253 research outputs found

    Radio resource management for V2X in cellular systems

    Get PDF
    The thesis focuses on the provision of cellular vehicle-to-everything (V2X) communications, which have attracted great interest for 5G due to the potential of improving traffic safety and enabling new services related to intelligent transportation systems. These types of services have strict requirements on reliability, access availability, and end-to-end (E2E) latency. V2X requires advanced network management techniques that must be developed based on the characteristics of the networks and traffic requirements. The integration of the Sidelink (SL), which enables the direct communication between vehicles (i.e., vehicle-to-vehicle (V2V)) without passing through the base station into cellular networks is a promising solution for enhancing the performance of V2X in cellular systems. In this thesis, we addressed some of the challenges arising from the integration of V2V communication in cellular systems and validated the potential of this technology by providing appropriate resource management solutions. Our main contributions have been in the context of radio access network slicing, mode selection, and radio resource allocation mechanisms. With regard to the first research direction that focuses on the RAN slicing management, a novel strategy based on offline Q-learning and softmax decision-making has been proposed as an enhanced solution to determine the adequate split of resources between a slice for eMBB communications and a slice for V2X. Then, starting from the outcome of the off-line Q-learning algorithm, a low-complexity heuristic strategy has been proposed to achieve further improvements in the use of resources. The proposed solution has been compared against proportional and fixed reference schemes. The extensive performance assessment have revealed the ability of the proposed algorithms to improve network performance compared to the reference schemes, especially in terms of resource utilization, throughput, latency and outage probability. Regarding the second research direction that focuses on the mode selection, two different mode selection solutions referred to as MSSB and MS-RBRS strategies have been proposed for V2V communication over a cellular network. The MSSB strategy decides when it is appropriate to use one or the other mode, i.e. sidelink or cellular, for the involved vehicles, taking into account the quality of the links between V2V users, the available resources, and the network traffic load situation. Moreover, the MS-RBRS strategy not only selects the appropriate mode of operation but also decides efficiently the amount of resources needed by V2V links in each mode and allows reusing RBs between different SL users while guaranteeing the minimum signal to interference requirements. The conducted simulations have revealed that the MS-RBRS and MSSB strategies are beneficial in terms of throughput, radio resource utilization, outage probability and latency under different offered loads comparing to the reference scheme. Last, we have focused on the resource allocation problem including jointly mode selection and radio resource scheduling. For the mode selection, a novel mode selection has been presented to decide when it is appropriate to select sidelink mode and use a distributed approach for radio resource allocation or cellular mode and use a centralized radio resource allocation. It takes into account three aspects: the quality of the links between V2V users, the available resources, and the latency. As for the radio resource allocation, the proposed approach includes a distributed radio resource allocation for sidelink mode and a centralized radio resource allocation for cellular mode. The proposed strategy supports dynamic assignments by allowing transmission over mini-slots. A simulation-based analysis has shown that the proposed strategies improved the network performance in terms of latency of V2V services, packet success rate and resource utilization under different network loads.La tesis se centra en la provisión de comunicaciones para vehículos sistemas celulares (V2X: Vehicle to Everything), que han atraído un gran interés en el contexto de 5G debido a su potencial de mejorar la seguridad del tráfico y habilitar nuevos servicios relacionados con los sistemas inteligentes de transporte. Estos tipos de servicios tienen requisitos estrictos en términos fiabilidad, disponibilidad de acceso y latencia de extremo a extremo (E2E). Para ello, V2X requiere técnicas avanzadas de gestión de red que deben desarrollarse en función de las características de las redes y los requisitos de tráfico. La integración del Sidelink (SL), que permite la comunicación directa entre vehículos (es decir, vehículo a vehículo (V2V)) sin pasar por la estación base de las redes celulares, es una solución prometedora para mejorar el rendimiento de V2X en el sistema celular. En esta tesis, abordamos algunos de los desafíos derivados de la integración de la comunicación V2V en los sistemas celulares y validamos el potencial de esta tecnología al proporcionar soluciones de gestión de recursos adecuadas. Nuestras principales contribuciones han sido en el contexto del denominado "slicing" de redes de acceso radio, la selección de modo y los mecanismos de asignación de recursos radio. Respecto a la primera dirección de investigación que se centra en la gestión del RAN slicing, se ha propuesto una estrategia novedosa basada en Q-learning y toma de decisiones softmax como una solución para determinar la división adecuada de recursos entre un slice para comunicaciones eMBB y un slice para V2X. Luego, a partir del resultado del algoritmo de Q-learning, se ha propuesto una estrategia heurística de baja complejidad para lograr mejoras adicionales en el uso de los recursos. La solución propuesta se ha comparado con esquemas de referencia proporcionales y fijos. La evaluación ha revelado la capacidad de los algoritmos propuestos para mejorar el rendimiento de la red en comparación con los esquemas de referencia, especialmente en términos de utilización de recursos, rendimiento, y latencia . Con respecto a la segunda dirección de investigación que se centra en la selección de modo, se han propuesto dos soluciones de diferentes llamadas estrategias MSSB y MS-RBRS para la comunicación V2V a través de una red celular. La estrategia MSSB decide cuándo es apropiado usar el modo SL o el modo celular, para los vehículos involucrados, teniendo en cuenta la calidad de los enlaces entre los usuarios de V2V, los recursos disponibles y la situación de carga de tráfico de la red. Además, la estrategia MS-RBRS no solo selecciona el modo de operación apropiado, sino que también decide eficientemente la cantidad de recursos que los enlaces V2V necesitan en cada modo, y permite que los RB se reutilicen entre diferentes usuarios de SL al tiempo que garantiza requisitos mínimos de señal a interferencia. Se ha presentado un análisis basado en simulación para evaluar el desempeño de las estrategias propuestas. Finalmente, nos hemos centrado en el problema conjunto de la selección de modo y la asignación de recursos de radio. Para la selección de modo, se ha presentado una nueva estrategia para decidir cuándo es apropiado seleccionar el modo SL y usar un enfoque distribuido para la asignación de recursos de radio o el modo celular y usar la asignación de recursos de radio centralizada. Tiene en cuenta tres aspectos: la calidad de los enlaces entre los usuarios de V2V, los recursos disponibles y la latencia. En términos de asignación de recursos de radio, el enfoque propuesto incluye una asignación de recursos de radio distribuida para el modo SL y una asignación de recursos de radio centralizada para el modo celular. La estrategia propuesta admite asignaciones dinámicas al permitir la transmisión a través de mini-slots. Los resultados muestran las mejoras en términos de latencia, tasa de recepción y la utilización de recursos bajo diferentes cargas de red.Postprint (published version

