
Power-aware Performance Tuning of GPU Applications
Through Microbenchmarking

ABSTRACT
Tuning GPU applications is a very challenging task as any
source-code optimization can sensibly impact performance,
power, and energy consumption of the GPU device. Such an
impact also depends on the GPU on which the application
is run. This paper presents a suite of microbenchmarks that
provides the actual characteristics of specific GPU device
components (e.g., arithmetic instruction units, memories,
etc.) in terms of throughput, power, and energy consump-
tion. It shows how the suite can be combined to standard
profiler information to efficiently drive the application tun-
ing by considering the three design constraints (power, per-
formance, energy consumption) and the characteristics of
the target GPU device.
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1. INTRODUCTION
Graphic Processing Units (GPUs) have become increas-

ingly used as general-purpose accelerators thanks to their
computational power and programmability. Besides provid-
ing high performance, they also achieve excellent energy ef-
ficiency [12]. This makes them well suited to a variety of ar-
chitectures, ranging from supercomputers to low-power and
mobile devices [1].

On the other hand, the large number of operating hard-
ware resources (e.g., cores and register files) employed in
GPUs to support the massive parallelism can lead to a sig-
nificant power consumption. The elevated levels of power
consumption have a sensible impact on such many-core de-
vice reliability, ageing, performance scaling and deployment
into a wide range of application domains. Different tech-
niques have been proposed to manage the high levels of
power dissipation and to continue scaling performance and
energy. They include approaches based on dynamic volt-
age/frequency scaling (DVFS) [7], CPU-GPU work divi-
sion [10], architecture-level/runtime adaptations [19], dy-
namic resource allocation [6], and application-specific (i.e.,
programming-level) optimizations [22]. Particularly in this
last category, it has been observed that source-code-level
transformations and application specific optimizations can
significantly affect the GPU resource utilization, performance,
and energy efficiency [17].

In this context, even though profiling tools (e.g., CUDA
nvprof ) exist to help programmers in the application anal-
ysis and optimization targeting performance, they do not
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fig. 1: Overview of the proposed approach.

provide a complete view of the GPU features (especially on
power consumption and energy efficiency) neither they pro-
vide a correlation among these design constraints. What
is missing is a solution to measure, on a given GPU archi-
tecture, the potential effects of code optimizations on every
design constraint before implementing them.

To overcome this limitation, this paper presents a suite of
microbenchmarks, which aims at characterizing a GPU de-
vice in terms of performance, power, and energy consump-
tion. The microbenchmark suite has been designed to be
compiled and run on any CUDA GPU device, with the aim
of quantitatively characterizing, statically and dynamically,
all the functional components of the device. The functional
components include arithmetic instruction units, memories
(shared, cache, DRAM, constant), scheduling and synchro-
nization units.

Fig. 1 shows how the proposed microbenchmarking can
be combined with the standard profiling for a power-aware
performance tuning of GPU applications. Given a GPU ap-
plication, the standard profiling information allows defining
a set of potential optimizations targeting performance. The
microbenchmarks are run once for all in the target GPU
device. By considering the functional components involved
by an optimization strategy, the microbenchmark results on
such components allow classifying the potential and the use-
less optimization strategies for the target design constraint
before implementing them. The model allows the flow to be
iterated for incremental tuning of the application.

The suite has been applied to characterize two different
GPU devices (i.e., NVIDIA Kepler GTX660 and Maxwell
GXT980), which are representative of the respective archi-
tectures, and to efficiently guide the tuning of two represen-
tative and widely used parallel applications.

The paper is organized as follows. Section 2 presents the
related work. Section 3 presents the suite and how it is
used to characterize a given device. Section 4 reports the
experimental results, while Section 5 draws the conclusions.

2. RELATED WORK
Different papers have been presented to evaluate func-
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tional and architectural characteristics of GPUs through mi-
crobenchmarking. Wong et al. [20] developed a microbench-
mark suite to measure the CUDA-visible architectural char-
acteristics of the NVIDIA GTX280 GPU. Such a measure
includes some undisclosed characteristics of the processing
elements and memory hierarchy.

