107 research outputs found

    Multilevel SVM and AI based Transformer Fault Diagnosis using the DGA Data

    Get PDF
    The Dissolved Gas Analysis (DGA) is utilized as a test for the detection of incipient prob-lems in transformers, and condition monitoring of transformers using software-based diagnosis tools has become crucial. This research uses dissolved gas analysis as an intel-ligent fault classification of a transformer. The Multilayer SVM technique is used to de-termine the classification of faults and the name of the gas. The learned classifier in the multilayer SVM is trained with the training samples and can classify the state as normal or fault state, which contains six fault categories. In this paper, polynomial and Gaussi-an functions are utilized to assess the effectiveness of SVM diagnosis. The results demonstrate that the combination ratios and graphical representation technique is more suitable as a gas signature, and that the SVM with the Gaussian function outperforms the other kernel functions in diagnosis accuracy

    Power transformer dissolved gas analysis through Bayesian networks and hypothesis testing

    Get PDF
    Accurate diagnosis of power transformers is critical for the reliable and cost-effective operation of the power grid. Presently there are a range of methods and analytical models for transformer fault diagnosis based on dissolved gas analysis. However, these methods give conflicting results and they are not able to generate uncertainty information associated with the diagnostics outcome. In this situation it is not always clear which model is the most accurate. This paper presents a novel multiclass probabilistic diagnosis framework for dissolved gas analysis based on Bayesian networks and hypothesis testing. Bayesian network models embed expert knowledge, learn patterns from data and infer the uncertainty associated with the diagnostics outcome, and hypothesis testing aids in the data selection process. The effectiveness of the proposed framework is validated using the IEC TC 10 dataset and is shown to have a maximum diagnosis accuracy of 88.9%

    Comparison of two classifiers; K-nearest neighbor and artificial neural network, for fault diagnosis on a main engine journal-bearing,”

    Get PDF
    Abstract. Vibration analysis is an accepted method in condition monitoring of machines, since it can provide useful and reliable information about machine working condition. This paper surveys a new scheme for fault diagnosis of main journal-bearings of internal combustion (IC) engine based on power spectral density (PSD) technique and two classifiers, namely, K-nearest neighbor (KNN) and artificial neural network (ANN). Vibration signals for three different conditions of journal-bearing; normal, with oil starvation condition and extreme wear fault were acquired from an IC engine. PSD was applied to process the vibration signals. Thirty features were extracted from the PSD values of signals as a feature source for fault diagnosis. KNN and ANN were trained by training data set and then used as diagnostic classifiers. Variable K value and hidden neuron count (N) were used in the range of 1 to 20, with a step size of 1 for KNN and ANN to gain the best classification results. The roles of PSD, KNN and ANN techniques were studied. From the results, it is shown that the performance of ANN is better than KNN. The experimental results dèmonstrate that the proposed diagnostic method can reliably separate different fault conditions in main journal-bearings of IC engine

    Data-driven Fault Diagnosis of Power Transformers using Dissolved Gas Analysis (DGA)

    Get PDF
    A power transformer is a critical piece of equipment in a power plant for distributing electricity, and it experiences thermal and electrical stresses during operation. Dissolved gas analysis (DGA) remains one of the most effective techniques to monitor the health of oil-filled transformers. Some traditional approaches for interpreting DGAs have been introduced. Occasionally, such approaches leave the state of the transformer uncategorized. This study proposed data-driven approaches for a fault diagnosis system based on DGA data using support vector machine (SVM). SVM is known for its robustness, good generalization capability, and unique global optimum solutions, particularly when data is limited. Backpropagation neural networks (BPNN) and extreme learning machine-radial basis function (ELM-RBF), a recent Neural Networks (NN)-based method with extremely fast computation time, were compared to SVM. An advanced technique to overcome the imbalanced data and synthetic minority oversampling technique (SMOTE) was proposed to investigate the effect on classifier performance. The model was trained and tested using IEC TC 10 databases and transformer DGA monitoring data of a thermal power plant in Jakarta. The results indicated that SVM displayed the best performance compared to ELM-RBF and BPNN. It demonstrated extremely high accuracy, while still maintaining fast computation time for all stages in the proposed multistage fault diagnosis system

    Investigation of data centric diagnostic techniques for transformer condition assessment

    Get PDF

    Improved power transformer condition monitoring under uncertainty through soft computing and probabilistic health index