    A survey on vehicular communication for cooperative truck platooning application

    Get PDF
    Platooning is an application where a group of vehicles move one after each other in close proximity, acting jointly as a single physical system. The scope of platooning is to improve safety, reduce fuel consumption, and increase road use efficiency. Even if conceived several decades ago as a concept, based on the new progress in automation and vehicular networking platooning has attracted particular attention in the latest years and is expected to become of common implementation in the next future, at least for trucks.The platoon system is the result of a combination of multiple disciplines, from transportation, to automation, to electronics, to telecommunications. In this survey, we consider the platooning, and more specifically the platooning of trucks, from the point of view of wireless communications. Wireless communications are indeed a key element, since they allow the information to propagate within the convoy with an almost negligible delay and really making all vehicles acting as one. Scope of this paper is to present a comprehensive survey on connected vehicles for the platooning application, starting with an overview of the projects that are driving the development of this technology, followed by a brief overview of the current and upcoming vehicular networking architecture and standards, by a review of the main open issues related to wireless communications applied to platooning, and a discussion of security threats and privacy concerns. The survey will conclude with a discussion of the main areas that we consider still open and that can drive future research directions.(c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Performance Analysis of Sidelink 5G-V2X Mode 2 through an Open-Source Simulator

    Get PDF
    The Third Generation Partnership Project (3GPP) has recently published a new set of specifications to enable advanced driving applications in fifth generation (5G) vehicle-to-everything (V2X) scenarios, with particular effort dedicated to the sidelink resource allocation in the autonomous mode, named Mode 2. In this paper, we conduct a comprehensive analysis of Mode 2 performance via an open-source system-level simulator, which implements the 5G New Radio (NR) flexible numerology and physical layer aspects together with the newly specified sidelink resource allocation modes for V2X communications and different data traffic patterns. Results collected through extensive simulation campaigns, under a wide variety of vehicle density, data transmission settings and traffic patterns, showcase the effects of the new 5G-V2X features on the sidelink resource allocation performance and provide some insights into possible ways to further improve Mode 2 performance