Nishikawa et al. [13] evaluated the throughput and power
efficiency of three 128-bit block ciphers (AES, Camellia,
and SC2000) on an NVIDIA Kepler GTX680 and on AMD
Radeon GCN HD7970. They compared such features with
those provided by an NVIDIA GTX580 and AMD Radeon
HD6770, whose architectures are one generation older. Yan
et al. [21] proposed an OpenCL microbenchmark suite for
GPUs and CPUs. They evaluated the performance charac-
teristics of several components, such as, bus (bandwidth),
memories, branch and thread scheduling on both a multi-
core X86 CPU and on different NVIDIA GPUs.

Fang et al. [4] proposed a microbenchmarking methodol-
ogy based on short elapsed-time events (SETEs) to obtain
memory microarchitectural details in multi- and many-core
architectures. The methodology allows analysing, besides
traditional cache/memory latency and off-chip bandwidth,
the details of SW and HW prefetching units. Mei et al. [11]
proposed a fine-grained benchmarking approach and they
applied it on two popular GPUs (NVIDIA Fermi and Ke-
pler) to expose previously unknown characteristics of the
memory hierarchies.

Thoman et al. [18] proposed a suite of OpenCL mi-
crobenchmarks, which allows measuring functional charac-
teristics of both GPUs and CPUs. Lemeire et al. [8] pre-
sented the most complete and comprehensive set of mi-
crobenhmarks among those proposed in literature, for both
computational units and memory analysis.

Nevertheless, all these approaches have three main limi-
tations. First, they are limited to static characteristics of
GPUs. Indeed, as explained in Section 3, also the dynamic
characteristics of a GPU are essential to understand how
application bottlenecks involving selected functional compo-
nents or underutilization of them can affect the code quality.
Second, they do not cover all the functional components of
the GPU devices. Third, they are sensitive to the compila-
tion phase, which often makes the generated low-level code
very inaccurate in measuring the GPU characteristics.

In this work, we focus on CUDA GPU microbenchmark-
ing. OpenCL microbenchmarks (e.g., [18]) allow flexibility
for computation on heterogeneous systems, but they cannot
guarantee completeness and accuracy since such a program-
ming model does not provide routines to directly interface
with the low level features of the supported devices.

3. THE MICROBENCHMARK SUITE
A microbenchmark is a GPU kernel that exercises a spe-

cific functional component of the device and whose instruc-
tions can be evaluated at a clock-cycle accuracy. A mi-
crobenchmark main procedure consists of a long sequence of
one or more selected instructions (e.g., arithmetic instruc-
tions, memory accesses) that executes without any inter-
ference deriving from other instructions. Each microbench-
mark selectively stresses a functional component without or
minimally affecting the others to provide reliable and accu-
rate feedback. To do that, we implemented the microbench-
marks by combining common CUDA C/C++ language with
inline intermediate assembly to avoid compiler side-effects.

The PTX language has been exploited to force a specific
operation on a data type, to avoid compiler optimizations
(which cannot be avoided by simply setting compiler flags
like -O0 in both C/C++ and PTX compilation), to prevent
caching/local-storage mechanisms, and to restrict the mem-
ory access space.

Tables 1 and 2 summarize the GPU components and the
corresponding low-level instructions statically and dynami-
cally exercised by the proposed suite. The tables compare
the completeness and the accuracy of the suite with the best
and more complete suites at the state of the art (i.e., [8, 18]).
The accuracy is essential for a correct characterization of
the timing features of a GPU component, and even more to

Componet Benchmark Instructions Thoman et al.
[18]

Lemeire et
al. [8]

ALU
32-bit Integer
Simple

add, sub 7 X(ND)

ALU
32-bit Integer
Complex

mul 7 X(ND)

