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Abstract

Light detection and ranging (LiDAR) is one of the enabling technologies for advanced

driver assistance and autonomy. Advances in solid-state photon detector arrays o↵er

the potential of high-performance LiDAR systems but require novel signal processing

approaches to fully exploit the dramatic increase in data volume an arrayed detector

can provide.

This thesis presents two approaches applicable to arrayed solid-state LiDAR. First, a

novel block independent sparse depth reconstruction framework is developed, which

utilises a random and very sparse illumination scheme to reduce illumination den-

sity while improving sampling times, which further remain constant for any array

size. Compressive sensing (CS) principles are used to reconstruct depth information

from small measurement subsets. The smaller problem size of blocks reduces the

reconstruction complexity, improves compressive depth reconstruction performance

and enables fast concurrent processing. A feasibility study of a system proposal for

this approach demonstrates that the required logic could be practically implemented

within detector size constraints. Second, a novel deep learning architecture called

LiDARNet is presented to localise surface returns from LiDAR waveforms with high

throughput. This single data driven processing approach can unify a wide range

of scenarios, making use of a training-by-simulation methodology. This augments

real datasets with challenging simulated conditions such as multiple returns and

high noise variance, while enabling rapid prototyping of fast data driven processing

approaches for arrayed LiDAR systems.

Both approaches are fast and practical processing methodologies for arrayed LiDAR

systems. These retrieve depth information with excellent depth resolution for wide

operating ranges, and are demonstrated on real and simulated data. LiDARNet is

a rapid approach to determine surface locations from LiDAR waveforms for e�cient

point cloud generation, while block sparse depth reconstruction is an e�cient method

to facilitate high-resolution depth maps at high frame rates with reduced power and

memory requirements.
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Chapter 1

Introduction

The next generation of autonomous robots including self-driving cars require a suite

of sensors that perform at least as well as the human sensory system. Depth per-

ception is a key enabler for reliable navigation in complex environments. Humans

achieve rudimentary depth perception by passive stereo vision facilitated by experi-

ence and continuous learning for a good relative judgement of how far away things

are in static and dynamic scenarios. Other sensory inputs such as balance and ac-

celeration inputs further aid depth and motion perception. While those are good

approximations and have enabled humans to operate advanced machinery over the

centuries, they rely on a wealth of sensory input information being processed by the

extremely complex human brain.

In most cases robotic systems have significantly less processing power and digital

systems replicating human sensors will have the same limitations such as stereo

cameras. Depth sensors in particular can be far more accurate if they leverage active

sensing schemes. These measure a carrier wave’s round trip time, called time-of-

flight (ToF), to accurately measure the distance between object and sensor by means

of the constant velocity of light waves. When using light waves to facilitate depth

measurements this is called light detection and ranging (LiDAR). Modern LiDARs

have been crucial components in most successful implementations of self driving cars,

since the early 2000s. The most common form of LiDAR are point and line scanning

variants, which mechanically scan a coherent light source such as light amplification

by stimulated emission of radiation (laser) sources. They enable high accuracy

measurements at short range in mobile phones as well as measurements across 200

metres or indeed for several metre long windows at several kilometres. However,

high resolution LiDARs are often still very expensive due to the requirement for

low tolerances in the calibration of the light source and detector for mechanically
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1.1. Motivation

moving systems and robust enclosures to reduce mechanical disruptions. For this

reason significant work is being carried out to develop novel high resolution solid-

state LiDAR arrays, which involve no moving parts, have a smaller footprint, can

be integrated into robots seamlessly and can be mass produced at a lower cost.

With more sensing elements, the amount of data that can be captured increases if

the full potential of the array can be exploited, which as resolution increases pose

significant hardware and software challenges. Further, fully autonomous systems

operate in challenging conditions, with non trivial scenes and non-ideal reflectors.

This requires complex processing schemes, which can impose prohibitive limit to

operating times for dynamic applications.

The work described in this dissertation are as follows:

• Develop fast and e�cient methods to process large volumes of data generated

by a solid-state LiDAR system using single photon avalanche detector (SPAD)

technology.

• Define a novel system architecture and develop novel methods to enable long

range imaging at typical video frame rates or higher utilising solid-state photon

detector arrays for automotive applications.

1.1 Motivation

This thesis addresses the issue of high data volume of solid-state arrayed LiDAR

systems by means of two frameworks.

A machine learning approach is developed to localise returns from LiDAR waveforms

in varying conditions with high throughput suitable for a large volume of detector

responses in complex scenarios in a deterministic fashion. This approach makes use

of deep learning techniques and is applicable to standard ways of scanning or burst

illuminating an environment.

Additionally, for wide operating range depth systems e.g. 0-300 m, as required for

self-driving cars, operating with significant ambient noise from sunlight and poten-

tially other LiDARs, the required laser power to measure distance at the far end of

the operating range can be dangerous to the human eye at close distances. To ad-

dress this, a novel e�cient LiDAR system is presented, which utilises the compressive

sensing (CS) paradigm to reduce the data volume at the sampling stage, while also

reducing the average laser output power by sparsifying the illumination stage result-

ing in low density illumination bursts, which incurs a cost in the processing stack.

This work addresses this by parallelising the compressive reconstruction optimisa-
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tion problem with a novel block compressive sensing system formulation for depth

sensing with a wide operating range.

This is further supported by an investigation into e�cient hardware implementations

of the reconstruction problem exploiting approximate computing techniques to lower

the hardware complexity and increase resource e�ciency and further accelerate the

processing stack for a pathway into application specific integrated circuit (ASIC)

implementation for full sensor stacks. Either approach presents a meaningful way

to process large scale solid-state LiDAR arrays in real-time in an integrated fashion.

The work for this thesis was carried out both at STMicroelectronics, a multinational

company and pioneer in SPAD sensor systems for ToF imagers, and Heriot-Watt

University.

1.2 Thesis outline

Chapter 2 introduces state-of-the-art LiDAR systems and their operational modes to

measure depth. This chapter states the key challenges and shortcomings of current

systems which form the basis of investigation for this thesis, being the challenges of

using large ToF detector arrays from a signal processing perspective for real-time

applications.

Chapter 3 presents datasets and signal simulation tools related to this work. This

chapter also presents the signal model and custom simulation frameworks developed

for this project to enable rapid prototyping of novel compressive sensing schemes as

well as large volume data generation for deep learning approaches with underlying

semantically relevant scenes for the automotive use case.

Chapter 4 provides an introduction to convolutional neural networks and their ap-

plication to signal processing. This forms the basis of a novel network architecture

designed for large scale multi-return peak localisation. The usage of deep learning

to extract multi-path surface returns from ToF has not been previously demon-

strated. This work presents a novel network architecture for surface localisation

from LiDAR waveforms called LiDARNet with comparable performance to tradi-

tional model based signal processing while being faster with sub-millisecond process-

ing times. It provides a high-throughput processing approach and thus is a natural

fit to large scale array signal processing but further benefits from an adaptable val-

idated training-by simulation approach. This allows future adaptations of various

application scenarios into a single neural network, rather than multiple stages of

traditional signal processing.
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Chapter 5 presents the concept of CS and previous work on depth reconstruction

in a compressive fashion. This work makes contributions to compressive depth

sensing with a formal compressive depth reconstruction framework for small field-

of-view imagers. It benefits from sparse random pattern exposures which reduces

illumination density. The problem is distributed across a large solid-state ToF array

to accelerate reconstruction times by using a novel active independent blocking

method allowing concurrent processing schemes. This forms a novel compressive

LiDAR architecture, which outperforms previous work, improving reconstruction

quality for complex scenes, and reducing processing times with processing rates up

to 1 kHz and maximum operating ranges well beyond 200 m.

This is further supported by an investigation into e�cient hardware implementations

of this block based CS LiDAR technique in Chapter 6, investigating the tolerance

for reduced precision of numerical data types with fewer resource requirements and

increased power e�ciency. Resource utilisation for various precisions for a field-

programmable gate array (FPGA) are translated into transistor counts to carry out

a case study comparing a modern photon detector array area with estimates for

logic area to perform the sparse sampling and depth reconstruction, finding that

with moderate precision scaling, a system-on-a-chip (SoC) implementation of the

proposed framework could be feasible within the size constraints of the detector.

Chapter 7 concludes the thesis by summarising the main findings of the two project

paths and suggests future work building upon the work carried out for this disser-

tation.
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Chapter 2

Light Detection and Ranging

2.1 Introduction

Over the last few decades cars have become safer due to improvements in man-

ufacturing, testing and technology as a whole. The ability to sense impacts in a

fraction of a second to deploy an airbag to reduce the impact for passengers and

sensing when a wheel stops spinning to counteract skidding by modulating brakes

are early examples of technology advancements to improve vehicle safety. More and

more safety and convenience features have been added over the past decades, often

summarised under the umbrella term advanced driver assistance systems (ADAS),

which both support the human driver and improve safety of passengers and tra�c

participants alike.

This has enabled modern cars to perform some tasks of driving semi-autonomously.

For example, a radar sensor can monitor the distance and speed of vehicles in front,

while camera systems monitor the lane markings and tra�c signs; this information is

processed to control the acceleration of the vehicle and the steering on its own. Some

cars can also perform emergency breaking to prevent accidents if sensors indicate

a crash would be otherwise imminent. This kind of automation is deemed only as

Level 2, with only few cars capable of such functionality currently on the market

[1, 2, 3].