    A Framework for Quality of Service in Vehicle-to-Pedestrian Safety Communication

    Get PDF
    Vehicle-to-Everything (V2X) communication has emerged as an important mechanism to improve the safety and efficiency of road traffic. V2X communication encompasses Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-Pedestrian (V2P) communication. Among these types, the V2P communication efforts continue to be in the preliminary stage and lack a rounded approach towards the development of V2P systems. V2P involves communication between vehicles and a wide variety of Vulnerable Road Users (VRUs), such as pedestrians, bicyclists, mopeds, etc. The V2X systems were originally developed only for V2V and V2I when solely the vehicle characteristics were in focus. However, effective V2P system design needs to consider the characteristics of VRUs. The differing characteristics of VRUs have given rise to many questions while adapting to the V2V communication model for the V2P system. This dissertation addresses three aspects pertaining to the development of the V2P safety system. The first aspect involves a systematic design of a V2P system using a holistic approach. This dissertation proposes a V2P design framework based on various categories of inputs that are required for the design of an effective V2P system. This framework improves the understanding of the V2P system requirements and helps make the design process more systematic. The second aspect is the network performance of the V2X network in the presence of a large number of VRUs. This dissertation proposes MC-COCO4V2P, which is an energy-efficient pedestrian clustering mechanism for network congestion mitigation. MC-COCO4V2P improves network performance by reducing the pedestrian-generated safety messages. It also improves the battery life of the pedestrian devices in the process. The third aspect involves the reliability of communication between a pair of a vehicle and a pedestrian that are on the verge of collision. This dissertation classifies such crucial communication as the one requiring the highest priority even among the exchange of critical safety messages. It proposes a mechanism enabling the surrounding nodes to reduce the communication priority temporarily. This results in preferred medium access for the pair resulting in higher Quality-of-Service (QoS) for the crucial communication.Die Kommunikation zwischen Verkehrsteilnehmern (V2X) hat sich zu einem wichtigen Mechanismus zur Verbesserung der Sicherheit und Effizienz des Straßenverkehrs entwickelt. Obwohl die V2X-Kommunikation prinzipiell die Kommunikation zwischen Fahrzeugen (V2V), zwischen Fahrzeug und Infrastruktur (V2I) sowie zwischen Fahrzeug und Fußgänger (V2P) umfasst, sind Ansätze zur V2P-Kommunikation weiterhin in einem sehr frühen Stadium und lassen einen umfassenden Ansatz für die Entwicklung von V2P-Systemen vermissen. V2P umfasst im Detail die Kommunikation zwischen Fahrzeugen und einer Vielzahl von gefährdeten Verkehrsteilnehmern (VRUs), wie beispielsweise Fußgänger, Radfahrer oder Mopeds. V2X-Systeme wurden ursprünglich nur für V2V- und V2I-Kommunikation entwickelt, wobei ausschließlich die Fahrzeugeigenschaften im Fokus standen. Ein effektives V2P-Systemdesign muss jedoch auch die Eigenschaften von VRUs berücksichtigen, die bei der Berücksichtigung der V2P-Kommunikation in einem V2X-System viele Fragen aufwerfen. Diese Dissertation befasst sich mit drei Aspekten im Zusammenhang mit der Entwicklung eines V2P-Systems. Der erste Aspekt betrifft die systematische Konzeption eines V2P-Systems nach einem ganzheitlichen Ansatz. Diese Dissertation schlägt einen V2P-Entwurfsrahmen vor, der auf verschiedenen Eingangsgrößen basiert, die für die Entwicklung eines effektiven V2P-Systems erforderlich sind. Dieser Entwurfsrahmen verbessert das Verständnis der V2P-Systemanforderungen und trägt dazu bei, den Entwurfsprozess systematischer zu gestalten. Der zweite Aspekt betrifft die Leistung des V2X-Netzes, wenn eine große Anzahl von VRUs präsent ist. Diese Dissertation schlägt hierfür MC-COCO4V2P vor, einen energieeffizienten Clustering-Mechanismus für Fußgänger zur Eindämmung der Netzüberlastung. MC-COCO4V2P verbessert die Netzleistung, indem die Anzahl der von Fußgängern generierten Sicherheitsmeldungen reduziert wird. Damit wird zudem die Batterielebensdauer der von den Fußgängern genutzten Geräte verbessert. Der dritte Aspekt betrifft die Zuverlässigkeit der Kommunikation zwischen einem Fahrzeug und einem Fußgänger, die kurz vor einem Zusammenstoß stehen. Diese Dissertation stuft eine so wichtige Kommunikation als diejenige ein, die selbst beim Austausch anderer kritischer Sicherheitsnachrichten die höchste Priorität bekommt. Es wird ein Mechanismus vorgeschlagen, der es den umgebenden Verkehrsteilnehmern ermöglicht, ihre Kommunikationspriorität vorübergehend zu verringern. Dies führt zu einem bevorzugten Medienzugriff für die durch eine Kollision gefährdeten Verkehrsteilnehmer, was zu einer höheren Dienstgüte (QoS) für deren Kommunikation führt.Pedestrians and bicyclists, also known as Vulnerable Road Users (VRUs), are one of the weakest components of Intelligent Transportation Systems from a safety perspective. However, with the advent of new communication technologies, VRU protection may no longer be dependent solely on the vehicle’s safety systems. VRUs may share their location information with the surrounding vehicles to increase awareness of their presence. Such communication among vehicles and VRUs is referred to as Vehicle-to-Pedestrian (V2P) communication. Although the V2P system may be built upon the existing Vehicle-to-Vehicle communication system, it has its own set of challenges, such as different VRU mobility characteristics, energy-constrained devices, and VRU density. Therefore, there needs to be a V2P system model which is adapted to the VRU characteristics. This dissertation tackles this challenge by proposing a framework that enables scalability, reliability, and energy efficiency for VRU communication

