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ABSTRACT
ICESat (The Ice, Cloud, and Land Elevation Satellite)-2, as the new generation
of NASA (National Aeronautics and Space Administration)’s ICESat mission, had
been successfully launched in September 2018. The sensor onboard the satellite is
a newly designed photon counting LiDAR (Light Detection And Ranging) system
for the first time used in space. From the currently released airborne simulation
data, it can be seen that there exist numerous noise photons scattering from the at-
mosphere to even below the ground, especially for the vegetation areas. Therefore,
relevant research on methods to distinguish the signal photons effectively is crucial
for further forestry applications. In this paper, a machine learning based approach
was proposed to detect the potential signal photons from 14 MATLAS datasets
across 3 sites in the USA. We first chose 3 representative and stable features from
the 12 statistical features to train and build the Random Forest classifier, then we
quantitatively investigated the accuracy, the factors which influence the accuracy
and the model transferability across different sites. We found that k-NN (k-Nearest
Neighbour) distance and the reachability of the photon towards the nearby signal
centre showed good stability and contributed to a robust model establishment. The
relevant quantitative assessment demonstrated that the machine learning approach
could achieve high detection accuracy over 85% based on a very limited number of
samples even in rough terrain conditions. Further analysis proved the potential of
model transferability across different sites. These findings indicated that our meth-
ods would be of use for future studies of ICESat-2 data for vegetation applications.
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1. Introduction

The first generation of NASA (National Aeronautics and Space Administration)’s ICE-
Sat (The Ice, Cloud, and Land Elevation Satellite) mission (Yu et al. 2010) showed
many successful applications in mapping important forest parameters such as tree
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height and biomass at large scale using the spaceborne LiDAR (Light Detection And
Ranging) system (Lefsky et al. 2005; Duncanson, Niemann, and Wulder 2010; Los et al.
2012; Rosette et al. 2015). ICESat-2, a successor to the ICESat mission, has been suc-
cessfully launched in September 2018 for the data continuity of the spaceborne LiDAR.
In contrast to the GLAS (Geoscience Laser Altimeter System) waveform system on-
board the ICESat, ICESat-2 has adopted a newly designed system named ATLAS
(Advanced Topographic Laser Altimeter System), which is a micro-pulse, multi-beam
photon counting LiDAR system working at a wavelength of 532 nm (Evans 2014).
The capability of the ATLAS has been pre-validated using four types of airborne sim-
ulation data named SIMPL (the Slope Imaging Multi-polarisation Photon-counting
Lidar), MABEL (the Multiple Altimeter Beam Experimental Lidar), MATLAS and
SIGMA SPACE SPL Prototype during the past few years (Markus et al. 2017).

Currently, available data products (Leigh et al. 2015; Popescu et al. 2018) contain
numerous amount number of noise photons, especially for the vegetation areas (Brown
et al. 2016). Although the classification tags have been provided from the data prod-
ucts, there could still exist some mis-labelled photons for various terrain and atmo-
spheric conditions at a global scale for ATLAS data. Therefore, effective methods to
distinguish the correct signal photons from the noise photons are required for further
forest application. Previous researches have done some works to distinguish signal pho-
tons from these ATLAS-like data, such as the spatial statistical techniques (Herzfeld
et al. 2014), an ellipse search area based on DBSCAN (Density-Based Spatial Clus-
tering of Applications with Noise) (Zhang and Kerekes 2015), the cumulative density-
based method (Gwenzi et al. 2016), a particle swarm optimisation-based noise filtering
algorithm (Huang et al. 2019), and a ground and top of canopy extraction approach
using local outlier factor with ellipse searching area (Chen et al. 2019).

