management challenge. This leaves an open problem on extracting the required performance within the power and energy limits, while also ensuring thermal safety. Existing architectural solutions including asymmetric and heterogeneous cores and custom acceleration improve performance-per-watt in specific design time and static scenarios. However, satisfying applications’ performance requirements under dynamic and unknown workload scenarios subject to varying system dynamics of power, temperature and energy requires intelligent run-time management. Adaptive strategies are necessary for maximizing resource efficiency, considering i) diverse requirements and characteristics of concurrent applications, ii) dynamic workload variation, iii) core-level heterogeneity and iv) power, thermal and energy constraints. This dissertation proposes such adaptive techniques for efficient run-time resource management to maximize performance within fixed budgets under unknown and dynamic workload scenarios. Resource management strategies proposed in this dissertation comprehensively consider application and workload characteristics and variable effect of power actuation on performance for pro-active and appropriate allocation decisions. Specific contributions include i) run-time mapping approach to improve power budgets for higher throughput, ii) thermal aware performance boosting for efficient utilization of power budget and higher performance, iii) approximation as a run-time knob exploiting accuracy performance trade-offs for maximizing performance under power caps at minimal loss of accuracy and iv) co-ordinated approximation for heterogeneous systems through joint actuation of dynamic approximation and power knobs for performance guarantees with minimal power consumption. The approaches presented in this dissertation focus on adapting existing mapping techniques, performance boosting strategies, software and dynamic approximations to meet the performance requirements, simultaneously considering system constraints. The proposed strategies are compared against relevant state-of-the-art run-time management frameworks to qualitatively evaluate their efficacy

    Power Bounded Computing on Current & Emerging HPC Systems

    Get PDF
    Power has become a critical constraint for the evolution of large scale High Performance Computing (HPC) systems and commercial data centers. This constraint spans almost every level of computing technologies, from IC chips all the way up to data centers due to physical, technical, and economic reasons. To cope with this reality, it is necessary to understand how available or permissible power impacts the design and performance of emergent computer systems. For this reason, we propose power bounded computing and corresponding technologies to optimize performance on HPC systems with limited power budgets. We have multiple research objectives in this dissertation. They center on the understanding of the interaction between performance, power bounds, and a hierarchical power management strategy. First, we develop heuristics and application aware power allocation methods to improve application performance on a single node. Second, we develop algorithms to coordinate power across nodes and components based on application characteristic and power budget on a cluster. Third, we investigate performance interference induced by hardware and power contentions, and propose a contention aware job scheduling to maximize system throughput under given power budgets for node sharing system. Fourth, we extend to GPU-accelerated systems and workloads and develop an online dynamic performance & power approach to meet both performance requirement and power efficiency. Power bounded computing improves performance scalability and power efficiency and decreases operation costs of HPC systems and data centers. This dissertation opens up several new ways for research in power bounded computing to address the power challenges in HPC systems. The proposed power and resource management techniques provide new directions and guidelines to green exscale computing and other computing systems

    高電力効率プロセッサのためのキャッシュの設計最適化

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 中村 宏, 東京大学教授 原 辰次, 東京大学教授 石川 正俊, 東京大学准教授 近藤 正章, 東京大学准教授 品川 高廣, 東京大学准教授 入江 英嗣University of Tokyo(東京大学

    Low-power System-on-Chip Processors for Energy Efficient High Performance Computing: The Texas Instruments Keystone II