ALU
32-bit Integer Bit
operations

clz, mbs, brev,

bfi, bfe
7 7

ALU 32-bit Integer Shift shl, shr 7 7

ALU
32-bit Integer Pop.
count

popc 7 7

ALU
32-bit Integer
Remainder

rem 7 7

ALU
64-bit Integer
Simple

add, sub 7 7

FPU 32-bit FP Simple add, sub, mul X(74.0%) X(ND)

FPU 32-bit FP Complex
div, div.ftz,

div.approx,

div.approx.ftz
X(85.8%) X(ND)

SFU
32-bit FP
Transcendental op.

sin, cos, exp,

rsqrt, rcp, log
X(45.4%) X(ND)

DFU 64-bit FP Simple add, sub X(74.1%) X(ND)

DRAM DRAM load, store 7 X(ND)

L2 L2 load, store 7 X(ND)
L1/Shared
mem.

Shared memory load, store 7 X(ND)

Constant

mem.
Constant memory load, store 7 X(ND)

Table 1: Microbenchmarks for static characteristics

Componet Benchmark Thoman et al.
[18]

Lemeire et al.
[8]

ALU Loop unrolling 7 7
ALU ILP 7 7
DRAM Coalescence 7 7
DRAM Access size 7 7
Shared memory Bank conflicts 7 7
Streaming Multi-
processor

Device occupancy
(SM)

7 7

SM scheduler
Device synchro-
nization

7 7

SM scheduler Thread divergence 7 7

Table 2: Microbenchmarks for dynamic characteristics

understand how a generic application can affect power and
energy consumption of such a component. The accuracy is
measured as the number of useful (”pure”) instructions for a
given component microbenchmarking over the total number
of the microbenchmark instructions. Each microbenchmark
of the proposed suite reaches an accuracy value equal to
99.99%. Such an accuracy is not reached by the counter-
parts (as reported in brackets). We derived the accuracy
of the suite proposed by [8] experimentally (see Section 4),
since the suite is not released with the source code.

3.1 GPU static characteristics
The suite allows analysing the peak characteristics of the

arithmetic and memory components of the GPU by applying
extensive workloads on them. The arithmetic microbench-
marks target the complete set of arithmetic instructions na-
tively supported by the GPU, by distinguishing between in-
teger and floating-point over 32 and 64-bit word sizes. The
memory microbenchmarks give information on the through-
put (bandwidth) of DRAM, L1/shared, constant, and L2
cache memories. The DRAM microbenchmark executes sev-
eral accesses at different memory locations with a stride of
128 bytes between grid threads to avoid L1 cache interfer-
ences. The L2 microbenchmark repeats a compile-time se-
quence of store instructions on the same memory address.
We used cache modifiers [14] to avoid L1 cache hits in the
store operations. Shared and constant memory microbench-
marks consist of a sequence of store/load instructions.

3.2 GPU dynamic characteristics
The suite includes dynamic microbenchmarks, which anal-

yse the dynamic characteristics of the device by exercising
the functional components with different intensity.

The memory microbenchmarks analyse how the mem-
ory access pattern of threads affects the memory through-
put. This includes memory coalescence, memory access
size, and bank conflicts involved by the implemented ac-
cess pattern. As an example, the microbenchmark in Fig.
2 measures the impact of global memory coalescence on
the memory throughput. To do that, the microbench-
mark implements different patterns of memory accesses,



device clock t devClocks[resident warps];
device int devTMP;
device volatile int devMemory[size];

templateăint th group sizeą
global Coalescence()

1: int thread group id = global thread id / th group size;
2: int L1 bank offset = thread group id ¨ cache line size;
3: volatile int* pointer = devMemory + L1 bank offset +

(global thread id%th group size);
4: int R1 = threadIdx.x; // assign dynamic value
5: clock t start tm = clock64();
6: InstrSeqăNą(pointer, R1); // call the function N times
7: clock t end tm = clock64();
8: if (lane id ==0) then devClocks[warp id] = end tm - start tm;
9: if (thread id == 1024) then devTMP = R1; // never executed

templateăint Ną // template metaprogramming
device forceinline InstrSeq(volatile int* pointer, int& R1)