However, these existing methods are mostly based on unsupervised methods,
whereas supervised approaches are barely investigated. In general, the purpose of
distinguishing the signal photons from noise photons can be considered as a classifi-
cation problem, and the supervised methods, especially machine learning approaches,
have certain advantages over the unsupervised ones: 1) A supervised approach could
achieve relatively high accuracy based on limited manually identified training labels,
which could be useful for operational processing in a large area. 2) The tuning of
parameters of machine learning approaches could be done automatically, while unsu-
pervised methods require manually adjusting the parameters for different study areas.
3) The trained models could be transferable with limited variables from new samples
in similar conditions.

Random Forest (RF), an ensemble learning method both for classification and re-
gression, has been proved a good and stable predictor under a variety of cases (Liaw
and Wiener 2002; Maxwell, Warner, and Fang 2018). RF runs efficiently on large
databases and could handle unbalanced datasets, which suits the unbalanced distribu-
tion of the enormous signal and noise photons. Despite the growing number of samples,
it typically exhibited good robustness to avoid the over-fitting problem. Therefore, RF
is chosen to implement the machine learning based classification for photon counting
LiDAR data in this paper.

2. Study Sites and Data

In this paper, the data we used are MATLAS data, which are simulated to fit the
expected performance of the ICESat-2 ATLAS instrument by adjusting the existing
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Figure 1. Examples of MATLAS data in West Coast site, the red points stand for potential signal photons
identified by the classification flags. (a) High noise level scenario. (b) Low noise level scenario.

Table 1. Description of MATLAS data used in this paper.

Site Environment Closure (%) File name No. of photons SNR Length (m)

East Coast Temperate hilly 90

t231600 8B 1VEG 45000 0.82 13036
t231600 8B 2VEG 21943 10.49 13023
t231900 8B 1VEG 42932 0.80 12390
t231900 8B 2VEG 20821 10.67 12372

Virginia
Vegetation temperate

flat average cover
55

t222500 8a 1VEG 34621 4.70 12922
t222500 8a 2VEG 54215 1.11 12902

West Coast Temperate montane 90

t024900 8C 1VEG 43131 0.81 12469
t024900 8C 2VEG 21037 10.64 12469
t025000 8C 1VEG 44518 0.80 12887
t025000 8C 2VEG 21438 10.35 12880
t025200 8C 1VEG 44208 0.80 12699
t025200 8C 2VEG 21047 10.34 12699
t025500 8C 1VEG 43666 0.81 12650
t025500 8C 2VEG 21232 10.82 12639

MABEL data. To produce MATLAS data, the signal, solar noise, and instrument noise
levels are adjusted based on NASA’s vegetation design case type first. Next, the spatial
variation of signal and noise photons from the original MABEL is preserved. Finally, a
large footprint size is formed by combining adjacent channels from the original MABEL
data (Hancock 2014).

Table 1 lists the 14 MATLAS datasets from 3 different sites in East Coast, Vir-
ginia and West Coast of the USA, representing various vegetation types with different
canopy closure fraction and Signal-to-Noise Ratio (SNR). The SNR in each vegetation
type is calculated based on the classification flags from the data product themselves
provided by NASA. The horizontal coordinates are converted to the along-track dis-
tance and the vertical coordinates stand for absolute height. Figure 1 shows two exam-
ples of the MATLAS data in West Coast, and it presented numerous noise photons in
the atmosphere and even below the ground, especially for the high noise level scenario.

3. Methods

3.1. Overview

The machine learning based method we implemented is demonstrated in Figure 2.
First, 12 features that could characterise the statistical properties of the photons are
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Figure 2. The flowchart of the methods we proposed.