    Get PDF
    Condition monitoring of power transformers is crucial for the reliable and cost-effective operation of the power grid. The health index (HI) formulation is a pragmatic approach to combine multiple information sources and generate a consistent health state indicator for asset management planning. Generally, existing transformer HI methods are based on expert knowledge or data-driven models of specific transformer subsystems. However, the effect of uncertainty is not considered when integrating expert knowledge and data-driven models for the system-levelHI estimation. With the increased dynamic and non-deterministic engineering problems, the sources of uncertainty are increasing across power and energy applications, e.g. electric vehicles with new dynamic loads or nuclear power plants with de-energized periods, and transformer health assessment under uncertainty is becoming critical for accurate condition monitoring. In this context, this paper presents a novel soft computing driven probabilistic HI framework for transformer health monitoring. The approach encapsulates data analytics and expert knowledge along with different sources of uncertainty and infers a transformer HI value with confidence intervals for decision-making under uncertainty. Using real data from a nuclear power plant, the proposed framework is compared with traditional HI implementations and results confirm the validity of the approach for transformer health assessment

    Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012

    Full text link

    λΉ„ν‘œμ§€ κ³ μž₯ 데이터와 μœ μ€‘κ°€μŠ€λΆ„μ„λ°μ΄ν„°λ₯Ό μ΄μš©ν•œ λ”₯λŸ¬λ‹κΈ°λ°˜ μ£Όλ³€μ••κΈ° κ³ μž₯진단 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 기계항곡곡학뢀, 2021.8. μ†Œμž¬μ›….μ˜€λŠ˜λ‚  μ‚°μ—…μ˜ κΈ‰μ†ν•œ λ°œμ „κ³Ό κ³ λ„ν™”λ‘œ 인해 μ•ˆμ „ν•˜κ³  μ‹ λ’°ν•  수 μžˆλŠ” μ „λ ₯ 계톡에 λŒ€ν•œ μˆ˜μš”λŠ” λ”μš± μ€‘μš”ν•΄μ§€κ³  μžˆλ‹€. λ”°λΌμ„œ μ‹€μ œ μ‚°μ—… ν˜„μž₯μ—μ„œλŠ” μ£Όλ³€μ••κΈ°μ˜ μ•ˆμ „ν•œ μž‘λ™μ„ μœ„ν•΄ μƒνƒœλ₯Ό μ •ν™•ν•˜κ²Œ 진단할 수 μžˆλŠ” prognostics and health management (PHM)와 같은 기술이 ν•„μš”ν•˜λ‹€. μ£Όλ³€μ••κΈ° 진단을 μœ„ν•΄ 개발된 λ‹€μ–‘ν•œ 방법 쀑 인곡지λŠ₯(AI) 기반 접근법은 μ‚°μ—…κ³Ό ν•™κ³„μ—μ„œ λ§Žμ€ 관심을 λ°›κ³  μžˆλ‹€. λ”μš±μ΄ λ°©λŒ€ν•œ 데이터와 ν•¨κ»˜ 높은 μ„±λŠ₯을 λ‹¬μ„±ν•˜λŠ” λ”₯ λŸ¬λ‹ κΈ°μˆ μ€ μ£Όλ³€μ••κΈ° κ³ μž₯ μ§„λ‹¨μ˜ ν•™μžλ“€μ—κ²Œ 높은 관심을 κ°–κ²Œ 해쀬닀. κ·Έ μ΄μœ λŠ” λ”₯ λŸ¬λ‹ 기술이 μ‹œμŠ€ν…œμ˜ 도메인 지식을 깊이 이해할 ν•„μš” 없이 λŒ€λŸ‰μ˜ λ°μ΄ν„°λ§Œ 주어진닀면 λ³΅μž‘ν•œ μ‹œμŠ€ν…œμ΄λΌλ„ μ‚¬μš©μžμ˜ λͺ©μ μ— 맞게 κ·Έ 해닡을 찾을 수 있기 λ•Œλ¬Έμ— λ”₯ λŸ¬λ‹μ— λŒ€ν•œ 관심은 μ£Όλ³€μ••κΈ° κ³ μž₯ 진단 λΆ„μ•Όμ—μ„œ 특히 λ‘λ“œλŸ¬μ‘Œλ‹€. κ·ΈλŸ¬λ‚˜, μ΄λŸ¬ν•œ λ›°μ–΄λ‚œ 진단 μ„±λŠ₯은 아직 μ‹€μ œ μ£Όλ³€μ••κΈ° μ‚°μ—…μ—μ„œλŠ” λ§Žμ€ 관심을 μ–»κ³  μžˆμ§€λŠ” λͺ»ν•œ κ²ƒμœΌλ‘œ μ•Œλ €μ‘Œλ‹€. κ·Έ μ΄μœ λŠ” μ‚°μ—…ν˜„μž₯의 λΉ„ν‘œμ§€λ°μ΄ν„°μ™€ μ†ŒλŸ‰μ˜ κ³ μž₯데이터 λ•Œλ¬Έμ— μš°μˆ˜ν•œ λ”₯λŸ¬λ‹κΈ°λ°˜μ˜ κ³ μž₯ 진단 λͺ¨λΈλ“€μ„ κ°œλ°œν•˜κΈ° μ–΄λ ΅λ‹€. λ”°λΌμ„œ λ³Έ ν•™μœ„λ…Όλ¬Έμ—μ„œλŠ” μ£Όλ³€μ••κΈ° μ‚°μ—…μ—μ„œ ν˜„μž¬ λŒ€λ‘λ˜κ³  μžˆλŠ” 세가지 이슈λ₯Ό μ—°κ΅¬ν•˜μ˜€λ‹€. 