3 research outputs found

    λΉ„ν‘œμ§€ κ³ μž₯ 데이터와 μœ μ€‘κ°€μŠ€λΆ„μ„λ°μ΄ν„°λ₯Ό μ΄μš©ν•œ λ”₯λŸ¬λ‹κΈ°λ°˜ μ£Όλ³€μ••κΈ° κ³ μž₯진단 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 기계항곡곡학뢀, 2021.8. μ†Œμž¬μ›….μ˜€λŠ˜λ‚  μ‚°μ—…μ˜ κΈ‰μ†ν•œ λ°œμ „κ³Ό κ³ λ„ν™”λ‘œ 인해 μ•ˆμ „ν•˜κ³  μ‹ λ’°ν•  수 μžˆλŠ” μ „λ ₯ 계톡에 λŒ€ν•œ μˆ˜μš”λŠ” λ”μš± μ€‘μš”ν•΄μ§€κ³  μžˆλ‹€. λ”°λΌμ„œ μ‹€μ œ μ‚°μ—… ν˜„μž₯μ—μ„œλŠ” μ£Όλ³€μ••κΈ°μ˜ μ•ˆμ „ν•œ μž‘λ™μ„ μœ„ν•΄ μƒνƒœλ₯Ό μ •ν™•ν•˜κ²Œ 진단할 수 μžˆλŠ” prognostics and health management (PHM)와 같은 기술이 ν•„μš”ν•˜λ‹€. μ£Όλ³€μ••κΈ° 진단을 μœ„ν•΄ 개발된 λ‹€μ–‘ν•œ 방법 쀑 인곡지λŠ₯(AI) 기반 접근법은 μ‚°μ—…κ³Ό ν•™κ³„μ—μ„œ λ§Žμ€ 관심을 λ°›κ³  μžˆλ‹€. λ”μš±μ΄ λ°©λŒ€ν•œ 데이터와 ν•¨κ»˜ 높은 μ„±λŠ₯을 λ‹¬μ„±ν•˜λŠ” λ”₯ λŸ¬λ‹ κΈ°μˆ μ€ μ£Όλ³€μ••κΈ° κ³ μž₯ μ§„λ‹¨μ˜ ν•™μžλ“€μ—κ²Œ 높은 관심을 κ°–κ²Œ 해쀬닀. κ·Έ μ΄μœ λŠ” λ”₯ λŸ¬λ‹ 기술이 μ‹œμŠ€ν…œμ˜ 도메인 지식을 깊이 이해할 ν•„μš” 없이 λŒ€λŸ‰μ˜ λ°μ΄ν„°λ§Œ 주어진닀면 λ³΅μž‘ν•œ μ‹œμŠ€ν…œμ΄λΌλ„ μ‚¬μš©μžμ˜ λͺ©μ μ— 맞게 κ·Έ 해닡을 찾을 수 있기 λ•Œλ¬Έμ— λ”₯ λŸ¬λ‹μ— λŒ€ν•œ 관심은 μ£Όλ³€μ••κΈ° κ³ μž₯ 진단 λΆ„μ•Όμ—μ„œ 특히 λ‘λ“œλŸ¬μ‘Œλ‹€. κ·ΈλŸ¬λ‚˜, μ΄λŸ¬ν•œ λ›°μ–΄λ‚œ 진단 μ„±λŠ₯은 아직 μ‹€μ œ μ£Όλ³€μ••κΈ° μ‚°μ—…μ—μ„œλŠ” λ§Žμ€ 관심을 μ–»κ³  μžˆμ§€λŠ” λͺ»ν•œ κ²ƒμœΌλ‘œ μ•Œλ €μ‘Œλ‹€. κ·Έ μ΄μœ λŠ” μ‚°μ—…ν˜„μž₯의 λΉ„ν‘œμ§€λ°μ΄ν„°μ™€ μ†ŒλŸ‰μ˜ κ³ μž₯데이터 λ•Œλ¬Έμ— μš°μˆ˜ν•œ λ”₯λŸ¬λ‹κΈ°λ°˜μ˜ κ³ μž₯ 진단 λͺ¨λΈλ“€μ„ κ°œλ°œν•˜κΈ° μ–΄λ ΅λ‹€. λ”°λΌμ„œ λ³Έ ν•™μœ„λ…Όλ¬Έμ—μ„œλŠ” μ£Όλ³€μ••κΈ° μ‚°μ—…μ—μ„œ ν˜„μž¬ λŒ€λ‘λ˜κ³  μžˆλŠ” 세가지 이슈λ₯Ό μ—°κ΅¬ν•˜μ˜€λ‹€. 1) 건전성 평면 μ‹œκ°ν™” 이슈, 2) 데이터 λΆ€μ‘± 이슈, 3) 심각도 이슈 듀을 κ·Ήλ³΅ν•˜κΈ° μœ„ν•œ λ”₯ λŸ¬λ‹ 기반 κ³ μž₯ 진단 연ꡬλ₯Ό μ§„ν–‰ν•˜μ˜€λ‹€. μ†Œκ°œλœ 세가지 μ΄μŠˆλ“€μ„ κ°œμ„ ν•˜κΈ° μœ„ν•΄ λ³Έ ν•™μœ„λ…Όλ¬Έμ€ μ„Έ 가지 연ꡬλ₯Ό μ œμ•ˆν•˜μ˜€λ‹€. 첫 번째 μ—°κ΅¬λŠ” 보쑰 감지 μž‘μ—…μ΄ μžˆλŠ” 쀀지도 μžλ™ 인코더λ₯Ό 톡해 건전성 평면을 μ œμ•ˆν•˜μ˜€λ‹€. μ œμ•ˆλœ 방법은 λ³€μ••κΈ° μ—΄ν•˜ νŠΉμ„±μ„ μ‹œκ°ν™” ν•  수 μžˆλ‹€. λ˜ν•œ, 쀀지도 접근법을 ν™œμš©ν•˜κΈ° λ•Œλ¬Έμ— λ°©λŒ€ν•œ λΉ„ν‘œμ§€λ°μ΄ν„° 그리고 μ†Œμˆ˜μ˜ ν‘œμ§€λ°μ΄ν„°λ§ŒμœΌλ‘œ κ΅¬ν˜„λ  수 μžˆλ‹€. μ œμ•ˆλ°©λ²•μ€ μ£Όλ³€μ••κΈ° 건전성을 건전성 평면과 ν•¨κ»˜ μ‹œκ°ν™”ν•˜κ³ , 맀우 적은 μ†Œμˆ˜μ˜ λ ˆμ΄λΈ” λ°μ΄ν„°λ§ŒμœΌλ‘œ μ£Όλ³€μ••κΈ° κ³ μž₯을 μ§„λ‹¨ν•œλ‹€. 두 번째 μ—°κ΅¬λŠ” κ·œμΉ™ 기반 Duval 방법을 AI 기반 deep neural network (DNN)κ³Ό μœ΅ν•©(bridge)ν•˜λŠ” μƒˆλ‘œμš΄ ν”„λ ˆμž„μ›Œν¬λ₯Ό μ œμ•ˆν•˜μ˜€λ‹€. 이 방법은 룰기반의 Duval을 μ‚¬μš©ν•˜μ—¬ λΉ„ν‘œμ§€λ°μ΄ν„°λ₯Ό μˆ˜λ„ λ ˆμ΄λΈ”λ§ν•œλ‹€ (pseudo-labeling). λ˜ν•œ, AI 기반 DNN은 μ •κ·œν™” 기술과 맀개 λ³€μˆ˜ 전이 ν•™μŠ΅μ„ μ μš©ν•˜μ—¬ λ…Έμ΄μ¦ˆκ°€ μžˆλŠ” pseudo-label 데이터λ₯Ό ν•™μŠ΅ν•˜λŠ”λ° μ‚¬μš©λœλ‹€. 개발된 κΈ°μˆ μ€ λ°©λŒ€ν•œμ–‘μ˜ λΉ„ν‘œμ§€λ°μ΄ν„°λ₯Ό 룰기반으둜 일차적으둜 μ§„λ‹¨ν•œ 결과와 μ†Œμˆ˜μ˜ μ‹€μ œ κ³ μž₯데이터와 ν•¨κ»˜ ν•™μŠ΅λ°μ΄ν„°λ‘œ ν›ˆλ ¨ν•˜μ˜€μ„ λ•Œ 기쑴의 진단 방법보닀 획기적인 ν–₯상을 κ°€λŠ₯μΌ€ ν•œλ‹€. 