Table 2. Features proposed to train the classifier of photon counting LiDAR data

No. Feature Description

1 h The height of the photon
2 dist The along-track distance of the photon
3 dist.mean The difference between height of a photon and the mean value in the surrounding 10 m window
4 dist.median The difference between height of a photon and the median value in the surrounding 10 m window
5 dist.kmeans The distance to the corresponding cluster centres of k-means for every photon (k = 2)
6 dist.p10 The difference between height of a photon and the 10th percentile in the surrounding 10 m window
7 dist.p25 The difference between height of a photon and the 25th percentile in the surrounding 10 m window
8 dist.p50 The difference between height of a photon and the 50th percentile in the surrounding 10 m window
9 dist.p75 The difference between height of a photon and the 75th percentile in the surrounding 10 m window
10 kNNdist3 The k-nearest neighbours distance for every photon (k = 3)
11 h.kurtosis The difference between kurtosis of a photon and the mean value in the surrounding 10 m window
12 h.skewness The difference between skewness of a photon and the mean value in the surrounding 10 m window

proposed, after which we rank all 12 variables based on RF modelling for all data
in 3 sites to select features with the most representative contributions and stable
rankings. Then we determine the numbers of samples used to train the RF classifier
to distinguish the signal and noise photons, and further apply the model to the whole
coverage of the data. Besides, we investigate the sensitivity of the numbers of samples
and the accuracy indicators of the classification results. Finally, we validate the results
with the classification flags offered by NASA and evaluate the transferability of the
models established.

3.2. Features extraction and selection

Table 2 shows the 12 features proposed in our method, including the height and along-
track distance, the k-nearest neighbours distance, the distance to the corresponding
cluster centres of k-means, the difference between height-related statistical metrics,
the mean or percentile values of all the photons at every 10 m window. The mean and
percentile features are defined as the following equation:

Fi = pi(x, y) − f [

n∑
i=1

pi(x, y)] (1)

where Fi represents the feature calculated for the ith photon in every 10 m window
size, x and y represent the along-track distance and photon height within the window,
and pi(x, y) stands for the statistical metrics (mean, median, percentiles, kurtosis and
skewness) in every 10 m window, respectively. The function f [

∑n
i=1 pi(x, y)] is used to
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Figure 3. The results of feature importance based on RF model for all the 14 datasets.

calculate the mean or percentile values for the statistical metrics of all photons within
the 10 m window.

3.3. Model establishment and accuracy assessments

Here, we developed the RF classification model using the features determined by the
feature selection results and photons chosen for the training samples. The reference
data are the photon classification flags embedded in data products by NASA with a
careful visual inspection to correct the obvious noise photons when necessary. Four
statistical indicators, namely the accuracy, kappa coefficient, specificity, and F1 score,
are calculated from the confusion matrix to examine the results quantitatively. They
are defined as follows: accuracy is the proportion of the total number of photons iden-
tified as signal and noise photons correctly against the total photon number; kappa
coefficient measures the prediction performance of the RF classifier using ground val-
idation; specificity is the proportion of photons considered as noise photons that are
correctly identified, and the F1 score is the harmonic mean of precision and sensitivity,
in which the precision is the fraction of true signal photons from all points identified
as photons and sensitivity is photons considered as signal photons that are correctly
identified. Furthermore, the study also investigated the model transferability across
data from different sites. We used the dataset in West Coast with a total photon num-
ber of 43666 and SNR of 0.81 to train the model and then applied the model to the
remaining 13 datasets.

4. Results and Discussion

4.1. Results of the importance of features

Figure 3 shows the ranking results of feature importance based on RF for all 14
datasets. It indicated that the contribution of the 12 features varied with different
datasets, but some still occupy a large portion in terms of importance. It can be
observed that the top 3 features are kNNdist3, dist.median and dist.p50, with the
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Figure 4. The classification results using RF models. (a) The potential signal photons in West Coast site.
(b) The potential signal photons in Virginia site.

accumulated values of mean decrease in accuracies (for all 14 datasets in total) of
319%, 182% and 181% in all datasets, respectively.

It can be seen that the kNN distance has the largest percentage of the model
contribution both for every single dataset and the overall results. The dist.median
and dist.p50 are the distance features of a photon to the mean value within the 10
m window, indicating the reachability towards the nearby signal centre. In addition,
these features present fine stability across different study sites. Consequently, they are
selected for further model establishment.