    No full text
    The High Performance Computing (HPC) community recognizes energy consumption as a major problem. Extensive research is underway to identify means to increase energy efficiency of HPC systems including consideration of alternative building blocks for future systems. This thesis considers one such system, the Texas Instruments Keystone II, a heterogeneous Low-Power System-on-Chip (LPSoC) processor that combines a quad core ARM CPU with an octa-core Digital Signal Processor (DSP). It was first released in 2012. Four issues are considered: i) maximizing the Keystone II ARM CPU performance; ii) implementation and extension of the OpenMP programming model for the Keystone II; iii) simultaneous use of ARM and DSP cores across multiple Keystone SoCs; and iv) an energy model for applications running on LPSoCs like the Keystone II and heterogeneous systems in general. Maximizing the performance of the ARM CPU on the Keystone II system is fundamental to adoption of this system by the HPC community and, of the ARM architecture more broadly. Key to achieving good performance is exploitation of the ARM vector instructions. This thesis presents the first detailed comparison of the use of ARM compiler intrinsic functions with automatic compiler vectorization across four generations of ARM processors. Comparisons are also made with x86 based platforms and the use of equivalent Intel vector instructions. Implementation of the OpenMP programming model on the Keystone II system presents both challenges and opportunities. Challenges in that the OpenMP model was originally developed for a homogeneous programming environment with a common instruction set architecture, and in 2012 work had only just begun to consider how OpenMP might work with accelerators. Opportunities in that shared memory is accessible to all processing elements on the LPSoC, offering performance advantages over what typically exists with attached accelerators. This thesis presents an analysis of a prototype version of OpenMP implemented as a bare-metal runtime on the DSP of a Keystone I system. An implementation for the Keystone II that maps OpenMP 4.0 accelerator directives to OpenCL runtime library operations is presented and evaluated. Exploitation of some of the underlying hardware features of the Keystone II is also discussed. Simultaneous use of the ARM and DSP cores across multiple Keystone II boards is fundamental to the creation of commercially viable HPC offerings based on Keystone technology. The nCore BrownDwarf and HPE Moonshot systems represent two such systems. This thesis presents a proof-of-concept implementation of matrix multiplication (GEMM) for the BrownDwarf system. The BrownDwarf utilizes both Keystone II and Keystone I SoCs through a point-to-point interconnect called Hyperlink. Details of how a novel message passing communication framework across Hyperlink was implemented to support this complex environment are provided. An energy model that can be used to predict energy usage as a function of what fraction of a particular computation is performed on each of the available compute devices offers the opportunity for making runtime decisions on how best to minimize energy usage. This thesis presents a basic energy usage model that considers rates of executions on each device and their active and idle power usages. Using this model, it is shown that only under certain conditions does there exist an energy-optimal work partition that uses multiple compute devices. To validate the model a high resolution energy measurement environment is developed and used to gather energy measurements for a matrix multiplication benchmark running on a variety of systems. Results presented support the model. Drawing on the four issues noted above and other developments that have occurred since the Keystone II system was first announced, the thesis concludes by making comments regarding the future of LPSoCs as building blocks for HPC systems

    High-Performance and Power-Aware Graph Processing on GPUs

    Get PDF
    Graphs are a common representation in many problem domains, including engineering, finance, medicine, and scientific applications. Different problems map to very large graphs, often involving millions of vertices. Even though very efficient sequential implementations of graph algorithms exist, they become impractical when applied on such actual very large graphs. On the other hand, graphics processing units (GPUs) have become widespread architectures as they provide massive parallelism at low cost. Parallel execution on GPUs may achieve speedup up to three orders of magnitude with respect to the sequential counterparts. Nevertheless, accelerating efficient and optimized sequential algorithms and porting (i.e., parallelizing) their implementation to such many-core architectures is a very challenging task. The task is made even harder since energy and power consumption are becoming constraints in addition, or in same case as an alternative, to performance. This work aims at developing a platform that provides (I) a library of parallel, efficient, and tunable implementations of the most important graph algorithms for GPUs, and (II) an advanced profiling model to analyze both performance and power consumption of the algorithm implementations. The platform goal is twofold. Through the library, it aims at saving developing effort in the parallelization task through a primitive-based approach. Through the profiling framework, it aims at customizing such primitives by considering both the architectural details and the target efficiency metrics (i.e., performance or power)
    corecore