1) 건전성 평면 μ‹œκ°ν™” 이슈, 2) 데이터 λΆ€μ‘± 이슈, 3) 심각도 이슈 듀을 κ·Ήλ³΅ν•˜κΈ° μœ„ν•œ λ”₯ λŸ¬λ‹ 기반 κ³ μž₯ 진단 연ꡬλ₯Ό μ§„ν–‰ν•˜μ˜€λ‹€. μ†Œκ°œλœ 세가지 μ΄μŠˆλ“€μ„ κ°œμ„ ν•˜κΈ° μœ„ν•΄ λ³Έ ν•™μœ„λ…Όλ¬Έμ€ μ„Έ 가지 연ꡬλ₯Ό μ œμ•ˆν•˜μ˜€λ‹€. 첫 번째 μ—°κ΅¬λŠ” 보쑰 감지 μž‘μ—…μ΄ μžˆλŠ” 쀀지도 μžλ™ 인코더λ₯Ό 톡해 건전성 평면을 μ œμ•ˆν•˜μ˜€λ‹€. μ œμ•ˆλœ 방법은 λ³€μ••κΈ° μ—΄ν•˜ νŠΉμ„±μ„ μ‹œκ°ν™” ν•  수 μžˆλ‹€. λ˜ν•œ, 쀀지도 접근법을 ν™œμš©ν•˜κΈ° λ•Œλ¬Έμ— λ°©λŒ€ν•œ λΉ„ν‘œμ§€λ°μ΄ν„° 그리고 μ†Œμˆ˜μ˜ ν‘œμ§€λ°μ΄ν„°λ§ŒμœΌλ‘œ κ΅¬ν˜„λ  수 μžˆλ‹€. μ œμ•ˆλ°©λ²•μ€ μ£Όλ³€μ••κΈ° 건전성을 건전성 평면과 ν•¨κ»˜ μ‹œκ°ν™”ν•˜κ³ , 맀우 적은 μ†Œμˆ˜μ˜ λ ˆμ΄λΈ” λ°μ΄ν„°λ§ŒμœΌλ‘œ μ£Όλ³€μ••κΈ° κ³ μž₯을 μ§„λ‹¨ν•œλ‹€. 두 번째 μ—°κ΅¬λŠ” κ·œμΉ™ 기반 Duval 방법을 AI 기반 deep neural network (DNN)κ³Ό μœ΅ν•©(bridge)ν•˜λŠ” μƒˆλ‘œμš΄ ν”„λ ˆμž„μ›Œν¬λ₯Ό μ œμ•ˆν•˜μ˜€λ‹€. 이 방법은 룰기반의 Duval을 μ‚¬μš©ν•˜μ—¬ λΉ„ν‘œμ§€λ°μ΄ν„°λ₯Ό μˆ˜λ„ λ ˆμ΄λΈ”λ§ν•œλ‹€ (pseudo-labeling). λ˜ν•œ, AI 기반 DNN은 μ •κ·œν™” 기술과 맀개 λ³€μˆ˜ 전이 ν•™μŠ΅μ„ μ μš©ν•˜μ—¬ λ…Έμ΄μ¦ˆκ°€ μžˆλŠ” pseudo-label 데이터λ₯Ό ν•™μŠ΅ν•˜λŠ”λ° μ‚¬μš©λœλ‹€. 개발된 κΈ°μˆ μ€ λ°©λŒ€ν•œμ–‘μ˜ λΉ„ν‘œμ§€λ°μ΄ν„°λ₯Ό 룰기반으둜 일차적으둜 μ§„λ‹¨ν•œ 결과와 μ†Œμˆ˜μ˜ μ‹€μ œ κ³ μž₯데이터와 ν•¨κ»˜ ν•™μŠ΅λ°μ΄ν„°λ‘œ ν›ˆλ ¨ν•˜μ˜€μ„ λ•Œ 기쑴의 진단 방법보닀 획기적인 ν–₯상을 κ°€λŠ₯μΌ€ ν•œλ‹€. 끝으둜, μ„Έ 번째 μ—°κ΅¬λŠ” κ³ μž₯ νƒ€μž…μ„ 진단할 뿐만 μ•„λ‹ˆλΌ 심각도 λ˜ν•œ μ§„λ‹¨ν•˜λŠ” κΈ°μˆ μ„ μ œμ•ˆν•˜μ˜€λ‹€. μ΄λ•Œ 두 μƒνƒœμ˜ λ ˆμ΄λΈ”λ§λœ κ³ μž₯ νƒ€μž…κ³Ό 심각도 μ‚¬μ΄μ—λŠ” λΆˆκ· μΌν•œ 데이터 λΆ„ν¬λ‘œ 이루어져 μžˆλ‹€. κ·Έ μ΄μœ λŠ” μ‹¬κ°λ„μ˜ 경우 λ ˆμ΄λΈ”λ§μ΄ 항상 λ˜μ–΄ μžˆμ§€λ§Œ κ³ μž₯ νƒ€μž…μ˜ κ²½μš°λŠ” μ‹€μ œ μ£Όλ³€μ••κΈ°λ‘œλΆ€ν„° κ³ μž₯ νƒ€μž… 데이터λ₯Ό μ–»κΈ°κ°€ 맀우 μ–΄λ ΅κΈ° λ•Œλ¬Έμ΄λ‹€. λ”°λΌμ„œ, λ³Έ μ—°κ΅¬μ—μ„œ μ„Έλ²ˆμ§Έλ‘œ κ°œλ°œν•œ κΈ°μˆ μ€ μ˜€λŠ˜λ‚  데이터 생성에 맀우 μš°μˆ˜ν•œ μ„±λŠ₯을 λ‹¬μ„±ν•˜κ³  μžˆλŠ” generative adversarial network (GAN)λ₯Ό 톡해 λΆˆκ· ν˜•ν•œ 두 μƒνƒœλ₯Ό 균일화 μž‘μ—…μ„ μˆ˜ν–‰ν•˜λŠ” λ™μ‹œμ— κ³ μž₯ λͺ¨λ“œμ™€ 심각도λ₯Ό μ§„λ‹¨ν•˜λŠ” λͺ¨λΈμ„ κ°œλ°œν•˜μ˜€λ‹€.Due to the rapid development and advancement of today’s industry, the demand for safe and reliable power distribution and transmission lines is becoming more critical; thus, prognostics and health management (hereafter, PHM) is becoming more important in the power transformer industry. Among various methods developed for power transformer diagnosis, the artificial intelligence (AI) based approach has received considerable interest from academics. Specifically, deep learning technology, which offers excellent performance when used with vast amounts of data, is also rapidly gaining the spotlight in the academic field of transformer fault diagnosis. The interest in deep learning has been especially noticed in the field of fault diagnosis, because deep learning algorithms can be applied to complex systems that have large amounts of data, without