4.2. Classification results using RF models

Figure 4 demonstrates the classification results of signal and noise photons using the
RF models for datasets of West Coast and Virginia sites, indicating that most of the
signal photons have been separated correctly from noise photons using RF classifier.
It should also be mentioned that the total number of photons in these two datasets is
44518 and 34621, stretching over a distance of 12887 m and 12922 m, respectively. In
the meantime, only 3 features (i.e., kNNdist3, dist.median, and dist.p50) together with
200 photon samples, accounting for 0.45% and 0.58% of photons in the corresponding
trajectory, are used here to train the model, and it turns out that small training
samples can achieve high modelling accuracy in our study sites.

By visual inspection, it can be implied that the RF model based classifier achieves
good results both for data in a low noise rate scenario on flat terrain (Figure 4b) and
data in a high noise rate scenario on complex terrain (Figure 4a). Even with a very
limited number of samples, the classifier could still distinguish the signal photons from
the noise photons very well.
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Figure 5. The relationships between the number of samples used to train the model and the four statistical

indicators in all 3 study sites. The dashed red line marks 200 photons used as training samples.

4.3. Accuracy assessment

The relationships between the number of samples used to train the RF models and the
accuracy indicators are shown in Figure 5. The performance of specificity is relatively
stable among all four indicators. With samples used to train the RF models increasing
from 0 to around 100, the statistical indicators would increase accordingly. However,
after the number of samples used is over 200, the four indicators start to fluctuate.

As shown in Figure 5, the accuracy, kappa coefficient, specificity, and F1 score in
West Coast site are 0.98, 0.96, 0.98, and 0.98, respectively. Similarly, the corresponding
values are 0.89, 0.84, 0.99, and 0.87, respectively for the Virginia site. In terms with
all the 14 datasets in 3 sites, the mean values of four indicators are 0.95, 0.92, 0.98,
and 0.92 respectively when only 200 samples are fed to the model, which confirms the
results of Figure 4 from the quantitative point of view. Notably, 200 samples account
for less than 1% of all the photons along the trajectory over around 12 km could achieve
high classification performance, indicating the high potential that the model can be
readily generalised for large-scale utilisation. Furthermore, we analysed the influence
of accuracy for different canopy cover and SNR. Figure 6a shows that a higher canopy
cover group has a better overall accuracy, which could be a more substantial portion
of vegetation photons increased with a higher closure. Figure 6b shows that the high
SNR group has a better overall performance than the low SNR group, which could be
a high SNR dataset indicates a relatively low noise scenario.

Overall, our findings suggested that the machine learning approach we implemented
is capable of detecting the potential signal photons for MATLAS data, even under vary-
ing situations including terrain surfaces, SNR, canopy closure fraction and vegetation
type. In addition, our study highlights that only a very small number of samples are
required to train the classifier, and this robust model is capable of applying among a
relatively large area.
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Figure 6. The influence of different conditions on the accuracy. (a) The influence of canopy cover. (b) The

influence of SNR.

4.4. Model transferability

Figure 7 shows the transferability of the RF model we developed for the other 13
datasets. Compared with West Coast and East Coast sites, the indicators to evaluate
the model transferability are relatively low in Virginia site, of which the lowest one
is 0.86, 0.77, 0.98 and 0.83 for accuracy, kappa coefficient, specificity, and F1 score
respectively. In contrast, the mean values of the four indicators for West Coast site
are 0.96, 0.93, 0.97 and 0.95 respectively, while for East Coast site they are 0.98, 0.94,
0.97 and 0.96 respectively.

The possible explanation of accuracy changes is that the dataset used to build the
model is applied for rough terrain in East and West Coast, while the terrain surface in
Virginia site is flat. Besides, the SNR in Virginia site is significantly different compared
with the other two sites, which might have influences on the model transferability.
Therefore, the samples require similar terrain and SNR conditions before being selected
for transferring the model. In summary, the RF model has better transferability in
West and East Coast site than Virginia site, indicating that there are some limitations
to apply the models directly to other sites with significantly different terrain or noise
rate conditions.