Autonomy in the context of driving is divided into 6 classes by the Society of Au-

tomotive Engineers (SAE) as shown in Table 2.1.
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Table 2.1: Levels of driving automation as defined by the SAE [4].

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

Active Passive
Driver Full Partial No

responsibility responsibility responsibility

Warnings steering steering Autonomous Fully
Car and or and in autonomous

minor assistance brake support brake support limited conditions driving

Only one car on the market, as of 2020, achieves Level 3 autonomy aspects utilising

an extensive sensor suite including a solid-state light detection and ranging (LiDAR)

line sensor [5, 3]. While some prototypes and a dedicated autonomous taxi service

have launched since [6], these are still constrained to areas with good weather con-

ditions and the total sensor ensemble is prohibitively expensive for the consumer

market.

Driving is a very complex task and while a human driver is trained and then builds

up extensive driving experience with access to a wealth of sensory inputs including

depth estimation by means of stereo vision it is very di�cult (and expensive) to

perform the same tasks using sensors and control systems. The task of placing

an autonomous actor into an environment and safely navigate the terrain is not a

trivial task, in particular if (many) actors are involved in complex environments

such as cities and while travelling at high speeds typical for transportation. Early

demonstrations of autonomous driving have relied on extremely detailed mapping

information [7] combined with very expensive sensors to perform Level 4 and Level 5

autonomy [8, 3]. This means specialised sensors are required, which perform vision

tasks in a precise and timely fashion. While perception can be handled by normal

passive camera systems, active measurements are the more reliable choice for speed

and depth estimation [9].

Depth measurements in particular are important for navigation tasks as they allow

accurate location of the autonomous vehicle (or main actor) with respect to a chang-

ing environment [9, 10]. This has made a high resolution high frame rate LiDAR

sensor at a low cost a key enabler for level 5 autonomy [1, 2, 3]. A general LiDAR

system is illustrated in Figure 2.1.
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Figure 2.1: A generic LiDAR system. A coherent light source (e.g. a laser) is driven
by a precise timing circuit to allow synchronised measurements with a photon detector
(e.g. single photon avalanche detector (SPAD)) to measure the round trip time of emitted
photons, which translates to range measurements.

From the early beginnings in space exploration [11], LiDAR systems have become

more a↵ordable but most systems are still prohibitively expensive for consumer

applications. Further, the use of light under normal atmospheric conditions on

earth introduces noise and safety challenges for cars as illustrated in Figure 2.2.
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Figure 2.2: Sun irradiance adapted from [12] and eye transmittance values (how much
of the light energy the eye absorbs) read from graph in [13] for illustrative purposes only.
From a signal-to-noise ratio consideration there are pockets of little interference where
operation is preferred, which is further constrained by eye-transmittance, which limits
laser power and thus signal strength.

It is clear that the solar irradiance introduces significant noise challenges for self-

driving cars with optical sensors at wavelengths, which can be manufactured at

low cost and are invisible yet safe to the human eye. For this reason concurrent

developments are under way to explore high resolution radio detection and ranging

(RADAR) systems to perform similar tasks, but for now, LiDAR has advantages

for mapping and navigation attributed to the potential for better spatial resolution

[14, 15, 16, 17].
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Modern advances in silicon photon-detector device using silicon complementary

metal-oxide semiconductor (CMOS) technology [18] in the form of silicon SPAD

arrays have created a valid path to develop large scale detector arrays for high reso-

lution time-of-flight imaging at a relatively low cost. Combined with solid-state laser

advancements in the form of vertical-cavity-surface-emitting-laser (VCSEL) arrays,

which can also be manufactured at scale and are suitable for time-of-flight (ToF) ap-

plications, these two technologies enable novel solid-state LiDAR systems. They can

be e↵ectively integrated and manufactured at scale, which should drive down cost

and reduce the optical and mechanical complexity of mechanical scanning LiDAR

systems, which is one their key cost drivers [2, 19, 20, 3].

As the number of detectors increases to enable high resolution LiDAR, so does the

required bandwidth of the processing system to cope with the processing for depth

retrieval from LiDAR waveforms. This calls for e�cient and fast processing strate-

gies to deliver useful information to the full autonomous system. Furthermore, to

illuminate the scene for such dense detector arrays within the wavelength limita-

tions of silicon imposes limits on laser power and makes long distance ranging more

di�cult. This work aims to address these issues with investigations into a massively

parallel processing approach (Chapter 4) and novel sparse sampling and processing

schemes (Chapter 5) to enable e�cient solid-state arrayed LiDAR systems.

This chapter introduces the fundamental principles of LiDAR and solid-state photon

detector arrays. A signal description of the full LiDAR waveform and its usefulness

is presented. Finally, a discussion of relevant processing approaches and associated

challenges for detector arrays over a full operating range LiDAR for long distance

applications are stated.

2.2 Depth Sensing

There are two schools of ToF sensing, indirect and direct. Indirect ToF operates

on the principles of phase or frequency di↵erence and requires a continuous, but

oscillating, illumination signal, which limits its usefulness in the near-infrared (NIR)

due to high average power output and high laser cost [21, 2, 3]. Direct ToF operates

on the principles of measuring the round trip time of photons directly. In particular

single-photon counting systems can be sensitive to low photon counts at long ranges

and are capable of dealing with high dynamic photon count ranges as well as the

ability to capture full LiDAR waveforms making direct ToF LiDAR the preferred

candidate for automotive LiDAR [22, 23].
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Direct Time-of-Flight

A photon travels at constant velocity in normal atmospheric conditions, most com-

monly referred to as the speed of light, c. By starting a timer as a laser pulse

containing photons exits the emitter and recording the time those photons take

to travel to and from from a surface, one can readily determine the range, r as

illustrated in Figure 2.3.

z

y
x

Laser

Photon
detector

distance, d

Figure 2.3: The direct time-of-flight principle illustrated with a solid-state emitter and
detector pair. Light grey parts symbolise emission and dark grey detection, which applies
to most diagrams in this chapter.

As a photon travels to and from a reflective surface, the range it covers is

r = c
�t

2
, (2.1)

where c is the speed of light in air, r the distance to a reflective surface and �t the

time it takes for the photon to travel to and from said surface. The depth resolution,

s of a direct ToF system is defined by the smallest time step �ts the sampling circuit

can resolve [24], such that

s =
�tsc

2
. (2.2)

The components transforming the arrival to time measurements are called time-to-

digital converters (TDC), they record the time at photon arrival and store a digital

value often called a time stamp, which can be collected for further processing.

For a desired maximum range of a system, rmax, a histogram container can store

this information in its quantised state with a total number of bins

p = round(
rmax

s
). (2.3)

By measuring the ToF in di↵erent locations, a collection of depth values can be

collected forming a discrete depth image, D 2 Rnx⇥ny , where nx and ny are the
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number of pixels in a sensor array as

D =

2

664

d11 . . . dnx1

...
. . .

...

d1ny . . . dnxny

3

775 , (2.4)

where dxy is a single depth value at the array coordinate (x, y).

Now let a histogram be a collection of photon counts, cp, in each bin, p, such that

h = [c1, ..., cp] 2 Np
. (2.5)

This is also called a LiDAR waveform, which will be further explored in Section 2.5.

Prior to surface detection, the full sampling space is now a sample cube, such that

DToF =

2

664

h1 . . . . . .

...
. . .

...

. . . . . . hn

3

775 . (2.6)

Assuming an operating range of 200 m and centimetre resolution a system can in

theory produce up to 20,000 returns per pixel, resulting in a total data volume of

20 billion data points for a 1000⇥ 1000 imaging resolution.

Since a waveform can contain up to K surface returns, di 2 RK and advanced

algorithms can extract these multiple returns to form a point cloud from non-zero

entries in the matrix,

Dpc =

2

664

d1 . . . . . .

...
...

...

. . . . . . dn

3

775 . (2.7)

This illustrates the large data volume a LiDAR system can readily generate, even

more so as the desired resolution increases for more demanding sensing tasks.

2.3 Photon Detection

The fundamental principal of photon detection is the process whereby the energy

of a photon is absorbed into a photo-conductive material and the material converts

the energy into an electrical current producing voltage, which can be measured as

a voltage drop. Analogue devices such as vacuum tubes and in particular photon

multiplier tubes (PMT) generally filled with low pressure gas to achieve amplification
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of the photocurrent have been shown to have single photon precision [25]. This is

important for precise timing of the arrival of a photon emitted from a synchronised

system. However, analogue devices are fragile and large. To improve robustness of

the system a solid-state device is desirable. Fortunately, modifications to a normal

photodiode, as shown in Figure 2.4, can be made to achieve single photon detection.

Figure 2.4: A standard photodiode diagram

A photodiode is a semi-conductor device made up of a positively and negatively

doped semi-conductor material such as silicon. To generate a current when photons

are absorbed, the diode is operated in reverse bias. By connecting the p-side to

the negative terminal (anode) and the n-side to the positive terminal (cathode), the

positive charge carriers (holes) are pulled towards the negative terminal away from

the interface, and similarly the positive terminal attracts all electrons away from

the interface. This creates a depleted region at the p-n junction, with a breakdown

voltage, VB, across. In a photodiode, photons absorbed cause a charge di↵erential

which promotes electron flow if the charge di↵erential is greater than the breakdown

voltage causing an electrical current. The generated current is proportional to the

influx of photons and is amplified for analogue-to-digital conversion to record or use

the generated signal [25, 26].

