56 research outputs found

    Hybrid ACO and SVM algorithm for pattern classification

    Get PDF
    Ant Colony Optimization (ACO) is a metaheuristic algorithm that can be used to solve a variety of combinatorial optimization problems. A new direction for ACO is to optimize continuous and mixed (discrete and continuous) variables. Support Vector Machine (SVM) is a pattern classification approach originated from statistical approaches. However, SVM suffers two main problems which include feature subset selection and parameter tuning. Most approaches related to tuning SVM parameters discretize the continuous value of the parameters which will give a negative effect on the classification performance. This study presents four algorithms for tuning the SVM parameters and selecting feature subset which improved SVM classification accuracy with smaller size of feature subset. This is achieved by performing the SVM parameters’ tuning and feature subset selection processes simultaneously. Hybridization algorithms between ACO and SVM techniques were proposed. The first two algorithms, ACOR-SVM and IACOR-SVM, tune the SVM parameters while the second two algorithms, ACOMV-R-SVM and IACOMV-R-SVM, tune the SVM parameters and select the feature subset simultaneously. Ten benchmark datasets from University of California, Irvine, were used in the experiments to validate the performance of the proposed algorithms. Experimental results obtained from the proposed algorithms are better when compared with other approaches in terms of classification accuracy and size of the feature subset. The average classification accuracies for the ACOR-SVM, IACOR-SVM, ACOMV-R and IACOMV-R algorithms are 94.73%, 95.86%, 97.37% and 98.1% respectively. The average size of feature subset is eight for the ACOR-SVM and IACOR-SVM algorithms and four for the ACOMV-R and IACOMV-R algorithms. This study contributes to a new direction for ACO that can deal with continuous and mixed-variable ACO

    Investigations on Incipient Fault Diagnosis of Power Transformer Using Neural Networks and Adaptive Neurofuzzy Inference System

    Get PDF
    Continuity of power supply is of utmost importance to the consumers and is only possible by coordination and reliable operation of power system components. Power transformer is such a prime equipment of the transmission and distribution system and needs to be continuously monitored for its well-being. Since ratio methods cannot provide correct diagnosis due to the borderline problems and the probability of existence of multiple faults, artificial intelligence could be the best approach. Dissolved gas analysis (DGA) interpretation may provide an insight into the developing incipient faults and is adopted as the preliminary diagnosis tool. In the proposed work, a comparison of the diagnosis ability of backpropagation (BP), radial basis function (RBF) neural network, and adaptive neurofuzzy inference system (ANFIS) has been investigated and the diagnosis results in terms of error measure, accuracy, network training time, and number of iterations are presented

    Applicability and Interpretability of Logical Analysis of Data in Condition Based Maintenance

    Get PDF
    Résumé Cette thèse étudie l’applicabilité et l’adaptabilité d’une approche d’exploration de données basée sur l’intelligence artificielle proposée dans [Hammer, 1986] et appelée analyse logique de données (LAD) aux applications diagnostiques dans le domaine de la maintenance conditionnelle CBM). La plupart des technologies utilisées à ce jour pour la prise de décision dans la maintenance conditionnelle ont tendance à automatiser le processus de diagnostic, sans offrir aucune connaissance ajoutée qui pourrait être utile à l’opération de maintenance et au personnel de maintenance. Par comparaison à d’autres techniques de prise de décision dans le domaine de la CBM, la LAD possède deux avantages majeurs : (1) il s’agit d’une approche non statistique, donc les données n’ont pas à satisfaire des suppositions statistiques et (2) elle génère des formes interprétables qui pourraient aider à résoudre les problèmes de maintenance. Une étude sur l’application de la LAD dans la maintenance conditionnelle est présentée dans cette recherche dont l’objectif est (1) d’étudier l’applicabilité de la LAD dans des situations différentes qui nécessitent des considérations particulières concernant les types de données d’entrée et les décisions de maintenance, (2) d’adapter la méthode LAD aux exigences particulières qui se posent à partir de ces applications et (3) d’améliorer la méthodologie LAD afin d’augmenter l’exactitude de diagnostic et d’interprétation de résultats. Les aspects innovants de la recherche présentés dans cette thèse sont (1) l’application de la LAD dans la CBM pour la première fois dans des applications qui bénéficient des propriétés uniques de cette technologie et (2) les modifications innovatrices de la méthodologie de la LAD, en particulier dans le domaine de la génération des formes, afin d’améliorer ses performances dans le cadre de la CBM et dans le domaine de classification multiclasses. La recherche menée dans cette thèse a suivi une approche évolutive afin d’atteindre les objectifs énoncés ci-dessus. La LAD a été utilisée et adaptée à trois applications : (1) la détection des composants malveillants (Rogue) dans l’inventaire de pièces de rechange réparables d’une compagnie aérienne commerciale, (2) la détection et l’identification des défauts dans les transformateurs de puissance en utilisant la DGA et (3) la détection des défauts dans les rotors en utilisant des signaux de vibration. Cette recherche conclut que la LAD est une approche de prise de décision prometteuse qui ajoute d’importants avantages à la mise en oeuvre de la CBM dans l’industrie.----------Abstract This thesis studies the applicability and adaptability of a data mining artificial intelligence approach called Logical Analysis of Data (LAD) to diagnostic applications in Condition Based Maintenance (CBM). Most of the technologies used so far for decision support in CBM tend to automate the diagnostic process without offering any added knowledge that could be helpful to the maintenance operation and maintenance personnel. LAD possesses two key advantages over other decision making technologies used in CBM: (1) it is a non-statistical approach; as such no statistical assumptions are required for the input data, and (2) it generates interpretable patterns that could help solve maintenance problems. A study on the implementation of LAD in CBM is presented in this research whose objective are to study the applicability of LAD in different CBM situations requiring special considerations regarding the types of input data and maintenance decisions, adapt the LAD methodology to the particular requirements that arise from these applications, and improve the LAD methodology in line with the above two objectives in order to increase diagnosis accuracy and result interpretability. The novelty of the research presented in this thesis is (1) the application of LAD to CBM for the first time in applications that stand to benefit from the advantages that this technology provides; and (2) the innovative modifications to LAD methodology, particularly in the area of pattern generation, in order to improve its performance within the context of CBM. The research conducted in this thesis followed an evolutionary approach in order to achieve the objectives stated in the Introduction. The research applied LAD in three applications: (1) the detection of Rogue components within the spare part inventory of reparable components in a commercial airline company, (2) the detection and identification of faults in power transformers using DGA, and (3) the detection of faults in rotor bearings using vibration signals. This research concludes that LAD is a promising decision making approach that adds important benefits to the implementation of CBM in the industry