    D6.3 Intermediate system evaluation results

    Full text link
    The overall purpose of METIS is to develop a 5G system concept that fulfil s the requirements of the beyond-2020 connected information society and to extend today’s wireless communication systems for new usage cases. First, in this deliverable an updated view on the overall METIS 5G system concept is presented. Thereafter, simulation results for the most promising technology components supporting the METIS 5G system concept are reported. Finally, s imulation results are presented for one relevant aspect of each Horizontal Topic: Direct Device - to - Device Communication, Massive Machine Communication, Moving Networks, Ultra - Dense Networks, and Ultra - Reliable Communication.Popovski, P.; Mange, G.; Fertl, P.; Gozálvez - Serrano, D.; Droste, H.; Bayer, N.; Roos, A.... (2014). D6.3 Intermediate system evaluation results. http://hdl.handle.net/10251/7676

    Efficient Rate-Splitting Multiple Access for the Internet of Vehicles: Federated Edge Learning and Latency Minimization

    Full text link
    Rate-Splitting Multiple Access (RSMA) has recently found favour in the multi-antenna-aided wireless downlink, as a benefit of relaxing the accuracy of Channel State Information at the Transmitter (CSIT), while in achieving high spectral efficiency and providing security guarantees. These benefits are particularly important in high-velocity vehicular platoons since their high Doppler affects the estimation accuracy of the CSIT. To tackle this challenge, we propose an RSMA-based Internet of Vehicles (IoV) solution that jointly considers platoon control and FEderated Edge Learning (FEEL) in the downlink. Specifically, the proposed framework is designed for transmitting the unicast control messages within the IoV platoon, as well as for privacy-preserving FEEL-aided downlink Non-Orthogonal Unicasting and Multicasting (NOUM). Given this sophisticated framework, a multi-objective optimization problem is formulated to minimize both the latency of the FEEL downlink and the deviation of the vehicles within the platoon. To efficiently solve this problem, a Block Coordinate Descent (BCD) framework is developed for decoupling the main multi-objective problem into two sub-problems. Then, for solving these non-convex sub-problems, a Successive Convex Approximation (SCA) and Model Predictive Control (MPC) method is developed for solving the FEEL-based downlink problem and platoon control problem, respectively. Our simulation results show that the proposed RSMA-based IoV system outperforms the conventional systems
    corecore