the need for a deep understanding of the domain knowledge of the system. However, the outstanding performance of these diagnosis methods has not yet gained much attention in the power transformer PHM industry. The reason is that a large amount of unlabeled and a small amount of fault data always restrict their deep-learning-based diagnosis methods in the power transformer PHM industry. Therefore, in this dissertation research, deep-learning-based fault diagnosis methods are developed to overcome three issues that currently prevent this type of diagnosis in industrial power transformers: 1) the visualization of health feature space issue, 2) the insufficient data issue, and 3) the severity issue. To cope with these challenges, this thesis is composed of three research thrusts. The first research thrust develops a health feature space via a semi-supervised autoencoder with an auxiliary detection task. The proposed method can visualize a monotonic health trendability of the transformer’s degradation properties. Further, thanks to the use of a semi-supervised approach, the method is applicable to situations with a large amount of unlabeled and a small amount labeled data (a situation common in industrial datasets). Next, the second research thrust proposes a new framework, that bridges the rule-based Duval method with an AI-based deep neural network (BDD). In this method, the rule-based Duval method is utilized to pseudo-label a large amount of unlabeled data. Furthermore, the AI-based DNN is used to apply regularization techniques and parameter transfer learning to learn the noisy pseudo-labelled data. Finally, the third thrust not only identifies fault types but also indicates a severity level. However, the balance between labeled fault types and the severity level is imbalanced in real-world data. Therefore, in the proposed method, diagnosis of fault types – with severity levels – under imbalanced conditions is addressed by utilizing a generative adversarial network with an auxiliary classifier. The validity of the proposed methods is demonstrated by studying massive unlabeled dissolved gas analysis (DGA) data, provided by the Korea Electric Power Company (KEPCO), and sparse labeled data, provided by the IEC TC 10 database. Each developed method could be used in industrial fields that use power transformers to monitor the health feature space, consider severity level, and diagnose transformer faults under extremely insufficient labeled fault data.