137 research outputs found

    Dynamic base station energy saving with relays

    Get PDF

    Dynamic base station energy saving with relays

    Get PDF

    Energy efficiency and interference management in long term evolution-advanced networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Cellular networks are continuously undergoing fast extraordinary evolution to overcome technological challenges. The fourth generation (4G) or Long Term Evolution-Advanced (LTE-Advanced) networks offer improvements in performance through increase in network density, while allowing self-organisation and self-healing. The LTE-Advanced architecture is heterogeneous, consisting of different radio access technologies (RATs), such as macrocell, smallcells, cooperative relay nodes (RNs), having various capabilities, and coexisting in the same geographical coverage area. These network improvements come with different challenges that affect users’ quality of service (QoS) and network performance. These challenges include; interference management, high energy consumption and poor coverage of marginal users. Hence, developing mitigation schemes for these identified challenges is the focus of this thesis. The exponential growth of mobile broadband data usage and poor networks’ performance along the cell edges, result in a large increase of the energy consumption for both base stations (BSs) and users. This due to improper RN placement or deployment that creates severe inter-cell and intracell interferences in the networks. It is therefore, necessary to investigate appropriate RN placement techniques which offer efficient coverage extension while reducing energy consumption and mitigating interference in LTE-Advanced femtocell networks. This work proposes energy efficient and optimal RN placement (EEORNP) algorithm based on greedy algorithm to assure improved and effective coverage extension. The performance of the proposed algorithm is investigated in terms of coverage percentage and number of RN needed to cover marginalised users and found to outperform other RN placement schemes. Transceiver design has gained importance as one of the effective tools of interference management. Centralised transceiver design techniques have been used to improve network performance for LTE-Advanced networks in terms of mean square error (MSE), bit error rate (BER) and sum-rate. The centralised transceiver design techniques are not effective and computationally feasible for distributed cooperative heterogeneous networks, the systems considered in this thesis. This work proposes decentralised transceivers design based on the least-square (LS) and minimum MSE (MMSE) pilot-aided channel estimations for interference management in uplink LTE-Advanced femtocell networks. The decentralised transceiver algorithms are designed for the femtocells, the macrocell user equipments (MUEs), RNs and the cell edge macrocell UEs (CUEs) in the half-duplex cooperative relaying systems. The BER performances of the proposed algorithms with the effect of channel estimation are investigated. Finally, the EE optimisation is investigated in half-duplex multi-user multiple-input multiple-output (MU-MIMO) relay systems. The EE optimisation is divided into sub-optimal EE problems due to the distributed architecture of the MU-MIMO relay systems. The decentralised approach is employed to design the transceivers such as MUEs, CUEs, RN and femtocells for the different sub-optimal EE problems. The EE objective functions are formulated as convex optimisation problems subject to the QoS and transmit powers constraints in case of perfect channel state information (CSI). The non-convexity of the formulated EE optimisation problems is surmounted by introducing the EE parameter substractive function into each proposed algorithms. These EE parameters are updated using the Dinkelbach’s algorithm. The EE optimisation of the proposed algorithms is achieved after finding the optimal transceivers where the unknown interference terms in the transmit signals are designed with the zero-forcing (ZF) assumption and estimation errors are added to improve the EE performances. With the aid of simulation results, the performance of the proposed decentralised schemes are derived in terms of average EE evaluation and found to be better than existing algorithms

    Cooperative diversity schemes for wireless communication systems

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesA presente dissertação insere-se na área das comunicações sem fios, ou mais especificamente na temática da diversidade cooperativa. Neste trabalho é feito o estudo, implementação e avaliação do desempenho de esquemas de diversidade cooperativa de baixa complexidade para sistemas de comunicação móvel. Estes esquemas são mapeados em modelos de simulação baseados em OFDMA e são completamente simulados em CoCentric System Studio. Os resultados obtidos com os modelos desenvolvidos mostram que os esquemas de diversidade cooperativa atenuam os efeitos do desvanecimento induzido pela propagação multipercurso, aumentando desta forma a capacidade e cobertura dos sistemas wireless. Os ganhos são particularmente altos quando as perdas de percurso são consideráveis, como é o caso das zonas urbanas densas. ABSTRACT: This dissertation is inserted into the wireless communication, or more specifically, into the cooperative diversity field. within this thesis, the performance of low-complexity cooperative diversity schemes projected for mobile communication systems are studied, implemented and evaluated. These schemes are mapped into simulation models based on OFDMA and are fully simulated in the CoCentric System Studio environment. The obtained results show that the proposed cooperative schemes for the uplink communication mitigate fading induced by multipath propagation, thereby increasing the capacity and coverage of wireless systems. Cooperation gains are particularly high when multipath losses are considerable, as is the case for dense urban regions