끝으둜, μ„Έ 번째 μ—°κ΅¬λŠ” κ³ μž₯ νƒ€μž…μ„ 진단할 뿐만 μ•„λ‹ˆλΌ 심각도 λ˜ν•œ μ§„λ‹¨ν•˜λŠ” κΈ°μˆ μ„ μ œμ•ˆν•˜μ˜€λ‹€. μ΄λ•Œ 두 μƒνƒœμ˜ λ ˆμ΄λΈ”λ§λœ κ³ μž₯ νƒ€μž…κ³Ό 심각도 μ‚¬μ΄μ—λŠ” λΆˆκ· μΌν•œ 데이터 λΆ„ν¬λ‘œ 이루어져 μžˆλ‹€. κ·Έ μ΄μœ λŠ” μ‹¬κ°λ„μ˜ 경우 λ ˆμ΄λΈ”λ§μ΄ 항상 λ˜μ–΄ μžˆμ§€λ§Œ κ³ μž₯ νƒ€μž…μ˜ κ²½μš°λŠ” μ‹€μ œ μ£Όλ³€μ••κΈ°λ‘œλΆ€ν„° κ³ μž₯ νƒ€μž… 데이터λ₯Ό μ–»κΈ°κ°€ 맀우 μ–΄λ ΅κΈ° λ•Œλ¬Έμ΄λ‹€. λ”°λΌμ„œ, λ³Έ μ—°κ΅¬μ—μ„œ μ„Έλ²ˆμ§Έλ‘œ κ°œλ°œν•œ κΈ°μˆ μ€ μ˜€λŠ˜λ‚  데이터 생성에 맀우 μš°μˆ˜ν•œ μ„±λŠ₯을 λ‹¬μ„±ν•˜κ³  μžˆλŠ” generative adversarial network (GAN)λ₯Ό 톡해 λΆˆκ· ν˜•ν•œ 두 μƒνƒœλ₯Ό 균일화 μž‘μ—…μ„ μˆ˜ν–‰ν•˜λŠ” λ™μ‹œμ— κ³ μž₯ λͺ¨λ“œμ™€ 심각도λ₯Ό μ§„λ‹¨ν•˜λŠ” λͺ¨λΈμ„ κ°œλ°œν•˜μ˜€λ‹€.Due to the rapid development and advancement of today’s industry, the demand for safe and reliable power distribution and transmission lines is becoming more critical; thus, prognostics and health management (hereafter, PHM) is becoming more important in the power transformer industry. Among various methods developed for power transformer diagnosis, the artificial intelligence (AI) based approach has received considerable interest from academics. Specifically, deep learning technology, which offers excellent performance when used with vast amounts of data, is also rapidly gaining the spotlight in the academic field of transformer fault diagnosis. The interest in deep learning has been especially noticed in the field of fault diagnosis, because deep learning algorithms can be applied to complex systems that have large amounts of data, without the need for a deep understanding of the domain knowledge of the system. However, the outstanding performance of these diagnosis methods has not yet gained much attention in the power transformer PHM industry. The reason is that a large amount of unlabeled and a small amount of fault data always restrict their deep-learning-based diagnosis methods in the power transformer PHM industry. Therefore, in this dissertation research, deep-learning-based fault diagnosis methods are developed to overcome three issues that currently prevent this type of diagnosis in industrial power transformers: 1) the visualization of health feature space issue, 2) the insufficient data issue, and 3) the severity issue. To cope with these challenges, this thesis is composed of three research thrusts. The first research thrust develops a health feature space via a semi-supervised autoencoder with an auxiliary detection task. The proposed method can visualize a monotonic health trendability of the transformer’s degradation properties. Further, thanks to the use of a semi-supervised approach, the method is applicable to situations with a large amount of unlabeled and a small amount labeled data (a situation common in industrial datasets). Next, the