1: const int stride = resident warps ¨ cache line size;
2: #pragma unroll // loop unrolling
3: for (int i = 0; i ă 4096; i++) do
4: asm volatile(”ld.volatile.s32 %0, [%1]” : ”=r”(R1) :
5: ”l”(pointer + i * stride) : ”memory”);
6: end
7: InstrSeqăn-1ą(pointer, R1); // recursive call

fig. 2: Example of the microbenchmark code to measure the im-
pact of global memory coalescence.

where each pattern guarantees a different coalescence de-
gree. Considering a base address (devMemory), each thread
calculates the own L1 bank offset through the global iden-
tifier (GLOBAL_THREAD_ID), the size of the L1 cache bank
(CACHE_LINE_SIZE), and through the TH_GROUP_SIZE vari-
able (lines 1, 2 in the upperside of Fig. 2). This al-
lows forcing different thread accesses to be grouped into
the same L1 cache banks and, as a consequence, to group
such thread accesses into coalesced global memory transac-
tions. Then, each thread calculates the final pointer through
base address, L1 bank offset, and thread offset in the bank.
Fig. 3 shows an example, which underlines how grouping
threads into coalesced transactions is parametrized through
the TH_GROUP_SIZE variable. The microbenchmark dynami-
cally sets such a variable to control the coalescence degree.

The code implements volatile quantifiers (devMemory def-
inition and line 3 in the upper side of Fig. 2). This al-
lows avoiding local-storage optimizations by the compiler,
which may change the coalescence degree forced by the pro-
posed strategy. The code adopts recursive and template-
based meta-programming to generate an arbitrarily long se-
quence of arithmetic instructions (N ˆ 4, 096 store instruc-
tions in the example). This allows improving the accuracy of
the functional characteristics measurement. In the bottom
side of Fig. 2, the STRIDE variable represents the minimum
value of memory address offset that allows preventing false
positive L1 cache hits. Such an offset guarantees that any
thread cannot calculate the same pointer in two different
loop iterations. Both the STRIDE and the global memory
offsets (i¨STRIDE) are computed at compile time to guaran-
tee that the measured memory throughput is not distorted
by such value computation.

The arithmetic microbenchmarks analyse the dynamic
characteristics of the GPU computational units over two
optimization aspects: unrolling and instruction-level par-
allelism (ILP). The unrolling microbenchmark iteratively
executes a chunck of code in a loop, where the loop iter-
ations/loop unrollings are set dynamically and increasingly
from the minimum to the maximum. The microbenchmark
returns the effect of eliminating conditional statements in
terms of performance and power. The ILP microbenchmark
executes a sequence of unrelated instructions, where the se-
quence length is set dynamically and incrementally.

The suite includes the shared memory microbenchmark,
which generates a different amount of bank conflicts, from
zero to the maximum value. The access size microbench-
mark copies one large array into another multiple times by
varying, at each iteration, the size of the data block.

The thread scheduling and synchronization microbench-
marks aim at studying the dynamic behavior of the device
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fig. 3: Controlled memory coalescence

by varying the streaming multiprocessor occupancy and the
degree of thread divergence. They also aim at characteriz-
ing the device by considering the synchronization overhead
caused by thread block barriers over the whole kernel. The
device occupancy (SM) microbenchmark evaluates the con-
tribution of different number of active SMs on the compu-
tation, while the device synchronization one analyses the
impact of synchronization barriers in the code.

3.3 GPU Device Characterization
We run the microbenchmarks on an NVIDIA GeForce

GTX660 and on a GTX980, which are representative of the
Kepler and Maxwell architectures, respectively.