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Scope and Overview 4 1.3 Dissertation Layout 7 Chapter 2 Literature Review 9 2.1 A Brief Overview of Rule-Based Fault Diagnosis 9 2.2 A Brief Overview of Conventional AI-Based Fault Diagnosis 11 Chapter 3 Extracting Health Feature Space via Semi-Supervised Autoencoder with an Auxiliary Task (SAAT) 13 3.1 Backgrounds of Semi-supervised autoencoder (SSAE) 15 3.1.1 Autoencoder: Unsupervised Feature Extraction 15 3.1.2 Softmax Classifier: Supervised Classification 17 3.1.3 Semi-supervised Autoencoder 18 3.2 Input DGA Data Preprocessing 20 3.3 SAAT-Based Fault Diagnosis Method 21 3.3.1 Roles of the Auxiliary Detection Task 23 3.3.2 Architecture of the Proposed SAAT 27 3.3.3 Health Feature Space Visualization 29 3.3.4 Overall Procedure of the Proposed SAAT-based Fault Diagnosis 30 3.4 Performance Evaluation of SAAT 31 3.4.1 Data Description and Implementation 31 3.4.2 An Outline of Four Comparative Studies and Quantitative Evaluation Metrics 33 3.4.3 Experimental Results and Discussion 36 3.5 Summary and Discussion 49 Chapter 4 Learning from Even a Weak Teacher: Bridging Rule-based Duval Weak Supervision and a Deep Neural Network (BDD) for Diagnosing Transformer 51 4.1 Backgrounds of BDD 53 4.1.1 Rule-based method: Duval Method 53 4.1.2 Deep learning Based Method: Deep Neural Network 54 4.1.3 Parameter Transfer 55 4.2 BDD Based Fault Diagnosis 56 4.2.1 Problem Statement 56 4.2.2 Framework of the Proposed BDD 57 4.2.3 Overall Procedure of BDD-based Fault Diagnosis 63 4.3 Performance Evaluation of the BDD 64 4.3.1 Description of Data and the DNN Architecture 64 4.3.2 Experimental Results and Discussion 66 4.4 Summary and Discussion 76 Chapter 5 Generative Adversarial Network with Embedding Severity DGA Level 79 5.1 Backgrounds of Generative Adversarial Network 81 5.2 GANES based Fault Diagnosis 82 5.2.1 Training Strategy of GANES 82 5.2.2 Overall procedure of GANES 87 5.3 Performance Evaluation of GANES 91 5.3.1 Description of Data 91 5.3.2 Outlines of Experiments 91 5.3.3 Preliminary Experimental Results of Various GANs 95 5.3.4 Experiments for the Effectiveness of Embedding Severity DGA Level 99 5.4 Summary and Discussion 105 Chapter 6 Conclusion 106 6.1 Contributions and Significance 106 6.2 Suggestions for Future Research 108 References 110 κ΅­λ¬Έ 초둝 127λ°•

    Characterization of Power Transformer Frequency Response Signature using Finite Element Analysis

    Get PDF
    Power transformers are a vital link in electrical transmission and distribution networks. Monitoring and diagnostic techniques are essential to decrease maintenance and improve the reliability of the equipment.This research has developed a novel, versatile, reliable and robust technique for modelling high frequency power transformers. The purpose of this modelling is to enable engineers to conduct sensitivity analyses of FRA in the course of evaluating mechanical defects of power transformer windings. The importance of this new development is that it can be applied successfully to industry transformers of real geometries
    • …
    corecore