4 research outputs found

    The application of software product line engineering to energy management in the cloud and in virtualised environments

    Get PDF
    Modern software is created from components which can often perform a large number of tasks. For a given task, often there are many variations of components that can be used. As a result, software with comparable functionality can often be produced from a variety of components. The choice of software components influences the energy consumption. A popular method of software reuse with the components' setting selection is Software Product Line (SPL). Even though SPL has been used to investigate the energy related to the combination of software components, there has been no in depth study of how to measure the consumption of energy from a configuration of components and the extent to which the components contribute to energy usage. This thesis investigates how software components' diversity affects energy consumption in virtualised environments and it presents a method of identifying combinations of components that consume less energy. This work gives insight into the cultivation of the green software components by identifying which components influence the total consumption of energy. Furthermore, the thesis investigates how to use component diversity in a dynamic form in the direction of managing the consumption of energy as the demand on the system changes

    LASER Tech Briefs, Winter 1994

    Get PDF
    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, Life Sciences, and Books and report

    An investigation into the parameters that contribute to the gap between the designed and as-built thermal performance of British housing

    Get PDF
    The UK Government has placed the need to reduce national energy demands and carbon emissions at the forefront of the political agenda, with a commitment made to meet EU targets of 20% reductions in greenhouse gas emissions and primary energy consumption, alongside a 20% improvement in overall energy efficiency, across all EU Member States, by 2020. Building performance has been identified as a key area where significant progress towards meeting these ambitions can be made. It is fundamental to ensure that the building fabric of a property functions correctly in order to achieve high levels of thermal effectiveness, which should result in lower energy demands and carbon emissions. However, research to date shows that a gap exists between predicted and actual performance levels. This research utilises the dwelling Heat Loss Coefficient (HLC) as a common output in design stage and post-construction evaluation techniques, that can be used to compare predicted and measured fabric performance. The Standard Assessment Procedure (SAP), coheating tests, air pressure tests and thermal imaging are used to evaluate in-situ buildings. Sensitivity analysis and controlled conditions experiments are utilised in order to investigate the reliability of the assessment techniques used. The key findings from the study include the demonstration, through novel coheating test, that post-installation mechanically ventilated heat recovery (MVHR) system efficiency levels can have a pronounced effect on the measured HLC, and, in conjunction with use of assumed theoretical efficiency levels, can cause divergence in theoretical and measured data of 10-15%. This can largely be resolved through correct design, installation and commissioning. Environmental conditions, both notional and site-specific, can also cause divergence in the HLC data, including wind speed (15%) and solar gains (10-26%). In addition, it has been shown that, when considering thermal bridging values, inaccurate calculation at the design-stage and poor attention to detail during construction could cause underperformance in this element by up to 50%. This is of significance as there are currently no mandatory procedures to assess post-construction compliance with thermal bridging levels specified within the UK Building Regulations

    An investigation into the parameters that contribute to the gap between the designed and as-built thermal performance of British housing

    Get PDF
    The UK Government has placed the need to reduce national energy demands and carbon emissions at the forefront of the political agenda, with a commitment made to meet EU targets of 20% reductions in greenhouse gas emissions and primary energy consumption, alongside a 20% improvement in overall energy efficiency, across all EU Member States, by 2020. Building performance has been identified as a key area where significant progress towards meeting these ambitions can be made. It is fundamental to ensure that the building fabric of a property functions correctly in order to achieve high levels of thermal effectiveness, which should result in lower energy demands and carbon emissions. However, research to date shows that a gap exists between predicted and actual performance levels. This research utilises the dwelling Heat Loss Coefficient (HLC) as a common output in design stage and post-construction evaluation techniques, that can be used to compare predicted and measured fabric performance. The Standard Assessment Procedure (SAP), coheating tests, air pressure tests and thermal imaging are used to evaluate in-situ buildings. Sensitivity analysis and controlled conditions experiments are utilised in order to investigate the reliability of the assessment techniques used. The key findings from the study include the demonstration, through novel coheating test, that post-installation mechanically ventilated heat recovery (MVHR) system efficiency levels can have a pronounced effect on the measured HLC, and, in conjunction with use of assumed theoretical efficiency levels, can cause divergence in theoretical and measured data of 10-15%. This can largely be resolved through correct design, installation and commissioning. Environmental conditions, both notional and site-specific, can also cause divergence in the HLC data, including wind speed (15%) and solar gains (10-26%). In addition, it has been shown that, when considering thermal bridging values, inaccurate calculation at the design-stage and poor attention to detail during construction could cause underperformance in this element by up to 50%. This is of significance as there are currently no mandatory procedures to assess post-construction compliance with thermal bridging levels specified within the UK Building Regulations
    corecore