26 research outputs found

    Potential of Forest Parameter Estimation Using Metrics from Photon Counting LiDAR Data in Howland Research Forest

    Get PDF
    ICESat-2 is the new generation of NASA’s ICESat (Ice, Cloud and land Elevation Satellite) mission launched in September 2018. We investigate the potential of forest parameter estimation using metrics from photon counting LiDAR data, using an integrated dataset including photon counting LiDAR data from SIMPL (the Slope Imaging Multi-polarization Photon-counting LiDAR), airborne small footprint LiDAR data from G-LiHT and a stem map in Howland Research Forest, USA. First, we propose a noise filtering method based on a local outlier factor (LOF) with elliptical search area to separate the ground and canopy surfaces from noise photons. Next, a co-registration technique based on moving profiling is applied between SIMPL and G-LiHT data to correct geolocation error. Then, we calculate height metrics from both SIMPL and G-LiHT. Finally, we investigate the relationship between the two sets of metrics, using a stem map from field measurement to validate the results. Results of the ground and canopy surface extraction show that our methods can detect the potential signal photons effectively from a quite high noise rate environment in relatively rough terrain. In addition, results from co-registration between SIMPL and G-LiHT data indicate that the moving profiling technique to correct the geolocation error between these two datasets achieves favorable results from both visual and statistical indicators validated by the stem map. Tree height retrieval using SIMPL showed error of less than 3 m. We find good consistency between the metrics derived from the photon counting LiDAR from SIMPL and airborne small footprint LiDAR from G-LiHT, especially for those metrics related to the mean tree height and forest fraction cover, with mean R 2 value of 0.54 and 0.6 respectively. The quantitative analyses and validation with field measurements prove that these metrics can describe the relevant forest parameters and contribute to possible operational products from ICESat-2

    THE UNCERTAINTY OF SPACEBORNE OBSERVATION OF VEGETATION STRUCTURE IN THE TAIGA-TUNDRA ECOTONE: A CASE STUDY IN NORTHERN SIBERIA

    Get PDF
    The ability to characterize vegetation structure in the taiga-tundra ecotone (TTE) at fine spatial scales is critical given its heterogeneity and the central role of its patterns on ecological processes in the high northern latitudes and global change scenarios. This research focuses on quantifying the uncertainty of TTE forest structure observations from remote sensing at fine spatial scales. I first quantify the uncertainty of forest biomass estimates from current airborne and spaceborne active remote sensing systems and a planned spaceborne LiDAR (ICESat-2) across sparse forest gradients. At plot-scales, current spaceborne models of biomass either explain less than a third of model variation or have biomass estimate uncertainties ranging from 50-100%. Simulations of returns from the planned ICESat-2 for a similar gradient show the uncertainty of near-term estimates vary according to the ground length along which returns are collected. The 50m length optimized the resolution of forest structure, for which there is a trade-off between horizontal precision of the measurement and vertical structure detail. At this scale biomass error ranges from 20-50%, which precludes identifying actual differences in aboveground live biomass density at 10 Mg‱ha-1 intervals. These broad plot-scale uncertainties in structure from current and planned sensors provided the basis for examining a data integration technique with multiple sensors to measure the structure of sparse TTE forests. Spaceborne estimates of canopy height used complementary surface elevation measurements from passive optical and LiDAR to provide a means for directly measuring TTE forest height from spaceborne sensors. This spaceborne approach to estimating forest height was deployed to assess the spaceborne potential for examining the patterns of TTE forest structure explained with a conceptual biogeographic model linking TTE patterns and its dynamics. A patch-based analysis was used to scale estimates of TTE forest structure from multiple sensors and provided a means to simultaneously examine the horizontal and vertical structure of groups of TTE trees. The uncertainty of forest patch height estimates provides focus for improving spaceborne depictions of TTE structure patterns associated with recent change that may explain the variability of this change and the vulnerability of TTE forest structure

    Remote Sensing Applications in Monitoring of Protected AreasA Bibliometric Analysis

    Get PDF
    The development of remote sensing platforms and sensors and improvement in science and technology provide crucial support for the monitoring and management of protected areas. This paper presents an analysis of research publications, from a bibliometric perspective, on the remote sensing of protected areas. This analysis is focused on the period from 1991 to 2018. For data, a total of 4546 academic publications were retrieved from the Web of Science database. The VOSviewer software was adopted to evaluate the co-authorships among countries and institutions, as well as the co-occurrences of author keywords. The results indicate an increasing trend of annual publications in the remote sensing of protected areas. This analysis reveals the major topical subjects, leading countries, and most influential institutions around the world that have conducted relevant research in scientific publications; this study also reveals the journals that include the most publications, and the collaborative patterns related to the remote sensing of protected areas. Landsat, MODIS, and LiDAR are among the most commonly used satellites and sensors. Research topics related to protected area monitoring are mainly concentrated on change detection, biodiversity conservation, and climate change impact. This analysis can help researchers and scholars better understand the intellectual structure of the field and identify the future research directions