    Distributed radio resource management in LTE-advanced networks with type 1 relay

    Get PDF
    Long Term Evolution (LTE)-Advanced is proposed as a candidate of the 4th generation (4G) mobile telecommunication systems. As an evolved version of LTE, LTE- Advanced is also based on Orthogonal Frequency Division Multiplexing (OFDM) and in addition, it adopts some emerging technologies, such as relaying. Type I relay nodes, de_ned in LTE-Advanced standards, can control their cells with their own reference signals and have Radio Resource Management (RRM) functionalities. The rationale of RRM is to decide which resources are allocated to which users for optimising performance metrics, such as throughput, fairness, power consumption and Quality of Service (QoS). The RRM techniques in LTE-Advanced networks, including route selection, resource partitioning and resource scheduling, are facing new challenges brought by Type 1 relay nodes and increasingly becoming research focuses in recent years. The research work presented in this thesis has made the following contributions. A service-aware adaptive bidirectional optimisation route selection strategy is proposed to consider both uplink optimisation and downlink optimisation according to service type. The load between di_erent serving nodes, including eNBs and relay nodes, are rebalanced under the _xed resource partitioning. The simulation results show that larger uplink throughputs and bidirectional throughputs can be achieved, compared with existing route selection strategies. A distributed two-hop proportional fair resource allocation scheme is proposed in order to provide better two-hop end-to-end proportional fairness for all the User Equipments (UEs), especially for the relay UEs. The resource partitioning is based on the cases of none Frequency Reuse (FR) pattern, full FR pattern and partial FR patterns. The resource scheduling in access links and backhaul links are considered jointly. A proportional fair joint route selection and resource partitioning algorithm isproposed to obtain an improved solution to the two-hop Adaptive Partial Frequency Reusing (APFR) problem with one relay node per cell. In addition, two special situations of APFR, full FR and no FR, are utilised to narrow the iterative search range of the proposed algorithm and reduce its complexity

    Efficient and Virtualized Scheduling for OFDM-Based High Mobility Wireless Communications Objects

    Get PDF
    Services providers (SPs) in the radio platform technology standard long term evolution (LTE) systems are enduring many challenges in order to accommodate the rapid expansion of mobile data usage. The modern technologies demonstrate new challenges to SPs, for example, reducing the cost of the capital and operating expenditures while supporting high data throughput per customer, extending battery life-per-charge of the cell phone devices, and supporting high mobility communications with fast and seamless handover (HO) networking architecture. In this thesis, a variety of optimized techniques aimed at providing innovative solutions for such challenges are explored. The thesis is divided into three parts. The first part outlines the benefits and challenges of deploying virtualized resource sharing concept. Wherein, SPs achieving a different schedulers policy are sharing evolved network B, allowing SPs to customize their efforts and provide service requirements; as a promising solution for reducing operational and capital expenditures, leading to potential energy savings, and supporting higher peak rates. The second part, formulates the optimized power allocation problem in a virtualized scheme in LTE uplink systems, aiming to extend the mobile devices’ battery utilization time per charge. While, the third part extrapolates a proposed hybrid-HO (HY-HO) technique, that can enhance the system performance in terms of latency and HO reliability at cell boundary for high mobility objects (up to 350 km/hr; wherein, HO will occur more frequent). The main contributions of this thesis are in designing optimal binary integer programmingbased and suboptimal heuristic (with complexity reduction) scheduling algorithms subject to exclusive and contiguous allocation, maximum transmission power, and rate constraints. Moreover, designing the HY-HO based on the combination of soft and hard HO was able to enhance the system performance in term of latency, interruption time and reliability during HO. The results prove that the proposed solutions effectively contribute in addressing the challenges caused by the demand for high data rates and power transmission in mobile networks especially in virtualized resources sharing scenarios that can support high data rates with improving quality of services (QoSs)

    Radio Resource Management for Cellular Networks Enhanced by Inter-User Communication

    Get PDF
    The importance of radio resource management will be more and more emphasized in future wireless communication systems. For fair penetration of wireless services and for improved local services, inter-user communication has been receiving wide attention as it opens up various possibilities for user cooperation. The capability of inter-user communication imposes higher demands on radio resource management as additional considerations are needed. The demands for intelligent management of radio resources is also emphasized by the sparsity of radio resources. As the available spectral resources are assessed as under-utilized, much effort is devoted to developing advanced resource management methods for improving the spectral usage efficiency. The research of this thesis has contributed to the radio resource management for cellular networks enhanced by inter-user communication. Recognizing that inter-user communication can be used for message relaying or for direct communication purposes, two use cases are considered that leverage the synergy of users: cooperative relay selection and Device-to-Device (D2D) communication. We identify the importance of stochastic geometry consideration on cellular users for evaluating system performance in cooperative networking. We develop an algorithm for efficiently selecting cooperative users to maximize an End-to-End (e2e) performance metric. We analyze the optimal resource sharing problem between D2D communication and infrastructure-supported communication. We study the impact of imperfect Channel State Information (CSI) on the performance of systems with inter-user communication. Simulation results show that the performance of users with unfavorable propagation conditions can be improved with cooperative communication in a multi-cell cellular environment, at the expense of radio resources. Further, our results show that the selection of multiple cooperative users is beneficial in cases where the candidate cooperative users are spatially distributed. For resource sharing between the D2D and infrastructure-supported communication, our results show that the proposed resource sharing scheme enables higher intra-cell resource reuse without blocking the infrastructure-supported communication