The devices have been evaluated with CUDA Toolkit 7.5,
AMD Phenom II X6 1055T (3GHz) host processor, and
Ubuntu 14.04 operating system. The proposed suite is inde-
pendent from the specific CUDA-enabled GPU device and
from the adopted CUDA Toolkit version.

Performance information has been collected through the
CUDA runtime API to measure the execution time and
through the clock64() device instruction for throughput
values to ensure clock-cycle accuracy of time measurements.

Power and energy consumption information has been col-
lected through the Powermon2 power monitoring device [2].
The analysis has been performed with the default GPU fre-
quency setting and by disabling any PCI/GPU adaptive fre-
quency or thermal throttling mechanisms (i.e., GPUBoost).

Table 3 reports the results obtained by running the static
microbenchmarks on the GTX980 device. For the sake
of space and without loss of generality, we do not report
the static characteristics of the GTX660 device, since they
are not necessary for understanding the focus of the paper.
We only report, for the GTX660, the most useful dynamic
benchmarking results.

The static microbenchmarks are organized over columns
and consist of 109 instructions per SM. For each microbench-
mark, the table reports the execution time, the theoretical
peak throughput of the corresponding functional unit pro-
vided in the device specifications [15] (Spec. throughput) and
that measured through the proposed microbenchmark (Real
throughput). The static microbenchmarks measure the max-
imum arithmetic instruction throughput of simple integer
operations (add, sub , etc.), complex integer operations (mul,
mad, etc.), integer population count, shift, remainder, bitwise
(bit insert, bit reverse, etc.), simple single precision floating-
point operations (add, mul, etc.), complex single precision
floating-point operations (transcendental functions such as
sin, rcp, etc.) and double precision floating-point opera-
tions. The device specifications do not include the theoreti-
cal peak throughput of the integer 64-bit and integer 32-bit
remain operation (rem) and integer 32-bit complex operation
since such operations have not an embedded hardware im-
plementation. They are performed through a combination
of different hardware units.

The results of the static microbenchmarking allow under-
standing the microbenchmark accuracy by comparing the
measured throughput with the throughput reported in the



Integer 32-bit
Integer
64-bit

FP 32-bit
FP

64-bit

Simple Complex Pop. Count Shift Bit OP. Rem Simple Simple Special Simple

Execution
Time (ms)

8.6 31.5 29.6 15.5 15.5 965.2 18.8 8.6 32.5 223.9

Spec Throughput
OPs per Cycle per SM

128 n.a. 32 64 64 n.a. n.a. 128 32 4

Real Throughput
OPs per Cycle per SM

116.3
(66.3:)

31.8 32.0 63.4 63.5 1.0 51.6
116.3

(101.3‹)

(104.4:)

29.8
(33.9‹)

4.0 (7.6‹)

(err:)

Avg. Power (W) 75.2 88.2 69.4 70.8 79.1 100.2 80.9 72.2 84.4 76.8

Max Power (W) 86 93 72 77 85 114 88 86 99 88

Energy (J) 0.7 2.8 2.1 1.1 1.2 96.7 1.5 0.6 2.74 17.20

Energy efficiency
MIPS per Watt

26,564 6,190 8,370 15,672 13,995 178 11,269 28,120 6,262 999

nano Joule per
instruction

0.04 0.16 0.12 0.06 0.07 5.63 0.09 0.04 0.16 1.0

Table 3: GTX980 - Characterization of arithmetic instructions (static characteristics).
‹results of Thoman et al.[18], :results of Lemeire et al.[8]

Dram L2 Shared Constant

Exec Time (ms) 9,536.2 2,522.5 847.6 226.4

Real Throughput
(TransˆCycle)ˆSM

0.09
(0.08:)

0.33
(0.14:)

1.02
(0.85:)

4.06
(3.08:)

Avg. power (W) 113.3 105.8 94.1 76.0

Max power (W) 117 112 105 87

Energy (J) 67.54 16.7 5.0 1.1

Energy efficiency
(106Transactions/Watt)

