263 research outputs found

    Artificial neural-network technique for precipitation nowcasting from satellite imagery

    Get PDF
    The term nowcasting reflects the need of timely and accurate predictions of risky situations related to the development of severe meteorological events. In this work the objective is the very short term prediction of the rainfall field from geostationary satellite imagery entirely based on neural network approach. The very short-time prediction (or nowcasting) process consists of two steps: first, the infrared radiance field measured from geostationary satellite (Meteosat 7) is projected ahead in time (30 min or 1 h); secondly, the projected radiances are used to estimate the rainfall field by means of a calibrated microwave-based combined algorithm. The methodology is discussed and its accuracy is quantified by means of error indicators. An application to a satellite observation of a rainfall event over Central Italy is finally shown and evaluated

    Precipitation Measurements From Space: Workshop report. An element of the climate observing system study

    Get PDF
    Global climate, agricultural uses for precipitation information, hydrological uses for precipitation, severe thunderstorms and local weather, global weather are addressed. Ground truth measurement, visible and infrared techniques, microwave radiometry and hybrid precipitation measurements, and spaceborne radar are discussed

    Earth resources: A continuing bibliography, issue 46

    Get PDF
    This bibliography lists 467 reports, articles and other documents introdcued into the NASA scientific and technical information system between April 1 and June 30, 1985. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental cultural resources geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    Satellite rainfall estimates: new perspectives for meteorology and climate from the EURAINSAT project

    Get PDF
    Satellite meteorology is facing a crucial period of its history since recent missions have revealed instrumental for quantitative rainfall measurements from space and newly conceived missions are at hand. International partnership is rapidly developing and research projects keep the community focused on rapidly developing research and operational issues. A perspective is given through the structure of EURAINSAT, a project of the 5th Framework Programme of the European Commission. Its key objective is the development of algorithms for rapidly-updated satellite rainfall estimations at the geostationary scale. The project is fostering international research on satellite rainfall estimations building a bridge between Europe and the U.S. for present and future missions

    Earth resources: A continuing bibliography with indexes (issue 58)

    Get PDF
    This bibliography lists 500 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Microwave remote sensing from space

    Get PDF
    Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms--soil and vegetation moisture, ice, wetlands, oceans, and atmospheric water vapor, and can provide high-resolution imagery of the earth's surface independent of cloud cover or sun angle. A brief review of the historical development and principles of active and passive microwave remote sensing is presented, with emphasis on the unique characteristics of the information obtainable in the microwave spectrum and the value of this information to global geoscientific studies. Various spaceborne microwave remote sensors are described, with applications to geology, planetology, oceanography, glaciology, land biology, meteorology, and hydrology. A discussion of future microwave remote sensor technological developments and challenges is presented, along with a summary of future missions being planned by several countries

    Atmospheric remote sensing and radiopropagation: from numerical modeling to spaceborne and terrestrial applications

    Get PDF
    The remote sensing of electromagnetic wave properties is probably the most viable and fascinating way to observe and study physical media, comprising our planet and its atmosphere, at the same time ensuring a proper continuity in the observations. Applications are manifold and the scientific community has been importantly studying and investing on new technologies, which would let us widen our knowledge of what surrounds us. This thesis aims at showing some novel techniques and corresponding applications in the field of the atmospheric remote sensing and radio-propagation, at both microwave and optical wavelengths. The novel Sun-tracking microwave radiometry technique is shown. The antenna noise temperature of a ground-based microwave radiometer is measured by alternately pointing toward-the-Sun and off-the-Sun while tracking it along its diurnal ecliptic. During clear sky the brightness temperature of the Sun disk emission at K and Ka frequency bands and in the under-explored millimeter-wave V and W bands can be estimated by adopting different techniques. Parametric prediction models for retrieving all-weather atmospheric extinction from ground-based microwave radiometers are tested and their accuracy evaluated. Moreover, a characterization of suspended clouds in terms of atmospheric path attenuation is presented, by exploiting a stochastic approach used to model the time evolution of the cloud contribution. A model chain for the prediction of the tropospheric channel for the downlink of interplanetary missions operating above Ku band is proposed. On top of a detailed description of the approach, the chapter presents the validation results and examples of the model-chain online operation. Online operation has already been tested within a feasibility study applied to the BepiColombo mission to Mercury operated by the European Space Agency (ESA) and by exploiting the Hayabusa-2 mission Ka-band data by the Japan Aerospace Exploration Agency (JAXA), thanks to the ESA cross-support service. A preliminary (and successful) validation of the model-chain has been carried out by comparing the simulated signal-to-noise ratio with the one received from Hayabusa-2. At the next ITU World Radiocommunication Conference 2019, Agenda Item 1.13 will address the identification and the possible additional allocation of radio-frequency spectrum to serve the future development of systems supporting the fifth generation of cellular mobile communications (5G). The potential impact of International Mobile Telecommunications (IMT) deployments is shown in terms of received radio frequency interference by ESA’s telecommunication links. Received interference can derive from several radio-propagation mechanisms, which strongly depend on atmospheric conditions, radio frequency, link availability, distance and path topography; at any time a single mechanism, or more than one may be present. Results are shown in terms of required separation distances, i.e. the minimum distance between the earth station and the IMT station ensuring that the protection criteria for the earth station are met

    Earth resources: A continuing bibliography with indexes (issue 60)

    Get PDF
    This bibliography lists 485 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors

    Earth Resources: A continuing bibliography with indexes, issue 40

    Get PDF
    This bibliography lists 423 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1983. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    NASA oceanic processes program: Status report, fiscal year 1980

    Get PDF
    Goals, philosophy, and objectives of NASA's Oceanic Processes Program are presented as well as detailed information on flight projects, sensor developments, future prospects, individual investigator tasks, and recent publications. A special feature is a group of brief descriptions prepared by leaders in the oceanographic community of how remote sensing might impact various areas of oceanography during the coming decade
    • …
    corecore