Through the results obtained by RF classier across different sites, the model trans-
ferability is proven to be applicable with satisfactory performance, and it is confirmed
that the features selected to train the model are sufficiently independent and repre-
sentative for more substantial data coverage. These findings suggest that the machine
learning based method has the potential for photon counting LiDAR data denoising
with the assumption that models are trained under similar data conditions.

5. Conclusion

In this paper, a machine learning based approach was proposed to detect the potential
signal photons from the noise photons for photon counting LiDAR data. We found that
kNN distance and the reachability towards the nearby signal centre showed high stabil-
ity and were thereby proved to be suitable features for the model establishment. The
relevant quantitative assessment demonstrated that the machine learning approach
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Figure 7. The transferability of the RF model built using the dataset in West Coast sites. The green, orange,

and purple bars stand for the accuracies using the developed RF model directly to classify the photons in the

East Coast, Virginia, and West Coast sites, respectively.

could distinguish signal photons from the noise photons very well, regarding the high
accuracy indicators with a very limited number of samples both in flat or rough ter-
rain conditions. Further analysis proved the potential of model transferability across
different sites with similar terrain and SNR conditions. These findings indicated that
our methods would be of use for future applications of ICESat-2 vegetation studies.
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Suárez, Iain Bye, and Hao Lu. 2019. “Potential of Forest Parameter Estimation Using Met-

9



rics from Photon Counting LiDAR Data in Howland Research Forest.” Remote Sensing 11
(7): 856.

Duncanson, L I, K O Niemann, and M A Wulder. 2010. “Estimating forest canopy height
and terrain relief from GLAS waveform metrics.” Remote Sensing of Environment 114 (1):
138–154.

Evans, Tyler. 2014. “Optical Development System life cycle for the ICESat-2 ATLAS instru-
ment.” In 2014 IEEE Aerospace Conference, 1–12. IEEE.

Gwenzi, David, Michael A Lefsky, Vijay P Suchdeo, and David J Harding. 2016. “Prospects
of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on
airborne simulation data.” ISPRS Journal of Photogrammetry and Remote Sensing 118:
68–82.

Hancock, David. 2014. https://icesat-2.gsfc.nasa.gov/icesat2/legacy-data/matlas/docs/.
Herzfeld, Ute Christina, Brian W McDonald, Thomas Allen Neumann, Bruce F Wallin,

Thomas A Neumann, Thorsten Markus, Anita Brenner, and Christopher Field. 2014. “Al-
gorithm for detection of ground and canopy cover in micropulse photon-counting lidar al-
timeter data in preparation for the ICESat-2 mission.” IEEE Transactions on Geoscience
and Remote Sensing 52: 2109 – 2125.

Huang, Jiapeng, Yanqiu Xing, Haotian You, Lei Qin, Jing Tian, and Jianming Ma. 2019.
“Particle Swarm Optimization-Based Noise Filtering Algorithm for Photon Cloud Data in
Forest Area.” Remote Sensing 11 (8): 980.

Lefsky, Michael A, David J Harding, Michael Keller, Warren B Cohen, Claudia C Caraba-
jal, Fernando Del Bom Espirito-Santo, Maria O Hunter, and Raimundo de Oliveira. 2005.
“Estimates of forest canopy height and aboveground biomass using ICESat.” Geophysical
Research Letters 32 (2): L22S02.

Leigh, Holly W, Lori A Magruder, Claudia C Carabajal, Jack L Saba, and Jan F McGarry.
2015. “Development of Onboard Digital Elevation and Relief Databases for ICESat-2.” IEEE
Transactions on Geoscience and Remote Sensing 53: 2011–2020.

Liaw, Andy, and Matthew Wiener. 2002. “Classification and Regression by randomForest.” R
News 2 (3): 18–22. http://CRAN.R-project.org/doc/Rnews/.

Los, SO, J Rosette, Natascha Kljun, PRJ North, Laura Chasmer, J Suárez, Chris Hopkinson,
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