15.8 64.4 215.3 998.0

nano Joule per
mem. transaction

62.9 15.5 4.6 1.0

Table 4: Characteristics of mem. accesses on the GTX980.
:results of Lemeire et al.[8]

device specification.
They also underline the accuracy difference between each

microbenchmark of the proposed suite and the correspond-
ing microbenchmark, when provided, of the best suites at
the state of the art (i.e.,[18, 8]). It is worth noting that
the accuracy of the state of the art microbenchmarks for
simple instructions is very low. This is due to the compiler
activity on the source code (unavoidable even disabling any
optimization flag), which inserts ”spurious” instructions in
the executable code. Such optimizations lead the through-
put measured on the FP instructions to be even higher than
the real throughput

Table 3 also reports information about power and energy
consumption, which is not reported in the device specifica-
tions. The energy efficiency (or performance per watt)[5] is
defined as the number of operations/instructions computed
per second per Watt. We refer to million instructions per
second (MIPS) for arithmetic benchmarks and million of
memory transactions for memory benchmarks. Finally, the
table shows the power consumption (nJ) per single instruc-
tion/memory transaction.

Table 4 reports the results of the static microbenchmarks
on the GPU memories. They allow understanding how the
throughput differs among memories. As an example, an ap-
plication running on the GTX980 accesses the shared mem-
ory 11 times faster than the DRAM (the corresponding mi-
crobenchmarking on the GTX660 reports that the same ap-
plication running on the GTX660 accesses the shared mem-
ory 5 times faster than the DRAM). The DRAM accesses
strongly affect the average and peak power. The constant
memory, which presents the best energy efficiency, is 3.3
times more energy efficient than the L2 cache in the GTX980
(1.5 times in the GTX660). The microbenchmarks of the
state of the art suites (i.e.,[18, 8]) do not allow measuring
power and energy consumption since they are too fast also
for the best sampling frequency available in literature pro-
vided by the Powermon2 device.

Figures 4-6 report some of the dynamic microbenchmark-
ing results (the most relevant for the case study presented

fig. 4: GTX980 DRAM access size

fig. 5: GTX980 thread divergence

in Section 4). Fig. 4 reports the impact of the thread access
size in DRAM, starting from 1-byte to 16-byte blocks per
thread. Increasing the access size sensibly improves both
performance and energy consumption at the cost of slightly
more average and peak power in the GTX980. The results
are proportionately similar in the GTX660.

Fig. 5 reports the analysis of thread divergence. Perfor-
mance and energy consumption linearly improve by moving
from the maximum divergence (1-sized thread groups in the
left) to the minimum divergence (32-sized thread groups in
the right), at the cost of a slight increase of peak power.

Figures 6a and 6b quantify the effect of bank conflicts in
shared memory for both the GTX660 and GTX980. They
underline that the bank conflicts similarly impact on perfor-
mance and energy on the two devices, while they affect av-
erage and peak power in the opposite way. In the GTX660,
average and max power sensibly decrease (up to 20%) by
decreasing the bank conflicts from the maximum (31) to 7.
After that (from 7 to 0) there is no meaningful effect on
them. In the GTX980, there are no meaningful variations
on the power by decreasing the bank conflicts from the max-



(a) GTX660 (b) GTX980
fig. 6: Shared memory bank conflicts

imum to 7, while further reducing the conflicts (from 7 to
0) involves the most sensible power increase. This is due to
the advanced instruction scheduler of the Maxwell architec-
ture that, differently from that in the GTX660, keeps up the
throughput of few or no bank conflicts.

The memory coalescence microbenchmark analyses the
impact of the coalescence in DRAM memory accesses on
the device performance, power, and energy consumption.
The results, which are not reported for the sake of space,
quantitatively show that performance, power, and energy
are linearly proportional to the coalescence degree.

4. EXPERIMENTAL RESULTS
We used the proposed microbenchmarks combined with

the standard profiler information to drive the tuning of two
widespread parallel applications, vector reduction and ma-
trix transpose. Each application tuning has been performed
for both the GTX660 and GTX980 devices.