2.3.1 Single Photon Avalanche Diode

For a single photon sensitive photodiode, the principle of a voltage avalanche is

exploited. To create a voltage avalanche a bias voltage, VA > VB is applied across

the cathode and anode creating an excess voltage VE = VA � VB. By increasing

the excess voltage, the more likely an avalanche occurs due to photon absorption.

When a photon is absorbed, a large voltage drop occurs causing a photocurrent

and momentarily lowers VA. However, this avalanche will continue unless VA is

restored to its bias value. By passing the current through a resistor the resultant

voltage recharges the SPAD. This process is called passive quenching and allows to

accurately detect a single photon by stopping the avalanche after a single photon

event, as the device is not receptive to another photon until the bias voltage is

restored [27, 28, 29] as illustrated in Figure 2.5.

Alternatively the SPAD can also be actively recharged (active quenching), however,

this requires additional components and thus space, which is at a premium in SPAD
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(a) (b)

Figure 2.5: (a) Passive quench SPAD schematic and associated V-I characteristics for a
photon event. The absorbed photon triggers an avalanche, causing VA to drop resulting
in a voltage across RL, the resulting current is used to recharge VA via RS , quenching
current flow to re-charge the SPAD for single photon detection [29].

arrays to maximise the photon sensitive area for increased e�ciency [18, 30]. With-

out the quenching circuit and lower bias voltage the resultant device is simply an

avalanche photodiode (APD) which acts as a linear amplifier [25]

While the normal APD has been successfully used in LiDAR devices, it not only

amplifies the incoming light emitted by the laser but also the ambient photon influx.

In contrast the SPAD is sensitive to single photons and thus is more susceptible

to photons correlated with the associated emitter. This suppresses some ambient

photon counts, which occur less due to quenching. This characteristic makes them

ideal in long range LiDAR applications, where mean photon signal rates can be less

than one photon [31, 32, 33, 34].

Due to their usefulness in many applications, significant e↵ort has been a↵orded to

industrialise the SPAD using CMOS manufacturing processes [35, 36, 24, 37, 38].

In recent years SPADs have been implemented in ever decreasing feature sizes (of-

ten referred to as technology nodes) and have been fully industrialised for mass

manufacturing at a 40 nm technology node [39]. Such recent advancements have

enabled increased SPAD array sizes and due to its mature manufacturing processes

can make even larger yet a↵ordable high resolution SPAD arrays a reality. Further,

the smaller feature sizes enable the manufacturing of SPAD pixels which contain

multiple SPADs. This further increases photon detection e�ciency, reduces pile-up

e↵ects and thus increases signal-to-noise ratio (SNR). Photon pile-up occurs when

multiple photons return within a laser pulse cycle, but a single photon detector is

unable to detect any further photons after the first photon event due to insensitivity
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during recharge. These type of SPAD pixels are often referred to as silicon photo-

multiplier (SiPM) [40, 41] or macro-pixels [42]. Such pixel designs allow the user to

fine tune photon detection rates to prevent saturation and photon pile-up in shorter

ranges when a system also needs to be suitable for long range applications [43].

2.3.2 SPAD arrays

Although arrays of SPADs have been demonstrated soon after the inception of the

device itself [44, 45] such early prototypes were very expensive and had poor photon

detection e�ciency. With the increased interest in solid-state LiDAR driven by the

demand of low-cost LiDARs for the automotive industry [1, 2], advancements in

SPAD manufacturing have driven down cost, which combined with more advanced

technology nodes (i.e. smaller device features) led to an increase in array size and

SPAD density.

Early demonstrations of single photon detector arrays are very small at 10⇥ 1 [44]

and 4 ⇥ 4 [45] in the late 1990s and early 2000s. Both were designed to be used

in conjunction with visible light lasers (500-600 nm) making them unsuitable for

autonomous driving applications. Further, their photo reactive area to sensor size

ratio, the fill-factor (FF), and consequently their photon detection e�ciency (PDE)

were fairly low at 20-50% for visible light.

As solid-state manufacturing technologies improved, the first demonstrations of pixel

arrays with multiple SPADs per pixel were demonstrated [40, 42, 46] which are either

called digital silicon photonmultiplier (dSiPM or SiPM) [40] or macro-pixel [42] in

the 2010s. In particular [46] presented an increase of pixel array size to 16⇥ 2 with

64 ⇥ 6 individual detectors for 870 nm illumination. The use of multiple detectors

per ToF pixel increases the FF to an impressive 70% by increasing the photo-active

area with no or little increase in logic area. The array sizes are still too small for high

resolution solid-state LiDAR, but such arrays can be utilised if scanning mechanisms

are used to increase the e↵ective imaging resolution.

With further improvements in manufacturing processes array sizes have increased

further up to 256 ⇥ 256 individual detectors, with e↵ective pixel arrays of roughly

64 ⇥ 64 using macro-pixels [47, 48, 49, 50]. These have various applications in

biological imaging [51, 47, 52, 53] where in some cases detectors are not grouped

or LiDAR type applications with more modest imaging resolutions [54, 55]. With

advancements in optics for such small devices, fill-factor can also be increased using

micro-lenses [56, 57] and thus focusing light onto the active detector area rather

than being lost when interacting with surrounding electronics.
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Range has increased to around 100 m, which makes them overall more usable for

automotive applications. However, the range resolutions can vary dramatically be-

tween meters and several centimetres. Generally, the TDC either captures only small

histogram sizes on-chip with usually coarse range steps or is performed o↵-chip with

expensive data transfer and storage. The majority of the quoted frame rates for the

binary frames are for every TDC time step, which is in of itself not very meaning-

ful. The binary frames, i.e. single photon count events, have to be aggregated into

waveforms for each pixel to enable distinction between signal and noise and then

have to be processed further to derive useful information for mapping, navigation

and/or classification.

More recent advances have addressed some of these issues and on-chip histogram

accumulation at centimetre resolution for up to 80 m has been demonstrated [58].

However, for high frame rates the histogram size still has to be reduced, probably

due to read-out limitations, limiting both spatial resolution and e↵ective range and

resolution [59, 60]. Other similar SPAD arrays with a size of about 256 ⇥ 256 for

various applications have been presented [61, 62] as well as dedicated LiDAR type

sensors [63, 64, 65], which all use macro-pixels for better SNR, but often only quote

the raw SPAD pixel count.

In the biological imaging realm larger arrays have been demonstrated at 512⇥ 512

[66] but such arrays only require small dynamic range with high range resolution,

which is often handled in external devices. A large scale 1024 ⇥ 500 SPAD array

has also been presented recently [67], which brings SPAD imagers ever closer to

normal intensity imaging cameras in spatial resolution. Unfortunately, the reported

dynamic range is only a few meters with centimetre resolution. An overview of the

above advancements is illustrated in Table 2.2.

Table 2.2: Overview of SPAD array sizes and some figures of merit over the years.

Parameter 1997 [44] 2002 [45] 2010 [68] 2013 [46] 2016 [54] 2017 [48] 2019 [58] 2020 [67]

Imaging Size 10 ⇥ 1 4 ⇥ 4 4 ⇥ 4 16 ⇥ 2 9 ⇥ 9 64 ⇥ 32 64 ⇥ 64 1024 ⇥ 500
Pixel Size 1 ⇥ 1 1 ⇥ 1 2 ⇥ 2 4 ⇥ 3 1 ⇥ 1 1 ⇥ 1 4 ⇥ 4 1 ⇥ 1
Array size 10 ⇥ 1 4 ⇥ 4 8 ⇥ 8 64 ⇥ 6 9 ⇥ 9 64 ⇥ 32 256 ⇥ 256 1024 ⇥ 500

Pixel pitch, µm 10 � 50 30 n/a 25 24 n/a 38.4 9.4

Fill-factor,% n/a 7 n/a 70 43 n/a 51 13.4
PDE, % 50 20 11 to 13 n/a 2 � 30 5 23 27

Wavelength, nm 500 � 620 532 n/a 870 870 808 671 785
Sample Rate, Hz n/a 8 MHz n/a n/a 11kHz n/a 200 MHz 24 kHz

Dynamic Range, m n/a n/a n/a n/a 80 45 84 1.14
Range Resolution, cm n/a n/a n/a n/a 1.26 n/a 2 3.6

Type SPAD SPAD dSiPM SPAD SPAD SPAD SPAD SPAD
ToF dToF dToF dToF dToF dToF iToF dToF dToF

A similar array size progression can be also observed for non-Silicon SPADs devices,

albeit their cost and array size is several years behind the Silicon SPAD developments

[69, 70, 71, 72, 73, 74]. Nonetheless, the progression of > 1000 nm LiDAR arrays is

important in the future to further improve SNR and potentially range for LiDAR
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2.3. Photon Detection

systems and findings of this work should translate readily to any type of ToF imaging

array.

It is obvious from the array size trajectory over the past few years that large scale ar-

rays are possible, but as array size increases, maintaining on-chip histogram creation

becomes challenging for large dynamic ranges of 0-300 m and beyond. Therefore,

if read-out limitations can be overcome for high resolution arrays, large scale pro-

cessing capable of high bandwidth and rapid processing is required at a massively

parallel scale for typical video frame rates or above (> 30 Hz). This is ideally done

on the full histograms or LiDAR waveform for each pixel of the array, which will be

discussed in more detail Section 2.5, as it provides the most information the system

can provide [17]. To address this particular problem, this work investigates a high

throughput approach using deep learning techniques in Chapter 4.