second research thrust proposes a new framework, that bridges the rule-based Duval method with an AI-based deep neural network (BDD). In this method, the rule-based Duval method is utilized to pseudo-label a large amount of unlabeled data. Furthermore, the AI-based DNN is used to apply regularization techniques and parameter transfer learning to learn the noisy pseudo-labelled data. Finally, the third thrust not only identifies fault types but also indicates a severity level. However, the balance between labeled fault types and the severity level is imbalanced in real-world data. Therefore, in the proposed method, diagnosis of fault types – with severity levels – under imbalanced conditions is addressed by utilizing a generative adversarial network with an auxiliary classifier. The validity of the proposed methods is demonstrated by studying massive unlabeled dissolved gas analysis (DGA) data, provided by the Korea Electric Power Company (KEPCO), and sparse labeled data, provided by the IEC TC 10 database. Each developed method could be used in industrial fields that use power transformers to monitor the health feature space, consider severity level, and diagnose transformer faults under extremely insufficient labeled fault data.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Scope and Overview 4 1.3 Dissertation Layout 7 Chapter 2 Literature Review 9 2.1 A Brief Overview of Rule-Based Fault Diagnosis 9 2.2 A Brief Overview of Conventional AI-Based Fault Diagnosis 11 Chapter 3 Extracting Health Feature Space via Semi-Supervised Autoencoder with an Auxiliary Task (SAAT) 13 3.1 Backgrounds of Semi-supervised autoencoder (SSAE) 15 3.1.1 Autoencoder: Unsupervised Feature Extraction 15 3.1.2 Softmax Classifier: Supervised Classification 17 3.1.3 Semi-supervised Autoencoder 18 3.2 Input DGA Data Preprocessing 20 3.3 SAAT-Based Fault Diagnosis Method 21 3.3.1 Roles of the Auxiliary Detection Task 23 3.3.2 Architecture of the Proposed SAAT 27 3.3.3 Health Feature Space Visualization 29 3.3.4 Overall Procedure of the Proposed SAAT-based Fault Diagnosis 30 3.4 Performance Evaluation of SAAT 31 3.4.1 Data Description and Implementation 31 3.4.2 An Outline of Four Comparative Studies and Quantitative Evaluation Metrics 33 3.4.3 Experimental Results and Discussion 36 3.5 Summary and Discussion 49 Chapter 4 Learning from Even a Weak Teacher: Bridging Rule-based Duval Weak Supervision and a Deep Neural Network (BDD) for Diagnosing Transformer 51 4.1 Backgrounds of BDD 53 4.1.1 Rule-based method: Duval Method 53 4.1.2 Deep learning Based Method: Deep Neural Network 54 4.1.3 Parameter Transfer 55 4.2 BDD Based Fault Diagnosis 