4.1 Vector Reduction
Vector reduction is one of the most common and impor-

tant application cores in parallel computing. It consists of
performing a binary and associative operation over all ele-
ments of a data vector to obtain a single final value.

We started from the implementation presented in [3],
which applies, as associative operator, the addition to a
vector of integers. Our goal was to generate two distinct
variants of the original code, the first (branch 1) targeting
a lower peak power, the second (branch 2) targeting perfor-
mance speedup.

For the first branch, the best code optimization we iden-
tified to lower the peak power without losing performance
was reimplementing the following code pattern to control
the thread execution paths:

if (threadIdx.x % (2 * stride) == 0)
Mem[threadIdx.x]+=Mem[threadIdx.x+stride];

The idea was to replace the rem PTX operations used in
the original code with add and mul PTX operations (see Ta-
ble 3 for the peak power comparison among such arithmetic
instructions). On the other hand, the identified modification
potentially reduces the thread divergence, since it forces only
the neighbouring threads to compute the reduction body
(second line of the code above). However, by analysing the
microbenchmark results on the thread divergence (Fig. 5
for the GTX980, and similar for the GTX660), we expected
no meaningful increase of peak power as a side-effect of any
thread divergence reduction.

According to the results of such an analysis, we expected
slightly higher performance and much lower peak power in
this code version w.r.t. the original code in both the de-
vices. We also expected a stronger peak power reduction
and a lower speedup in the GTX660 while a weaker power
reduction and a higher speedup in the GTX980, as then con-
firmed by the results (-24% peak power and 1.4x speedup in
GTX660, -20% peak power and 2.1x speedup in GTX980).
Table 5 summarizes the obtained results and reports, for
each code version, the used profiler metrics, the most rele-
vant features that characterize the code, the analysed mi-

crobenchmarks, the execution time, the average and peak
power, and the energy consumption.

In the other optimization branch (v2.x) we identified a
different memory access strategy [9], which allows apply-
ing a variety of memory access sizes in the application. We
thus analysed the microbenchmark results on the memory
access sizes (Fig. 4) and observed that increasing the ac-
cess size can lead to a sensible performance improvement
with no meaningful side-effects on peak power. We applied
the technique proposed in [15] to cast the inputs to a data
type of larger size, thus forcing vectorized memory accesses.
The technique improved both the performance and the peak
power w.r.t. the original code and, as expected, the increas-
ing of memory access size led to a further speedup with no
significant power increase in both the devices.

4.2 Matrix Transpose
We analyzed the matrix transpose implementation pro-

vided in [16] and, by considering the profiling information,
we identified two optimization branches targeting memory
coalescence for global memory accesses and bank conflict
reduction for shared memory accesses, respectively. Coa-
lescence and memory access pattern are two of the most
important factors to be considered in the tuning phase of
any GPU application, especially if the application, like the
matrix transpose, is memory-bound.

In particular, the memory coalescence optimization allows
sensibly improving the performance speedup, while the bank
conflict reductions allows tuning the tradeoff between per-
formance and peak power (see Fig. 6).

By combining the profiling information of the original
code, which underlined a low global memory accesses effi-
ciency (global_mem_eff=0.125) and the dynamic character-
istics of the memory coalescence provided by the correspond-
ing microbenchmark, we expected, for the first branch, an
increase of both performance speedup and peak power pro-
portional to the memory coalescence improvement on both
the devices. We thus optimized the memory coalescence by
re-organizing the thread block configuration in v1.0. Ta-
ble 6 shows the results, which confirm the expected positive
speedup at the cost of a higher peak power (5.6x speedup
and +10% peak power in GTX660, 2.1x speedup and +12%
peak power in GTX980).