Alternatively, if the sampling methodology was to be adjusted and histograms were

accumulated for sub arrays or circumvented altogether in conjunction with flexi-

ble illumination schemes, the bandwidth required to read-out ever increasing array

sizes could become more feasible. This motivated the investigation of applying

compressive sensing (CS) [75, 76, 77] principles to automotive LiDAR applications

with a large dynamic range for solid-state SPAD arrays as presented in Chapter 5

to reduce sample and processing time as well as illumination power.

2.3.3 Laser Power Constraints

For uniform illumination of a direct ToF system and the ideal case of Lambertian

objects with reflectivity ⇢, the received power, Pin, at a single detector is related to

the emitted power, Pout, from the radar equation [78] as

Pin =
PoutD

2

4⇡r4d2
b

⇢, (2.8)

where D is the aperture of the collection lens, r the operating range and db the beam

diameter of the outgoing laser pulse. For a constant field-of-view (FoV) an increase

in resolution, i.e. pixel count in the array, generally results in a decrease in aperture

and beam diameter as the emitter array scales similarly. This means that less light

can be collected. This is worsened as laser power further decreases inversely to the

power of 4 with respect to operating range. Although a smaller beam diameter

also inversely squares and increases the power density marginally, this illustrates

the significant challenges associated with long range high resolution LiDAR and

in particular for solid-state implementations relying on per pixel or uniform scene

illumination (often referred to as burst or flash illumination). Not only is power
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lost due to smaller apertures but more importantly to e↵ectively capture returns

from several hundred meters away, a high laser power would be required, which can

interact with surfaces and other optical systems such as cameras and most critically

the human eye and can be dangerous at shorter ranges.

This has led to many of the upcoming automotive solid-state LiDAR systems to

adopt a solid-state scanning approach, which decreases the emitter power density

to a single line at any given time. This imposes limits on the sampling speed and

is an approach which is contrary to realising the full potential of a solid-state array

sensor architecture.

As current systems are only of modest array size this might be an acceptable com-

promise, but if future LiDARs are to match high definition camera resolutions and

beyond at several mega-pixels (> 106) the scanning time will become a significant

limitation on performance. The required laser power per pixel will need to be as high

as permissible within eye-safety constraints. While laser budget can be increased by

means of chosen emission wavelength, detector cost outside of Silicon manufacture is

still prohibitive. This work will address these constraints by exploring novel sparse

illumination schemes and associated depth reconstruction algorithms, which can also

boost resolution for fewer detector elements enabling high resolution not only via

large scale arrays but also for smaller arrays with exotic and costly materials. This

work is outlined in Chapter 5.

To further illustrate the sampling limitations of current and future systems, the

most common system architectures of current LiDAR systems are presented and

discussed in terms of frame time from a purely sampling budget point of view,

noting that processing budget is also significant and in most cases more costly than

the acquisition time budget.

2.4 LiDAR Architectures

In this section illustrations of the most common scanning and sampling schemes

are presented for LiDAR systems. The analysis will focus on frame time budget as

defined by the sampling speed in terms of array resolution, which can limit frame

rates dramatically to a point where any further processing will adversely a↵ect frame

rate making video-like frame rates of 30 Hz and above very challenging for many of

the scanning architectures.
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2.4.1 Mechanical Scanning Systems

The first generation of imaging LiDAR systems can be generally classified as me-

chanically scanning. Most early research arrangements relied on mechanical systems

to scan the scene in the x-y plane by steering the beam and/or the detector, with

the scanning step size defining both vertical and horizontal resolution. Another pop-

ular method is a line of emitters and detectors (i.e a one-dimensional array) being

rotated continuously at discrete time steps.

Point scan

A point scanning system generally relies on either a gimble type scanning system,

where the emitter and detector are both moved to scan the scene as shown in Fig-

ure 2.6(a). These types of arrangements are still found in state-of-the-art space

LiDARs [79]. They provide robust performance, as they can compensate for shock,

but due to their moving parts and tight tolerances are very expensive. Other popular

prototypes use beam steering by means of moving mirrors (e.g. mirror galvanome-

ters) shown in Figure 2.6(b) or by moving the entire system on a x-y stage [80].
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x
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Figure 2.6: Illustration of point scanning LiDAR with arrows for moving axis, (a) gimble
type and (b) galvo mirror type.

In a point scan system, a single coherent photon emitter, tx, is paired with a single

pixel photon detector, rx. To enable a spatial resolution beyond a single point, the

laser beam is optically steered across the scene in the x, y plane of size nx ⇥ ny.

This can be facilitated by physically rotating the laser-detector pair with a two axis

rotating arm or by steering the laser beam using two mirrors which are mechanically

actuated. This process is fairly slow and is unsuitable for real-time high resolution

LiDAR imaging. The frame sample time Ft is defined by the number of points in the

x, y scan, the number of laser pulses required to overcome ambient and device noise

for a robust SNR governed by the pulse repetition rate, PRR and the maximum

system range i.e. the time-of-flight for the maximum range, �tmax, such that

(Ft)point =
nxny�tmax

PRR
. (2.9)
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Line scan

The most common type of commercially available LiDAR system for the initial

autonomous prototype vehicles [8, 7, 81] is the mechanical line scan as illustrated in

Figure 2.7.
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Figure 2.7: Illustration of mechanical scanning lidar with arrows for moving axis, (a)
rotation type, where lasers and detectors are physically rotated and (b) mirror spin type,
where a stationary laser and emitter line is swept directionally with the mirror rotation.

In a mechanical line scan, a system is comprised of multiple laser-detector pairs often

stacked vertically, which are then rotated mechanically around the y-axis. It can

also be optically steered using a rotating mirror, with a stationary linear array. The

vertical resolution, ry is therefore defined by the number of pixels, ny or channels and

the optical system capturing a slice of the scene with a system specific field-of-view

(FoV). Each pixel often has a vertical optical resolution in degree,

ry =
FoVy

ny

. (2.10)

The horizontal resolution is defined by line sample time and the rotational or scan

speed of the system, which we shall define via the frame rate of the system, f , being

the number of full scans per second. This in turn dictates the number of horizontal

sample points,

nx =
�tmax

f · PRR
(2.11)
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The frame time is therefore

(Ft)line =
nx�tmax

PRR
. (2.12)

This decreases the frame time proportionally to the stationary axis compared to a

point scan system. In terms of the sampling signal model, the emission is aligned

with the number of photon detector pixels, n, and is therefore for a single line

Tx = [1, ..., 1] 2 {1}n. (2.13)

The corresponding photon detector line captures histograms at each pixel location,

thus

Rx = [h1, ..., hn] 2 Nn⇥k
. (2.14)

2.4.2 Solid-State LiDAR

Full solid-state systems are taking advantage of advances made in detector arrays

as outlined in Section 2.3.2 and in solid-state laser arrays, in particular VCSEL

arrays [19, 20, 2]. This enables a fully solid-state LiDAR architecture as illustrated

in Figure 2.8.
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Figure 2.8: Solid-state LiDAR with full photon and laser array.
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For a fully solid-state array LiDAR, the transmitter usually illuminates all respective

pixels. In the case that the entire scene can be illuminated at once, the transmitter

and receiver are therefore

Tx =

2

664

1 . . . 1
...

. . .
...

1 . . . 1

3

775 2 {1}nx⇥ny Rx =

2

664

1 . . . 1
...

. . .
...

1 . . . 1

3

775 2 {1}nx⇥ny (2.15)

This is often called flash or burst illumination LiDAR. It is obvious that for this

kind of illumination and sampling scheme, the amount of data for each frame when

capturing full waveforms will require a high bandwidth sampling interface and a

large amount of memory to store the sampling data cube and perform any additional

processing steps. The dimensions of this data cube are

Darray 2 Nnx⇥ny⇥p
, (2.16)

with p number of histogram bins as before. This is the fastest sampling scheme

available with a frame sampling time of

(Ft)array =
�tmax

PRR
. (2.17)

It is not only challenging from a data aspect, but it is also challenging from a safety

perspective. Eye-safety regulations state a limit of permissible laser power per unit

area. For short range applications, which require only moderate photon output, this

is not an issue. For long range applications, where optical transmission loss (1/d4

[78]) is not negligible, this becomes a crucial design parameter and often means

that for any usable FoV the laser power density becomes prohibitive for eye-safe

operation. This has led to solid-scanning systems, which rather than spinning a line

sensor, use a solid-state laser array to illuminate the scene in lines e.g. row wise,

(Tx)1 =

2

66666664

1 . . . 1

0 . . . 0
...

. . .
...

0 . . . 0

0 . . . 0

3

77777775

(Tx)2 =

2

66666664

0 . . . 0

1 . . . 1

0 . . . 0
...

. . .
...

0 . . . 0

3

77777775

(Tx)ny =

2

66666664

0 . . . 0

0 . . . 0
...

. . .
...

0 . . . 0

1 . . . 1

3

77777775

. (2.18)

Rx will line scan in the same way aligned with Tx. The frame time is therefore the

same as for mechanical line scanning systems albeit with the advantage of no moving

parts and the scan direction is software defined. This however, does not take full

advantage of the solid-state nature and the benefits of larger arrays as resolution
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increases. The time it takes to sample each of the presented sampling behaviours

is further illustrated in the graph shown in Figure 2.9, where any active point, line

or full array is illuminated for 100µs each (50 laser pulses for 300 m range) for a

variety of array resolutions. Lines are scanned across the array’s smallest dimension

for the shortest possible sample time.
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Figure 2.9: Sampling times of various sampling approaches for LiDAR system architec-
tures, including the novel approach presented in this work, CBCS, with initial findings in
[82]. A frame-time limit for 30 Hz is also shown.

