5,762 research outputs found

    Cooperative Hyper-Scheduling based improving Energy Aware Life Time Maximization in Wireless Body Sensor Network Using Topology Driven Clustering Approach

    Get PDF
    The Wireless Body Sensor Network (WBSN) is an incredible developing data transmission network for modern day communication especially in Biosensor device networks. Due to energy consumption in biomedical data transfer have impacts of sink nodes get loss information on each duty cycle because of Traffic interruptions. The reason behind the popularity of WBSN characteristics contains number of sensor nodes to transmit data in various dense regions. Due to increasing more traffic, delay, bandwidth consumption, the energy losses be occurred to reduce the lifetime of the WBSN transmission. So, the sensor nodes are having limited energy or power, by listening to the incoming signals, it loses certain amount of energy to make data losses because of improper route selection. To improve the energy aware lifetime maximization through Traffic Aware Routing (TAR) based on scheduling. Because the performance of scheduling is greatly depending on the energy of nodes and lifetime of the network. To resolve this problem, we propose a Cooperative Hyper-scheduling (CHS) based improving energy aware life time maximization (EALTM) in Wireless Body sensor network using Topology Driven Clustering Approach (TDCA).Initially the method maintains the traces of transmission performed by different Bio-sensor nodes in different duty cycle. The method considers the energy of different nodes and history of earlier transmission from the Route Table (RT) whether the transmission behind the Sink node. Based on the RT information route discovery was performed using Traffic Aware Neighbors Discovery (TAND) to estimate Data Transmission Support Measure (DTSM) on each Bio-sensor node which its covers sink node. These nodes are grouped into topology driven clustering approach for route optimization. Then the priority is allocated based on The Max-Min DTSM, the Cooperative Hyper-scheduling was implemented to schedule the transmission with support of DTSM to reduce the energy losses in WBSN. This improves the energy level to maximization the life time of data transmission in WBSN than other methods to produce best performance in throughput energy level

    Energy-Optimal Scheduling in Low Duty Cycle Sensor Networks

    Get PDF
    Energy consumption of a wireless sensor node mainly depends on the amount of time the node spends in each of the high power active (e.g., transmit, receive) and low power sleep modes. It has been well established that in order to prolong node's lifetime the duty-cycle of the node should be low. However, low power sleep modes usually have low current draw but high energy cost while switching to the active mode with a higher current draw. In this work, we investigate a MaxWeightlike opportunistic sleep-active scheduling algorithm that takes into account time- varying channel and traffic conditions. We show that our algorithm is energy optimal in the sense that the proposed ESS algorithm can achieve an energy consumption which is arbitrarily close to the global minimum solution. Simulation studies are provided to confirm the theoretical results

    The Bus Goes Wireless: Routing-Free Data Collection with QoS Guarantees in Sensor Networks

    Get PDF
    Abstract—We present the low-power wireless bus (LWB), a new communication paradigm for QoS-aware data collection in lowpower sensor networks. The LWB maps all communication onto network floods by using Glossy, an efficient flooding architecture for wireless sensor networks. Therefore, unlike current solutions, the LWB requires no information of the network topology, and inherently supports networks with mobile nodes and multiple data sinks. A LWB prototype implemented in Contiki guarantees bounded end-to-end communication delay and duplicate-free, inorder packet delivery—key QoS requirements in many control and mission-critical applications. Experiments on two testbeds demonstrate that the LWB prototype outperforms state-of-theart data collection and link layer protocols, in terms of reliability and energy efficiency. For instance, we measure an average radio duty cycle of 1.69 % and an overall data yield of 99.97 % in a typical data collection scenario with 85 sensor nodes on Twist. I

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    RTXP : A Localized Real-Time Mac-Routing Protocol for Wireless Sensor Networks

    Get PDF
    Protocols developed during the last years for Wireless Sensor Networks (WSNs) are mainly focused on energy efficiency and autonomous mechanisms (e.g. self-organization, self-configuration, etc). Nevertheless, with new WSN applications, appear new QoS requirements such as time constraints. Real-time applications require the packets to be delivered before a known time bound which depends on the application requirements. We particularly focus on applications which consist in alarms sent to the sink node. We propose Real-Time X-layer Protocol (RTXP), a real-time communication protocol. To the best of our knowledge, RTXP is the first MAC and routing real-time communication protocol that is not centralized, but instead relies only on local information. The solution is cross-layer (X-layer) because it allows to control the delays due to MAC and Routing layers interactions. RTXP uses a suited hop-count-based Virtual Coordinate System which allows deterministic medium access and forwarder selection. In this paper we describe the protocol mechanisms. We give theoretical bound on the end-to-end delay and the capacity of the protocol. Intensive simulation results confirm the theoretical predictions and allow to compare with a real-time centralized solution. RTXP is also simulated under harsh radio channel, in this case the radio link introduces probabilistic behavior. Nevertheless, we show that RTXP it performs better than a non-deterministic solution. It thus advocates for the usefulness of designing real-time (deterministic) protocols even for highly unreliable networks such as WSNs
    • …
    corecore