    Investigation of data centric diagnostic techniques for transformer condition assessment

    Get PDF

    Assessment of monthly rain fade in the equatorial region at C & KU-band using measat-3 satellite links

    Get PDF
    C & Ku-band satellite communication links are the most commonly used for equatorial satellite communication links. Severe rainfall rate in equatorial regions can cause a large rain attenuation in real compared to the prediction. ITU-R P. 618 standards are commonly used to predict satellite rain fade in designing satellite communication network. However, the prediction of ITU-R is still found to be inaccurate hence hinder a reliable operational satellite communication link in equatorial region. This paper aims to provide an accurate insight by assessment of the monthly C & Ku-band rain fade performance by collecting data from commercial earth stations using C band and Ku-band antenna with 11 m and 13 m diameter respectively. The antennas measure the C & Ku-band beacon signal from MEASAT-3 under equatorial rain conditions. The data is collected for one year in 2015. The monthly cumulative distribution function is developed based on the 1-year data. RMSE analysis is made by comparing the monthly measured data of C-band and Ku-band to the ITU-R predictions developed based on ITU-R’s P.618, P.837, P.838 and P.839 standards. The findings show that Ku-band produces an average of 25 RMSE value while the C-band rain attenuation produces an average of 2 RMSE value. Therefore, the ITU-R model still under predicts the rain attenuation in the equatorial region and this call for revisit of the fundamental quantity in determining the rain fade for rain attenuation to be re-evaluated

    Effective Fault Diagnosis in Chemical Plants By Integrating Multiple Methodologies

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Investigating evolutionary computation with smart mutation for three types of Economic Load Dispatch optimisation problem

    Get PDF
    The Economic Load Dispatch (ELD) problem is an optimisation task concerned with how electricity generating stations can meet their customers’ demands while minimising under/over-generation, and minimising the operational costs of running the generating units. In the conventional or Static Economic Load Dispatch (SELD), an optimal solution is sought in terms of how much power to produce from each of the individual generating units at the power station, while meeting (predicted) customers’ load demands. With the inclusion of a more realistic dynamic view of demand over time and associated constraints, the Dynamic Economic Load Dispatch (DELD) problem is an extension of the SELD, and aims at determining the optimal power generation schedule on a regular basis, revising the power system configuration (subject to constraints) at intervals during the day as demand patterns change. Both the SELD and DELD have been investigated in the recent literature with modern heuristic optimisation approaches providing excellent results in comparison with classical techniques. However, these problems are defined under the assumption of a regulated electricity market, where utilities tend to share their generating resources so as to minimise the total cost of supplying the demanded load. Currently, the electricity distribution scene is progressing towards a restructured, liberalised and competitive market. In this market the utility companies are privatised, and naturally compete with each other to increase their profits, while they also engage in bidding transactions with their customers. This formulation is referred to as: Bid-Based Dynamic Economic Load Dispatch (BBDELD). This thesis proposes a Smart Evolutionary Algorithm (SEA), which combines a standard evolutionary algorithm with a “smart mutation” approach. The so-called ‘smart’ mutation operator focuses mutation on genes contributing most to costs and penalty violations, while obeying operational constraints. We develop specialised versions of SEA for each of the SELD, DELD and BBDELD problems, and show that this approach is superior to previously published approaches in each case. The thesis also applies the approach to a new case study relevant to Nigerian electricity deregulation. Results on this case study indicate that our SEA is able to deal with larger scale energy optimisation tasks
    corecore