56 4.2.1 Problem Statement 56 4.2.2 Framework of the Proposed BDD 57 4.2.3 Overall Procedure of BDD-based Fault Diagnosis 63 4.3 Performance Evaluation of the BDD 64 4.3.1 Description of Data and the DNN Architecture 64 4.3.2 Experimental Results and Discussion 66 4.4 Summary and Discussion 76 Chapter 5 Generative Adversarial Network with Embedding Severity DGA Level 79 5.1 Backgrounds of Generative Adversarial Network 81 5.2 GANES based Fault Diagnosis 82 5.2.1 Training Strategy of GANES 82 5.2.2 Overall procedure of GANES 87 5.3 Performance Evaluation of GANES 91 5.3.1 Description of Data 91 5.3.2 Outlines of Experiments 91 5.3.3 Preliminary Experimental Results of Various GANs 95 5.3.4 Experiments for the Effectiveness of Embedding Severity DGA Level 99 5.4 Summary and Discussion 105 Chapter 6 Conclusion 106 6.1 Contributions and Significance 106 6.2 Suggestions for Future Research 108 References 110 κ΅­λ¬Έ 초둝 127λ°•

    μ •μ‘±μˆ˜ 감지 μ–΅μ œ μ μš©μ— λ”°λ₯Έ 수처리용 뢄리막 μƒλ¬Όλ°˜μ‘κΈ°μ˜ ν™œμ„± μŠ¬λŸ¬μ§€μ™€ μƒλ¬Όλ§‰μ˜ νŠΉμ„± λ³€ν™”

    No full text
    ν•™μœ„λ…Όλ¬Έ (석사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 화학생물곡학뢀, 2015. 2. 이정학.Recently, quorum sensing (QS) has been found to play a key role in biofilm formation on the membrane surface in membrane bioreactors (MBRs). Thus quorum quenching (QQ) which interrupts QS systems has received great attention as a fundamental solution to control biofouling in MBRs. Previous studies have proved that the bacterial intra-species QQ with lactonase producing bacteria, Rhodococcus sp. BH4, could efficiently alleviate the biofouling in MBRs. In addition to delay in transmembrane pressure (TMP) which is a fouling index, it has been also reported that QQ led to change in the production of extracellular polymeric substances (EPS) in biofilm. However, the analyses of previous studies were only performed considering the EPS in biofilm. In this study, we aimed to further characterize the effect of QQ considering both EPS in biofilm and mixed liquor while applying Rhodococcus sp. BH4 in two different types of MBRs. The first set of experiment was conducted with an anoxic/oxic combined MBR. In this set, soluble microbial product (SMP) was investigated in priority. In addition to examination of protein and polysaccharide, size exclusion chromatography (SEC) equipped with fluorescence detector was used to qualitatively analyze protein-like substances (Ex/Em wavelengths: 280/350 nm). Significant decrease in aromatic protein-like substances with molecular weight range of 100-1000 kDa was observed. Also, the filterability of sludge supernatant which depends on fouling tendency