This graphs illustrates, the benefit of flash and compressive illumination schemes,

as the total illumination time remains constant as array sizes increase.

While current systems with modest resolutions can achieve sampling rates just be-

low and up to 30 Hz, as resolution increases, normal sampling strategies limit the

overall frame rate significantly, this applies to solid-state scanning and mechanical

line scanning alike. This limits processing time significantly at low resolutions and

prohibits fast frame rates above 30 Hz for higher resolutions. Flash illumination

would be the best illumination and sampling scheme but is di�cult to achieve for

long range applications in the NIR spectrum. The approach presented in this work

aims to tackle this problem and is further described in Chapter 5 by using a sparse

multi-pattern sampling approach. This enables constant sampling rates and illumi-

nation densities similar to line scanning approaches, while being closer in sample

time to full flash illumination.

2.4.3 Commercial LiDAR Systems

To give an idea of the current LiDAR market with respect to typical specifications

and cost, an illustrative selection is provided in Table 2.3. These are mostly auto-

motive systems, with the exception of the Riegl. This LiDAR system is included as

it is one of the only readily available systems providing full-waveform output, while
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all other systems pre-process the raw waveform internally with no end-user access.

A more comprehensive review of current LiDAR systems can be found in [83].

Table 2.3: Typical selection of available scanning LiDAR systems

Velodyne Velodyne Ibeo Ouster Riegl
AlphaPrime [84] VLP-16 [85] LUX 4L [86] OS2-32 [87] VUX-1LR [88]

Pixels 1 ⇥ 128 1 ⇥ 16 1 ⇥ 4 1 ⇥ 32 1 ⇥ 1
Scan rotate rotate mirror rotate mirror

FoV, � 360 ⇥ 41.33 360 ⇥ 30 110 ⇥ 3.2 360 ⇥ 22.5 330 ⇥ 0.02
Vertical Resolution, � 0.2 2 0.8 0.7/0.35/0.18 0.004
Range (max@10%), m 220 100 50 120 110-820
Range Resolution, cm 3 3 4 0.3 1.5
E↵ective Resolution 1800 ⇥ 128 720 ⇥ 16 138 ⇥ 4 512/1024/2048 ⇥ 32 n/a

Wavelength, nm 903 903 905 865 NIR
Frame rate, Hz 5 � 20 5 � 20 25 10, 20 10 � 200
Full-Waveform No No No No Yes
Peak output First, Max, Last Strongest, Last First, Max, Last Max n/a

Price, $ 100,000 4,000 10,000 16,000 50,000

The selection provides a broad overview of the compromises present in available

LiDAR sensors. For high resolution systems the cost is extremely high and even the

cheaper systems are still cost prohibitive for mass deployment in consumer appli-

cations. Frame rates are also lower than normal camera systems in most cases and

range is also fairly limited and often associated with the lower frame rate specified.

Such low frame rates will limit the use cases for these systems, making motorway

applications more challenging, which generally require the fastest response time pos-

sible. Most systems also only report the strongest return, which may not be the first

true return in some cases. However, the more advanced systems do also provide first

and last return.

In terms of solid-state LiDAR, despite a large number of start-ups in the space,

reliable specifications are not readily available, with only few companies providing

a comprehensive datasheet of which two are summarised in Table 2.4.

Table 2.4: Close-to-market automotive solid-state LiDAR systems

Ibeo Ouster
Next [89] ES2 [90]

Pixels 80 ⇥ 128 260 ⇥ 130
Type Solid-State (VCSEL+SPAD) Solid-State (VCSEL+SPAD)

FoV, � 11.2 � 60 ⇥ 41.33 26 ⇥ 13
Range (max@10%), m ⇠ 250 200
Range Resolution, cm 3 5

Wavelength, nm NIR 905
Frame rate, Hz 25 10 � 30
Full-Waveform No No
Peak output n/a Strongest, Max, Last

Price aim, $ < 1, 000 < 1, 000
Release target 2020 2022

With pricing information being only speculation at this point, the only conclusion

to draw is that the there is an aim to reduce the price well below the cheapest

scanning system, while providing significantly higher resolution for the same FoV.

Both systems use VCSEL and SPAD technology and quote a fairly high maximum

range in both cases. However, the frame rate still remains in the 10-30 Hz range,
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illustrating how challenging high frame rate long distance imaging is due to high

data volume generated and the laser power limitations potentially driving up sample

time.

2.5 LiDAR Waveform

Although the storage and processing of a full LiDAR waveform is generally expen-

sive, it can provide additional information beyond a first return [91, 92, 93, 31] and

is particularly useful in challenging situations with high ambient noise or due to

adverse weather conditions [94, 17] and can also provide information about scene

content as well as mapping information [95]. Typical waveforms for various scenarios

are shown in Figure 2.10, which have been simulated for illustrative purposes only.
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Figure 2.10: Considered for this work: (a) Multi-path returns contained in waveforms
with moderate noise. (b) Very noisy waveforms with multiple returns. And for illustra-
tion but not addressed in this work: (c) a waveform with a target in fog and (d) sensor
artefacts such as cross-talk, where a target appears due to internal sensor reflections. Cus-
tom waveforms were generated using the simulations tools from this work for illustration
purposes.

It is therefore worthwhile investigating depth recovery from said waveform compat-

ible with large scale SPAD ToF imaging arrays.

23



2.5. LiDAR Waveform

2.5.1 Waveform Signal Model

An ideal LiDAR measurement observing K surface returns can be described as a

continuous signal being an cumulative sum of impulse returns, such that

h(t) =
K�1X

k=0

�k�(t� tk), (2.19)

where � is the Dirac distribution, {�}K�1
k=0 denotes the reflectivity of the k

th return

and {tk}
K�1
k=0 the respective time delay [91, 96].

A practical LiDAR system utilises a photon sensitive device, of which some are

considered in Section 2.3. In this work SPAD devices for single photon detection are

primarily considered if not otherwise mentioned. The choice of detector alongside

optics and overall system characteristics alters the shape and amplitude of the overall

return signal for each of the k signal returns. For example for passive quenching

SPADs, due to their dead time [91], their sharp impulse rising edge is followed by

a slowly decaying tail, where the SPAD recharges. There are a plethora of further

influences on the shape of the recorded return, the reflectivity, the atmospheric

conditions and system loss to name a few [78]. It is therefore important to take as

much of these unique features into account when modelling the signal. This is often

done using a representative instrument response function (IRF) for a single return,

⇢ 2 Rp

+. A practical IRF can then be described as

r = � ? ⇢, (2.20)

where ? is the discrete convolution operator. This leads to a photon rate distribution

ci(t) =
K�1X

k=0

(�kr(t� tk)) + �, (2.21)

for every pixel, i, where � is the background photon count rate. This distribution is

then used to draw counts from the Poisson distribution P(·). A full LiDAR waveform

is then

fi ⇠ P(ci), (2.22)

where i 2 NN indicates the ith pixel out of a vectorised grid of photon detector pixels

[91, 31, 33, 97, 17].
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2.5.2 LiDAR Signal Processing

The shape of the waveform, in particular if capturing a wide field of view, can be seen

as a scene signature. It can contain information about atmospheric conditions [94]

and therefore some work has focused on classifying abstract information contained in

the waveform [95] to identify typical urban objects. This approach was also applied

to canopy and other remote sensing tasks [98, 99].

For depth extraction from the waveform on a per pixel basis, early work focused

on finding the underlying parameter set and thus the ideal information including

the time delays of returns and therefore depth. An estimate was iteratively fitted

to the observation using maximum likelihood estimation (MLE) [80] and was later

improved by using more complex methods exploiting Bayesian Statistics and Markov

chains [31, 100]. While it is a very precise approach, which generalises well to varying

dynamic ranges and works across a range of noise and photon count levels it is rather

slow to compute. The approach was refined and also parallelised in work following

the initial demonstrations [101, 102, 103]. Although achieving dramatic reductions

in processing time for this approach, the methodology focuses on single waveform

processing and would be challenging to scale up in a massively parallel fashion for

large detector arrays.

The work was further extended for very sparse photon count data, but the issue of

speed still remained with reported processing times of several hours for reasonable

image frame sizes [32, 104, 105]. More recent work proposes down-sampling of the

data to derive priors to improve and accelerate the full frame problem with good

results [106]. However, it is curious to observe that most reconstructions occur

in a fairly small window of few metres, albeit at large stand-o↵ distance. Such

small observations windows further constrain the reconstruction to a short range

reconstruction, albeit at low photon count rates. Nonetheless, the processing time

per pixel has been improved to a few seconds from several minutes in prior work.

Rather than utilising Bayesian methods, another approach was to utilise finite-rate-

of-innovation (FRI) principles [107, 108] and fast computational methods [109] to

unmix the signal in the Fourier domain [110]. While this approach reports very fast

processing time, and if applied on a per pixel basis would be suitable for real-time

applications, the framework requires significant prior information in particular the

number of peaks and has not been demonstrated under high ambient noise. However,

it is one of the faster approaches with good parameter estimation in suitable low

noise applications.

Other approaches consider spatial correlation and sparsity regularisation to con-
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strain the problem formulation [111, 112, 113, 114, 115]. They exploit the signal

statistics to enforce sparsity and promote some spatial correlation by considering

neighbouring pixels. Recent work also achieves impressive run-times using graphical

processing unit (GPU) acceleration [116]. However, a lot of the analysis is once again

carried out on fairly small range windows of less than 10 m dynamic range. This

constitutes a problem relaxation and might promote some of the spatial constraints

considered in the first place, because the likelihood for dramatic range di↵erentials

is much less likely when only a small observance window of < 10 m is considered.