In the other branch (v2.x), we identified a different mem-
ory access pattern, which allows taking advantage of the
shared memory to locally transpose a tile of the whole ma-
trix and to optimize the memory load/store operations of
the matrix elements. The implementation of such an opti-
mization (v2.1) provided a further tuning opportunity, since
the profiling of such a code version indicated bad access
patterns in shared memory. This was underlined by a low
value of shared_mem_eff1, which involves a waste of the
memory bandwidth. By analysing the results of the mi-

1A value of shared_mem_eff equal to 6% corresponds to 31
bank conflicts in the shared memory microbenchmark (see
Figs. 6a,6b):

1 access
total accesses“32

¨
smem bank size“8byte

data size“4byte
“ 6%.



GTX660 GTX980

Opt.
branch

Ver.
Profiler metrics and

features
Related

microbenchmark

Exec.
time
(ms)

Avg.
power
(W)

Peak
power
(W)

Energy
(J)

Exec.
time
(ms)

Avg.
power
(W)

Peak
power
(W)

Energy
(J)

- orig.
inst_per_warp“ 347
integer rem

- 260.8 83.2 101 21.7 108.7 165.3 169 17.9

1 v1.0 inst_per_warp“ 130
Divergence
Arith. throughput

184.7 73.7 77 13.6 52.6 167.5 135 6.7

2
v2.0 gmem_throughput=75GB/s (GTX660)

gmem_throughput=145GB/s (GTX980)
Access size 37.4 77.7 82 2.9 17.2 132.2 151 2.1

v2.1 gmem_throughput=111GB/s (GTX660)
gmem_throughput=165GB/s (GTX980)

Access size 23.2 77.1 85 1.7 15.2 133.5 153 1.6

Table 5: Vector reduction characteristics on GTX660 and GTX980 devices.

GTX660 GTX980

Opt.
branch

ID
Profiler metrics and

features
Related

microbenchmark

Exec.
time
(ms)

Avg.
power
(W)

Peak
power
(W)

Energy
(J)

Exec.
time
(ms)

Avg.
power
(W)

Peak
power
(W)

Energy
(J)

- orig.
global_mem_eff“ 0.125
ipc“ 0.3 (GTX660)
ipc“ 0.4 (GTX980)

- 52.2 75.0 79 3.9 55.8 86.5 92 4.8

1 v1.0
global_mem_eff“ 0.5
ipc“ 0.6 (GTX660)
ipc“ 0.6 (GTX980)

DRAM
Coalescence

9.3 69.3 87 0.6 26.8 94.2 103 2.5

2
v2.0 shared_mem_eff“ 6% Bank conflicts 10.4 69.5 81 0.7 16.3 90.8 97 1.4
v2.1 shared_mem_eff“ 100% Bank conflicts 6.3 61.4 74 0.4 10.4 90.2 105 0.9

Table 6: Matrix transpose characteristics on the GTX660 and GTX980 devices.

crobenchmarks on the bank conflicts (Figs. 6a and 6b), we
expected, as a consequence of solving such a bottleneck, an
improvement on both performance and peak power in the
GTX660. We thus applied the memory padding technique
[16] to reduce the bank conflicts, which led to 8.3x speedup
and -5% peak power w.r.t the original version. As suggested
by the microbenchmarks, we would not have applied such a
time consuming optimization to reduce the peak power in
the GTX980. The uselessness of such an optimization on
the GTX980 has been then confirmed by the experimental
results (+14% peak power w.r.t. the original version).

5. CONCLUSIONS
This paper presented a suite of microbenchmarks to stat-

ically and dynamically characterize GPU devices in terms
of performance, power, and energy consumption. The paper
showed how the microbenchmark results can been combined
with the standard profiler information to efficiently tune any
parallel application for a given GPU device and for a given
design constraint (performance speedup or peak power re-
duction). Experimental results have been conducted on two
widespread parallel applications for two representative GPU
devices. They showed how the proposed microbenchmarking
can improve the efficiency of the tuning task by identifying
the potential from the useless optimization strategies before
implementing them.
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