of SMP was evaluated by dead-end filtration with 150 kDa membrane. It was observed that QQ resulted in better filterability, shown by 2-3 times lower cake layer resistance. Another set of experiment with aerobic MBR was designed to study the QQ effect of Rhodococcus sp. BH4, considering not only SMP but also bound EPS of floc and biocake. Aromatic protein-like and humic acid-like substances (Ex/Em wavelengths: 280/350 nm and 345/443 nm, respectively) were analyzed with SEC. In case of EPS bound to floc, neither aromatic protein-like nor humic acid-like substances showed apparent difference. However, both components have decreased in biocake EPS, where humic acid-like substances were mostly removed by QQ.Chapter 1. Introduction 1 1.1. Background 2 1.2. Objectives 4 Chapter 2. Literature Review 5 2.1. Membrane Bioreactor (MBR) 6 2.1.1. Concept and Process 6 2.1.2. Development of MBR 8 2.2. Fouling Control in MBR Process 12 2.2.1. Physical Approach 12 2.2.2. Chemical Approach 12 2.2.3. Material Approach 14 2.2.4. Biological Approach 15 2.3. Quorum Sensing (QS) System 16 2.3.1. Definition and Mechanism 16 2.3.2. Gram-Negative Bacteria: LuxI/LuxR Type AI-1 QS 19 2.3.3. Gram-Positive Bacteria: Modified Oligopeptide Mediated AI-1 QS 23 2.3.4. Interspecies Communication: AI-2 QS 26 2.3.5. Role of QS in Biofilm Formation 29 2.3.6. Control Strategies of LuxI/LuxR Type AI-1 QS 30 2.4. Quorum Quenching (QQ) Application in MBR 36 2.4.1. Enzymatic QQ in MBR 36 2.4.2. Bacterial QQ in MBR 36 2.5. Extracellular Polymeric Substances (EPS) 38 2.5.1. Definition and Characteristics 38 2.5.2. EPS Analysis by Size Exclusion Chromatography (SEC) 39 2.5.3. EPS Analysis in MBR with QQ 40 Chapter 3. Materials and Methods 42 3.1. Preparation of QQ Agents 43 3.1.1. Strains and Growth Conditions 43 3.1.2. Preparation of Microbial Carriers 43 3.2. MBR Set-up 45 3.2.1. Anoxic/Oxic (A/O) MBR 45 3.2.2. Aerobic MBR 47 3.3. Measurement of QQ Activity 49 3.3.1. Substrate and Reporter Strain 49 3.3.2. QQ Activity of BH4 Vessels for A/O MBR 49 3.3.3. QQ Activity of W-beads for Aerobic MBR 50 3.4. Analytical Methods 51 3.4.1. A/O MBR 51 3.4.2. Aerobic MBR 56 Chapter 4. Results and Discussion 58 4.1. A/O MBR 59 4.1.1. QQ Activity of BH4 Vessel 59 4.1.2. General MBR Performances 61 4.1.3. Characterization of SMP 63 4.1.4. Filterability of Sludge Supernatant 67 4.2. Aerobic MBR 70 4.2.1. QQ Activity of BH4 W-bead 70 4.2.2. General MBR Performances 72 4.2.3. Characterization of Mixed Liquor EPS 74 4.2.4. Characterization of Biocake EPS 79 4.2.5. Comparison Between Mixed liquor and Biocake EPS 83 Chapter5. Conclusion 84 초둝 87 Reference 89Maste
    corecore