This might allow to make smoothness and surface assumptions due to the small ob-

servation window. The claim to long range imaging is somewhat misleading, as only

a small window at a large stand-o↵ distance (even at 100s of metres) is considered,

the long range here only acts as a photon count attenuator and introduces opti-

cal challenges, but when only considering a small window the reconstruction prob-

lem is essentially still a short range problem. This confirms further the significant

challenges associated with full range depth reconstruction from long rangeLiDAR

waveforms.

2.6 Conclusions

This chapter has reviewed the fundamental light detection and ranging (LiDAR)

principles and some of the major challenges associated with optical depth measure-

ments using time-of-flight (ToF) principles for self-driving cars. Some current and

future commercial LiDAR systems are reviewed illustrating the current prohibitive

cost of the technology for mass deployment. An introduction to ToF was provided

with a formulation for typical LiDAR depth outputs. Further, a LiDAR signal model

for the full-waveform is provided, which can provide more information, particularly

in challenging conditions important for full autonomy.

To enable low-cost fully autonomous cars novel sensors are required, which provide

high resolution and high frame rates in a robust package, which in turn calls for

solid-state systems which can be mass manufactured. Major developments in silicon

single photon avalanche detector (SPAD) technology have enabled ever larger SPAD

arrays. This development was reviewed with a brief introduction into the fundamen-

tal workings of the avalanche photodiode. SPAD arrays trend towards denser and

more e�cient arrays, making them ideal candidates for future automotive LiDAR

systems.

Current LiDAR signal processing techniques are discussed in the context of larger

ToF arrays noting in particular the often long processing times and some of the
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rather limiting assumptions to relax the problems for more e�cient processing ap-

proaches. This is often coupled with short dynamic range data or windowed ap-

proaches, which if extended to full range applications would incur a significant time

and processing penalty.

This motivates the need for novel processing techniques to process the drastic in-

crease in measurements as large ToF imaging array become a reality. To address

this particular issue, an investigation into a parallel processing approach using deep

learning is carried out in Chapter 4.

Typical LiDAR architectures are illustrated alongside a sample time analysis. This

section concludes that with ever increasing resolution, the sample time with any

kind of scanning approach is a limiting factor. Although flash illumination would

be the best sampling case in terms of speed, it is not possible for Silicon compatible

wavelengths due to eye-safety concerns. This motivates an investigation into a novel

sparse sampling approach to LiDAR processing which both improves the sampling

speed with low illumination density, which further reduces sample bandwidth by

exploiting compressive sensing (CS) principles presented in Chapter 5 with e�cient

hardware considerations of this approach being explored in Chapter 6.
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Chapter 3

LiDAR Signal Simulation

3.1 Introduction

Developing frameworks and algorithms for future sensor systems requires realistic

data to verify and evaluate the approaches as well as any underlying assumptions.

While several companies are currently developing solid-state light detection and

ranging (LiDAR) systems, it is very di�cult to gain access to development systems

which could provide raw unprocessed data. Although several datasets exist for point

cloud data, the final output of a LiDAR system, such as [117, 118, 83], datasets of

raw photon count data for complex scenes at high resolution do not seem to be

publicly available at the time of writing. To enable a thorough investigation of

algorithms which can process raw photon count data at scale it is imperative to

work with suitable raw data. In the absence of a real system, the best option is to

simulate such data.

Photon count simulation and the modelling of full LiDAR waveforms is an active

field of research (e.g. [92, 93, 119, 120, 121]) and thus the shape and characteristics

of LiDAR returns are fairly well understood and suitable methodologies to generate

photon count rates will be introduced in this chapter. Another significant aspect of

this work is to provide methods for depth reconstruction at scale for an autonomous

vehicle. This means that sequences of data are desirable but more importantly the

scene composition should be as close as possible to the envisioned application. This

means that the type of scenes to be considered should be as close as possible to real

life driving environments ranging from highways to dense urban environments with

many actors and objects in the scene. An approach is presented which allows lever-

age of synthetic and real depth datasets generated for the purpose of training and

evaluating autonomous decision making and other visual processing tasks. Hence,
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algorithms and code were developed in this work to generate photon count data at

variable resolutions with feature rich underlying semantic data and ground truth.

The ground truth enables straightforward evaluation of any framework developed.

This also means that once the simulated raw data is generated, sampled and then

processed, the final output can be compared to a ground truth with actual scene

content making it possible to interpret results both quantitatively and qualitatively,

by visual inspection.

While a real solid-state arrayed LiDAR system would be more desirable than simu-

lating photon count data, this approach enables investigations into novel sensing and

sampling schemes, which may not be possible with existing systems. And although

this work had access to a few LiDAR sampling cubes from a point scan LiDAR

system, they only contain information over a small range window for very specific

non-automotive applications. Further, due to the abundance of rich depth image

datasets, the volume of underlying data available allows the investigation of modern

machine learning approaches making use of big data. This work takes full advantage

of these enabling capabilities of simulating raw LiDAR system signals rather than

working with pre-defined sampling and system limitations.

3.2 Datasets

The form of depth data available can be broadly put into three categories: point

cloud datasets, depth datasets and depth generation from 3D software. While point

cloud datasets provide a great resource for decision making algorithm development

further down the processing flow of autonomous compute systems, they are a highly

processed form of depth data and a lot of information from the raw LiDAR waveform

is discarded. This work aims to output such data but perform processing on raw

LiDAR sensor sampling data. To provide suitable ground truth two types of depth

datasets were identified, one being synthetic i.e. computer generated depth scenes

[122, 123] and the other being augmented real datasets containing depth, image

and segmentation data [124]. Using a dense depth ground truth and augmenting

this data with auxiliary information to supplement reflectivity information gives full

flexibility in the simulation stack allowing for full control of sampling methodology,

field-of-view (FoV) and capture resolution in all dimensions.

3.2.1 LiDAR Datasets

Although real full point-cloud datasets exist, they are locked to a specific sensor,

which means that the raw data is not available and has been processed; often with
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unknown assumptions from the manufacturer. This makes them a good resource for

decision making and more advanced scene analysis, where a specific LiDAR sensor

is expected to be part of the input. The very popular KITTI vision benchmark [117]

was one of the first datasets which found widespread popularity for scene analysis

and autonomous decision making as it provides various synced sensing modalities,

which were state-of-the-art at the time it was published. A more recent and com-

prehensive LiDAR point cloud dataset is the Waymo point-cloud dataset [118], it

provides a large amount of point-cloud frames making it a great choice for further

point-cloud processing. There are many more such datasets as outlined in [83], but

they are not suitable for this work, since the signal processing at sensor level is

already performed. This means that the ground truth is often not available unless,

in the best case, it is an estimate from a secondary sensor source and, being based

on real systems, all their current limitations are imposed on the final output data

provided in these datasets. One main limitation of most current commercial LiDAR

systems aimed at the automotive space is the limit of point outputs per pixel, which

is often only the first return.

Further, mechanical scanning systems, mostly used in these datasets, often have

a fairly limited vertical resolution defined by the number of channels and with in-

creasing channel numbers the cost of such mechanical LiDAR systems significantly

increases due to expensive calibration and tight tolerances. This makes it di�-

cult to up-scale such data to more high-resolution solid-state system specifications,

which can enable a higher pixel density and does not su↵er from di�cult calibration

processes due to having no moving parts. It is therefore desirable to have dense

underlying depth data with known ground truth for flexible raw LiDAR waveform

generation, with full control over assumptions and subsequent signal processing.

3.2.2 Synthetic Depth Data

As the objective of this work is to develop signal processing algorithms for solid-

state LiDAR arrays, the usage of output data from scanning systems seems counter-

intuitive. They provide a very di↵erent field-of-view and the sampling behaviour is

fixed and defined by its underlying mechanical system. Further, it is desirable to gen-

erate raw photon count data with flexibility for solid-state single photon avalanche

detector (SPAD) array specifications rather than other detector modalities in pre-

determined configurations. To generate full waveform data for solid-state SPAD

arrays based on feature rich scenes, some form of underlying ideal depth and reflec-

tivity data is required. A few di↵erent approaches exist to generate such data for

the desired application of autonomous driving sensor systems.
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A full 3D scene simulator based on a 3D game engine can be employed to generate

custom scenes and animate a camera pathway through a pre-defined scene. This

approach has significant drawbacks due to the extremely time consuming aspect

of content creation. Luckily, this is an active area of research and some open-

source autonomous driving simulators exist, such as CARLA [125]. These can be

modified, to implement sub-routines and create sensor models placed on vehicles in

the simulated world to extract relevant depth, speed, acceleration, video information

and other measurements to generate ground truth data. One particular advantage to

this approach is the ability to capture information at any frame rate. However, such

involved methods are only necessary if huge amounts of data at a specific frame rate

are required. Despite being a very flexible approach, it is still very time consuming

to generate custom pathways, a well defined sensor system in the selected 3D game

engine and significant computational resources are required to perform ray-tracing

on-top of the 3D scene generation.