    Handover management strategies in LTE-advanced heterogeneous networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Meeting the increasing demand for data due to the proliferation of high-specification mobile devices in the cellular systems has led to the improvement of the Long Term Evolution (LTE) framework to the LTE-Advanced systems. Different aspects such as Massive Multiple-Input Multiple Output (MIMO), Orthogonal Frequency Division Multiple Access (OFDMA), heterogeneous networks and Carrier Aggregation have been considered in the LTE-Advanced to improve the performance of the system. The small cells like the femtocells and the relays play a significant role in increasing the coverage and the capacity of the mobile cellular networks in LTE-Advanced (LTE-A) heterogeneous network. However, the user equipment (UE) are faced with the frequent handover problems in the heterogeneous systems than the homogeneous systems due to the users‟ mobility and densely populated cells. The objective of this research work is to analyse the handover performance in the current LTE/LTE-A network and to propose various handover management strategies to handle the frequent handover problems in the LTE-Advance heterogeneous networks. To achieve this, an event driven simulator using C# was developed based on the 3GPP LTE/LTE-A standard to evaluate the proposed strategies. To start with, admission control which is a major requirement during the handover initiation stage is discussed and this research work has therefore proposed a channel borrowing admission control scheme for the LTE-A networks. With this scheme in place, resources are better utilized and more calls are accepted than in the conventional schemes where the channel borrowing is not applied. Also proposed is an enhanced strategy for the handover management in two-tier femtocell-macrocell networks. The proposed strategy takes into consideration the speed of user and other parameters in other to effectively reduce the frequent and unnecessary handovers, and as well as the ratio of target femtocells in the system. We also consider scenarios such as the one that dominate the future networks where femtocells will be densely populated to handle very heavy traffic. To achieve this, a Call Admission Control (CAC)-based handover management strategy is proposed to manage the handover in dense femtocell-macrocell integration in the LTE-A network. The handover probability, the handover call dropping probability and the call blocking probability are reduced considerably with the proposed strategy. Finally, the handover management for the mobile relays in a moving vehicle is considered (using train as a case study). We propose a group handover strategy where the Mobile Relay Node (MRN) is integrated with a special mobile device called “mdev” to prepare the group information prior to the handover time. This is done to prepare the UE‟s group information and services for timely handover due to the speed of the train. This strategy reduces the number of handovers and the call dropping probability in the moving vehicle.Publications and conferences listed on page iv-v

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Aumento de capacidade em sistemas MIMO coordenados para advanced LTE com utilização de repetidores fixos

    Get PDF
    Com vista a revolucionar o sector das comunicações móveis, muito à custa dos elevados débitos prometidos, a tecnologia LTE recorre a uma técnica que se prevê que seja bastante utilizada nas futuras redes de comunicações móveis: Relaying. Juntamente com esta técnica, o LTE recorre à técnica MIMO, para melhorar a qualidade da transmissão em ambientes hostis e oferecer elevados ritmos de transmissão. No planeamento das próximas redes LTE, o recurso à técnica Relaying é frequente. Esta técnica, tem como objectivo aumentar a cobertura e/ou capacidade da rede, e ainda melhorar o seu desempenho em condições de fronteira de célula. A performance de uma RS depende da sua localização, das condições de propagação do canal rádio a que tanto a RS como o EU estão sujeitos, e ainda da capacidade que a RS tem de receber, processar e reencaminhar a informação. O objectivo da tese é estudar a relação existente entre o posicionamento de uma RS e o seu desempenho. Desta forma, pretende-se concluir qual a posição ideal de uma RS (tanto do tipo AF como SDF). Para além deste estudo, é apresentado um comparativo do desempenho dos modos MIMO TD e OL-SM, onde se conclui em que condições deverão ser utilizados, numa rede LTE equipada com FRSs.With the aim of providing high data rates, the Long Term Evolution (LTE) standard makesuse of relaying as one of the important techniques for new mobile networks. LTE will alsomake use of the Multiple-Input Multiple-Output (MIMO) technique, to improve the transmission’s quality in hostile environments and to offer very high data rates. The relay solution in mobile networks planning is a highly used technique in next LTEnetworks. This technique has the aim of increasing the network coverage and/or capacityand improves the cell edge throughput. The Relay Station (RS) performance depends on itsposition in the cell, the radio conditions to which the RS and the User Equipment (UE) are subjected, and the RS capability to receive process and forward the information. The aim of this thesis is to conclude about the optimized position in which a RS (fromtypes Amplify and Forward (AF)/ Selective Decode and Forward (SDF)) should be placed,with the aim of maximizing the UE throughput. Furthermore, to compare the performanceof Transmit Diversity (TD) versus Open-Loop Spatial Multiplexing (OL-SM) MIMO in LTE,and under which conditions they should be used, in a network equipped with Fixed RelayStations (FRSs)
    corecore