    The Development of Regional Forest Inventories Through Novel Means

    Get PDF
    For two decades Light Detection and Ranging (LiDAR) data has been used to develop spatially-explicit forest inventories. Data derived from LiDAR depict three-dimensional forest canopy structure and are useful for predicting forest attributes such as biomass, stem density, and species. Such enhanced forest inventories (EFIs) are useful for carbon accounting, forest management, and wildlife habitat characterization by allowing practitioners to target specific areas without extensive field work. Here in New England, LiDAR data covers nearly the entire geographical extent of the region. However, until now the region’s forest attributes have not been mapped. Developing regional inventories has traditionally been problematic because most regions – including New England – are comprised of a patchwork of datasets acquired with various specifications. These variations in specifications prohibit developing a single set of predictive models for a region. The purpose of this work is to develop a new set of modeling techniques, allowing for EFIs consisting of disparate LiDAR datasets. The work presented in the first chapter improves upon existing LiDAR modeling techniques by developing a new set of metrics for quantifying LiDAR based on ecological ii principles. These fall into five categories: canopy height, canopy complexity, individual tree attributes, crowding, and abiotic. These metrics were compared to those traditionally used, and results indicated that they are a more effective means of modeling forest attributes across multiple LiDAR datasets. In the following chapters, artificial intelligence (AI) algorithms were developed to interpret LiDAR data and make forest predictions. After settling on the optimal algorithm, we incorporated satellite spectral, disturbance, and climate data. Our results indicated that this approach dramatically outperformed the traditional modeling techniques. We then applied the AI model to the region’s LiDAR, developing 10 m resolution wall-to-wall forest inventory maps of fourteen forest attributes. We assessed error using U.S. federal inventory data, and determined that our EFIs did not differ significantly in 33, 25, and 30/38 counties when predicting biomass, percent conifer, and stem density. We were ultimately able to develop the region’s most complete and detailed forest inventories. This will allow practitioners to assess forest characteristics without the cost and effort associated with extensive field-inventories

    A new generation of sensors and monitoring tools to support climate-smart forestry practices

    Get PDF
    Climate-smart forestry (CSF) is an emerging branch of sustainable adaptive forest management aimed at enhancing the potential of forests to adapt to and mitigate climate change. It relies on much higher data requirements than traditional forestry. These data requirements can be met by new devices that support continuous, in situ monitoring of forest conditions in real time. We propose a comprehensive network of sensors, i.e., a wireless sensor network (WSN), that can be part of a worldwide network of interconnected uniquely addressable objects, an Internet of Things (IoT), which can make data available in near real time to multiple stakeholders, including scientists, foresters, and forest managers, and may partially motivate citizens to participate in big data collection. The use of in situ sources of monitoring data as ground-truthed training data for remotely sensed data can boost forest monitoring by increasing the spatial and temporal scales of the monitoring, leading to a better understanding of forest processes and potential threats. Here, some of the key developments and applications of these sensors are outlined, together with guidelines for data management. Examples are given of their deployment to detect early warning signals (EWS) of ecosystem regime shifts in terms of forest productivity, health, and biodiversity. Analysis of the strategic use of these tools highlights the opportunities for engaging citizens and forest managers in this new generation of forest monitoring.Peer reviewe

    A new generation of sensors and monitoring tools to support climate-smart forestry practices

    Get PDF
    Climate-smart forestry (CSF) is an emerging branch of sustainable adaptive forest management aimed at enhancing the potential of forests to adapt to and mitigate climate change. It relies on much higher data requirements than traditional forestry. These data requirements can be met by new devices that support continuous, in situ monitoring of forest conditions in real time. We propose a comprehensive network of sensors, i.e., a wireless sensor network (WSN), that can be part of a worldwide network of interconnected uniquely addressable objects, an Internet of Things (IoT), which can make data available in near real time to multiple stakeholders, including scientists, foresters, and forest managers, and may partially motivate citizens to participate in big data collection. The use of in situ sources of monitoring data as ground-truthed training data for remotely sensed data can boost forest monitoring by increasing the spatial and temporal scales of the monitoring, leading to a better understanding of forest processes and potential threats. Here, some of the key developments and applications of these sensors are outlined, together with guidelines for data management. Examples are given of their deployment to detect early warning signals (EWS) of ecosystem regime shifts in terms of forest productivity, health, and biodiversity. Analysis of the strategic use of these tools highlights the opportunities for engaging citizens and forest managers in this new generation of forest monitoring.Peer reviewe

    Arrayed LiDAR signal analysis for automotive applications

    Get PDF
    Light detection and ranging (LiDAR) is one of the enabling technologies for advanced driver assistance and autonomy. Advances in solid-state photon detector arrays offer the potential of high-performance LiDAR systems but require novel signal processing approaches to fully exploit the dramatic increase in data volume an arrayed detector can provide. This thesis presents two approaches applicable to arrayed solid-state LiDAR. First, a novel block independent sparse depth reconstruction framework is developed, which utilises a random and very sparse illumination scheme to reduce illumination density while improving sampling times, which further remain constant for any array size. Compressive sensing (CS) principles are used to reconstruct depth information from small measurement subsets. The smaller problem size of blocks reduces the reconstruction complexity, improves compressive depth reconstruction performance and enables fast concurrent processing. A feasibility study of a system proposal for this approach demonstrates that the required logic could be practically implemented within detector size constraints. Second, a novel deep learning architecture called LiDARNet is presented to localise surface returns from LiDAR waveforms with high throughput. This single data driven processing approach can unify a wide range of scenarios, making use of a training-by-simulation methodology. This augments real datasets with challenging simulated conditions such as multiple returns and high noise variance, while enabling rapid prototyping of fast data driven processing approaches for arrayed LiDAR systems. Both approaches are fast and practical processing methodologies for arrayed LiDAR systems. These retrieve depth information with excellent depth resolution for wide operating ranges, and are demonstrated on real and simulated data. LiDARNet is a rapid approach to determine surface locations from LiDAR waveforms for efficient point cloud generation, while block sparse depth reconstruction is an efficient method to facilitate high-resolution depth maps at high frame rates with reduced power and memory requirements.Engineering and Physical Sciences Research Council (EPSRC
    corecore