Another more computationally e�cient approach is to use existing feature rich

datasets, which not only provide depth information but also intensity and scene

segmentation. Two such synthetic datasets are available delivering scenarios com-

parable to the desired application: Virtual KITTI [122] and SYNTHIA [123]. Vir-

tual KITTI is a recreation of the original KITTI vision benchmark [117] at a much

higher resolution in particular for the depth data, which was lacking due to the em-

ployment of a first-generation Velodyne LiDAR system at the time. Additionally an

indoor depth dataset was chosen as a depth information source to evaluate indoor

short range performance [124]. One downside to this approach is the lack of multiple

returns in the presence of opaque materials or wide laser beams. To mitigate this,

an approach is being proposed which enables to generate multiple pseudo-returns

from the high resolution of the base data by down-sampling to the final spatial reso-

lution of most LiDAR sensors but retaining all depth information. This is presented

in section 3.4.2 in more detail. Some key specifications of the three datasets are

presented in Table 3.1.

3.3 LiDAR Waveform Simulation

The simulation of LiDAR waveforms (e.g. see Figure 2.10 for an illustration) is

useful, because many LiDAR applications are cost prohibitive to acquire real wave-

forms at scale. LiDAR was first applied in space applications [11] and has found

more widespread application in aerospace applications. It is therefore not surprising

that a lot of simulation work has focused on space and aerial LiDAR applications

[92, 93, 119, 120, 121]. In combination with the well studied signal model of LiDAR
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Table 3.1: Synthetic and augmented real depth datasets for LiDAR waveform data
simulation.

Parameter Symbol Virtual KITTI [122] SYNTHIA [123] NYU Depth [124]

Observation synthetic synthetic real
Sensor - - Microsoft Kinect V1

Total number of frames 17000 200000 1449
Scene types automotive automotive indoor
Resolution Nx ⇥Ny 1242⇥ 375 1280⇥ 760 640⇥ 480

Depth Ground Truth D ideal ideal estimate
RGB I yes yes (stereo) yes

Multiple viewpoints yes yes no
Weather yes yes no

Daytime cycle yes yes no

Class Segmentation S yes yes yes

Focal length in x fx 725.00 532.74 582.62
Focal length in y fy 725.00 532.74 582.69
Optical centre in x cx 620.50 580.00 313.04
Optical centre in y cy 187.00 320.00 238.44

Value Scaling w 100 100 1

signals, simulating waveforms is a reasonable approach to prototype and model fu-

ture systems in the absence of prototypes or to produce data at scale without costly

acquisition trials. The cost of trials is not only prohibitive for aerospace applications

but is equivalently prohibitive at scale for automotive applications. Many scenes are

ideally observed in varying conditions making the acquisition of comprehensive real

datasets a time consuming task. It is not surprising that even if such datasets exist

from major companies in the field, that these are not publicly available as they are

an extremely valuable asset.

The aerospace focused simulation frameworks can not only include atmospheric

e↵ects but also surface and material properties. The simulation approaches are

often extremely complex and time consuming still, because most are designed for

the current state-of-the art of scanning laser systems with fewer detectors. This

work aims to provide a suitable simulation chain for solid-state LiDAR prototyping,

which provides the facility to model the sampling behaviour alongside robust yet

fast waveform generation. This establishes a convenient framework to generate large

waveform datasets of entire scenes and scene sequences at variable resolutions.

3.3.1 Photon Count Rate Models

The LiDAR waveform signal model defined in equation (2.22) requires a mean pho-

ton count distribution c for each pixel made up of a mean count for returns and

ambient conditions. The photon counts are then drawn from a Possion process ac-

cording to the mean compound photon distribution i.e. a mean photon count value
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for each waveform bin containing signal and noise contributions. This work con-

siders two photon count models for surface returns. The first is focused on aerial

LiDAR applications with the main parameter being output power and a compact

atmospheric model. The other is from the solid-state photonics community, which

focuses on photon count rates for SPAD devices with more simplistic atmospheric

models.

Airborne Laser Scan Waveforms

A reference point for laser power propagation in airborne LiDAR systems is the work

by [92, 93, 126]. This puts forward one path to obtain energy and power estimates

for a LiDAR system, which is briefly summarised below.

Let e� = hc

�
be the energy of a photon at wavelength, �, with c the speed of light and

h the Planck constant, the photon return rate depends on the spot size, d incident

on the active area of the photon detector device, the transmitted power, Pout, the

reflectivity of the surface, ⇢, (this includes geometric loss here too) and atmospheric

loss over the round trip distance, r, the received power is then in its simplest form

Pin =
Poutd

2

16r2
⌘sys⌘atm⇢, (3.1)

where ⌘sys and ⌘atm are transmission factors for system and atmosphere respectively

[126].

The mean photon count per laser pulse is then

cpulse =
Pin

e�
FWHM, (3.2)

with the full-width-at-half-maximum (FWHM) of the laser pulse i.e. the time en-

velope around the pulse centre. For an exposure time, defined by the desired frame

rate, f , in Hz, the maximum incoming photons per illumination cycle, with a single

pulse per time-of-flight (ToF), �t, is then

cmax =
1/f

�t
cpulse. (3.3)

SPAD Time-of-Flight Arrays

This work considers some specific aspects unique to solid-state LiDAR arrays using

SPAD detectors. Most SPAD pixels are made up of multiple individual SPADs,

this configuration is often called silicon photomultiplier (SiPM) or macro-pixels (see

Chapter 2.3.1). This design allows reduction of the e↵ects of SPAD dead-time and
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increases signal rate as it allows to capture more photons from a single timed laser

pulse. Simulation models exist, which can quantify the optimal photon count rate,

nP , based on number of SPADs for SiPM pixel designs [41]. For the considered pixel

design in [43], this works assumes 16 SPADs in each pixel making up the solid-state

LiDAR array.

3.4 LiDAR Simulation Toolchain

The LiDAR simulation tools developed for this work will follow the solid-state ap-

proach with a SPAD array similar to [43] in mind to match the scope of this work

better. Details of the system parameters and the signal irradiance values are pro-

vided in Table 3.2. In particular the irradiance values were provided by the authors

of [43] in collaboration with optical engineers at STMicroelectronics and are derived

from an optical model in the optics software ZeMax. Similarly, the solar irradiance

is obtained from the same optical model and the value is normalised to 1 lux. Alter-

natively, photon count rates can be obtained by equations (3.2) for a more generic

approach. To generate synthetic full-waveform data comparable to real data, the

ideal depth data has to be processed to reflect the typical signal propagation in

LiDAR. In general, this process can be described as a series of convolutions. A laser

light source generates pulsed waveforms at a specified pulse-repetition-rate (PRR)

of particular pulse-width, defined by it’s FWHM. This pulse-width dictates the

uncertainty in any individual depth measurement. Another important specification

limiting system performance is the light source itself, in particular the beam diver-

gence and lasing power have significant implications on range and resolution. As

such solid-state sensors are in concurrent development to the processing framework,

some assumptions in this work are based upon an early published development sen-

sor chip.

This allows to calculate a per bin mean photon count as shown in Equation 3.5. Let

As =
⇡d

2

4 be the laser spot area, then the photon count expected at range r is

fP (r) =
AsIST

r2e�
, (3.4)

with e� = hc

�
being the energy of a photon in 905 nm. The total photon count per

bin for a pulse is then

cP (r) = P ⇥ �⇥ fP (r)⇥ FWHM, (3.5)

with � being the reflectance of a target. For a realistic scene to waveform transla-
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Table 3.2: Solid-state LiDAR specifications based on development chip in [43] as a
simulation test platform.

Parameter Symbol Value Unit

Laser power P 4.5 W
Wavelength � 905 nm

Signal Irradiance IST 857.266⇥ 10�3 W
m2

Photon detection e�ciency PDE 0.7
Pulse width FWHM 133.3 ps

Spot diameter d 50 µm
Beam divergence � 0.5 °

Maximum ambience ⌦max 100 klux
Solar Irradiance Isolar 38⇥ 10�6 W

m2

Pixels in X Nx 128
Pixels in Y Ny 128

SPADs per pixel nSPAD 16(4⇥ 4)
Pulse repetition rate PRR 500 kHz

Range rmax 300 m
Sampling rate S 3.75 GHz
Bin width tbin 133.3 ps

tion an estimate for reflectance is therefore required. This work will make use of

segmentation maps of synthetic datasets to introduce an approximation of material

properties and thus reflectance. The photon counts per bin are used to populate a

histogram based on an underlying depth scene. The SPAD sampling behaviour is

modelled with a focus on fast waveform generation, but the option exists to allow for

a full SPAD sampling behaviour as used in [43]. The total count per bin is limited

to nP = PDE⇥ nSPAD per exposure cycle ⌘P [41].

Solar background photon rate

For a particular wavelength, �, the sun’s energy flux will have significant impact

on the total photon rate often referred to as background count rate. The ambient

count rate is derived from the solar irradiance at 905 nm, Isolar normalised to 1 lux.

The background rate, i.e. total solar photons arriving per second, is then

famb =
Isolar⌦

e�
, (3.6)

where ⌦ is solar influx in lux. This results in a mean background count � per

histogram bin or the mean DC noise level, i.e. solar photons arriving in a bin time

interval tbin as

� = famb ⇥ tbin. (3.7)
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This allows to compute the combined bin count distribution ci = cP +� to generate

a full waveform as per equation (2.22).

3.4.1 Synthetic scenes to Full-Waveforms

To facilitate a realistic signal-to-noise ratio (SNR) it is important to consider the

reflectance, �, of objects in the scene. While material properties and full knowledge

of the geometry could be embedded in full 3D engine based models (e.g. as an

extension to [125]) and reflections can be realistically simulated using ray-tracing.

This information is not available for the o✏ine datasets outlined above. To mitigate

this, some rudimentary Lambertian reflectance information for a scene is derived

from the intensity, I, and segmentation map, S, to generate reflectance estimates

for the known object classes within the datasets with base reflectivity values as

indicated in Table 3.3. This makes various assumptions in terms of most common

materials used for particular classes based upon common spectral libraries [127, 128].

In particular for the segmentation data for [124] some classes are estimated with

variations around a particular material type. It is assumed that the sky yields no

reflections.

Table 3.3: Estimates for reflectance for selection of defined classes within datasets.

Class Reflectance �base

Sky 0.00
Terrain 0.17
Tree 0.15

Vegetation 0.25
Building 0.25
Road 0.08

Lanemarkings 1.00
Sidewalk 0.10
Guardrail 0.24
Fence 0.10

Tra�c sign 1.00
Tra�c light 0.50

Pole 0.25
Cars 0.30

Pedestrian 0.20
Cyclist 0.20
Textiles 0.1

Wooden surfaces 0.6
Lacquered surfaces 0.9

Metal objects 0.8
Glass surfaces 0.1

Misc. 0.20

To generate the base reflectivity map �base 2 Rn=NxNy each class identifier is mapped

to the reflectivity values above as shown in Figure 3.1.

To introduce some variance across objects in the final reflectivity map R 2 Rn=NxNy

(e.g. tyres are not separate from a car in the source segmentation data but are
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(a) Segmentation, S (b) Reflectivity base, �base

Figure 3.1: (a) any class defined in the segmentation map, here illustrated with unique
colours with classes having multiple values, is mapped onto a reflectivity base in (b)

of lower reflectivity), the RGB image, I 2 R3NxNy is converted into a brightness

weighting map as B 2 Rn=NxNy , such that

B = �
r + g + b

rmax + gmax + bmax

+ (1� �), (3.8)

where r, g, b are the respective colour channel of I as shown in Figure 3.2 and � is

a weighting constant which allows to adjust the influence of brightness, in this case

� = 0.25.

(a) RGB, I (b) Brightness Weighting, B

Figure 3.2: The RGB image in (a) is converted in a brightness weighting map shown in
(b) using the intensity values derived from the colour channels and a weighting constant.

This assumes that bright objects will absorb less laser power than dark objects.

This value is then used to scale the reflectivity values for each known class from

the respective segmentation map to provide a more varied estimate for the expected

photon count at the receiver. The steps to arrive at the reflectivity map for this

example are shown in Figure 3.3 and is defined as

� = B � �base. (3.9)
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(a) Reflectivity base, �base (b) Brightness, B (c) Reflectivity, � = B � �Base

Figure 3.3: The reflectivity base in (a) is multiplied with the brightness weighting in (b)
to result in a reflectivity map in (c) with some object colour influence.

The reflectance information is pixel matched to the ground truth depth data and

thus can be sampled in the same way as the depth scene. This makes it possible to

simulate photon count rates with flexible sampling schemes with both known depth

ground truth and rudimentary estimates of reflectivity for equation (3.5), where at

pixel i the value for distance, ri = D(i) for a vectorised depth map D 2 Rn=NxNy

and �i = �(i) for the vectorised reflectance map are known. An example of such

maps for a scene is shown in Figure 3.4.

(a) Depth, D (b) Reflectivity, �

Figure 3.4: Finally, the depth map in (a) and the reflectivity map in(b) can be used to
generate values for photon count rates.

It is important to realise that the depth images in these datasets are stored the

image pixel space rather than in 3D coordinates or spherical coordinates. To prop-

erly simulate the sensor sampling behaviour, the data has to be transformed into

spherical coordinates to capture the depth as seen along a laser beam at an angle.

To obtain the radial information for the observed depth from a LiDAR sensor, the

dense orthographic depth data from the datasets is transformed into the XYZ do-

main using the pinhole camera model equations with parameters for each dataset
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presented in Table 3.1,

Z(x, y) =
d(x, y)

w
,

X(x, y) =
(x� cx)Z

fx
,

Y (x, y) =
(y � cy)Z

fy
,

with the intrinsic camera parameters, focal length in x and y, fx, fy respectively

normalised to the depth scale factor, w and the optical centres, cx and cy as pixel

positions. With 3D image coordinate data it is straightforward to represent the XYZ

data in spherical coordinates with the desired radius information on a per pixel basis

at their respective x and y positions in their original pixel representation, r(x, y)

and the associated azimuth, ✓(x, y) and elevation �(x, y) angles. For convenience

this thesis will use depth and radius interchangeably, but the default is radial depth

information if not otherwise specified. This makes it possible to simulate the ToF

as observed by a LiDAR sensor and its optical components. With the forward

and backward transforms in place, this toolchain can readily generate point clouds

from ground truth and recovered depth images or represent depth data in pixel

representation.

3.4.2 Waveforms with Multiple Returns

Having defined the spherical calibration of the data capture, the tools presented in

this chapter can also simulate multiple returns in a single waveform. In real LiDAR

returns multi-path reflections can occur if an object is occluded by a transmissive

material or if the beam width of the laser is wide enough to illuminate several surfaces

in its line of sight. The main depth data source is a single dense layer of information

and thus occlusion data is not readily available. To simulate transmissive objects in

a laser path, a full 3D scene with material properties has to be simulated and ray-

traced to capture this complex scenario. This is a very time consuming process and

does not lend itself to frame sequences and prototyping of fast sample and processing

stacks. It could be implemented for full 3D scene generators mentioned earlier to

generate o✏ine datasets, but this work will focus on multi-return generation from

multiple surfaces being illuminated in the same optical path. This is a very fast and

e�cient and therefore does not add much time to the simulation frame time, but is

also a more common scenario. In this case multiple scattering events are captured

without any loss in transmissive layers, which makes it more probable to detect. For

occluded object returns each scatter event with the transmissive media or layer will
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attenuate the signal both on forward and return path. This reduces photon count

rates even further, reducing the likelihood of significant photon returns.

To simulate multi-surface returns, it is assumed that the beam has enough divergence

over the entire range to generate multiple scatter events from di↵erent areas of a

surface or multiple surfaces which fall within the optical path of the emission and

detector pair. This is only possible if the final LiDAR array resolution is less than

the initial depth images. This is illustrated in Figure 3.5

Figure 3.5: Multi-return generation from dense single return data

Combining this approach with the reflectance and depth information available, mul-

tiple returns can be sampled along the line-of-sight of pixel blocks as illustrated for

the previously considered scene in Figure 3.6.

3(# 4FHNFOUBUJPO 3FGMFDUBODF %FQUI 1PJOU�$MPVE 'VMM�XBWFGPSN

Figure 3.6: Using RGB and segmentation information, a reflectance map is generated
which is combined with depth information and a multi-return sampling operator to gen-
erate multiple objects from reflections along a line-of-sight. This allows to simulate a full
LiDAR waveform with multiple surface returns. Point cloud for illustration purposes of
line-of-sight only.

This can also be visualised as a transformation from a single high resolution depth

map to a lower resolution depth cube as shown in Figure 3.7.

Figure 3.7: Multi-return generation from dense single return data
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Mathematically, each depth value dx,y in the dense depth map, D 2 RNx⇥Ny , is

grouped into macropixel vectors forming a lower resolution depth cube containing

multi path information, Dmp 2 RnD⇥Nx/&⇥Ny/& , where nD = &
2 is the maximum

number of depth returns in a macropixel and & is a spatial down-sampling factor.

For example, for the first macropixel the depth vector is (Dmp)1 = D(1 : &, 1 : &).

It is important to note, the total number of depth values is not reduced and the

same field-of-view is observed at the slight cost of spatial resolution. The beam

shape is assumed to be square shaped if not otherwise mentioned to capture all

base data conveniently. However, it is straightforward to implement other shapes

for the re-sample operator. The exact same re-sampling is applied to the associated

reflectance map, �, resulting in �mp 2 RnD⇥Nx/&⇥Ny/& .

Once re-sampled, each macropixel can yield a multi-return LiDAR waveform for each

macro-pixel vector pair. However, it is perfectly reasonable to obtain a seemingly

single return if a planar surface is illuminated and all returns are at the same depth.

If gradients or multiple surfaces are present, a multi-return waveform is generated

as illustrated in Figure 3.8 for three surface clusters at di↵erent ranges with varying

reflectance values.
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(a) Full LiDAR Waveform with multi-return response
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(b) First peak cluster
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(c) Third peak
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(d) Fourth peak

Figure 3.8: An illustration of a simulated multi-return LiDAR waveform for three hand
placed clusters using the simulation tools presented. The first cluster contains two merged
peaks while the others contain single returns.
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This method also accommodates the simulation of the LiDAR resolution problem,

where multiple surface returns merge into a single peak. This LiDAR resolution

problem is under active investigation [31, 96] and will be addressed in Chapter 4.

To summarise, the simulation toolchain presented thus far is capable of generat-

ing LiDAR histograms with user definable system parameters from synthetic high

resolution depth data sequences with auxiliary data available to replicate material

e↵ects in a rudimentary fashion. The flow of the waveform simulation is shown in

Figure 3.9. The toolchain allows large scale depth datasets to be converted into

Figure 3.9: The full LiDAR simulation toolchain for conversion of dense depth data to
multi-return histograms.

LiDAR waveform datasets, which enables the exploration of machine learning ap-

proaches to perform LiDAR waveform processing presented in Chapter 4. For this

reason the toolchain was not only implemented in Matlab but also in Python, as

machine and deep learning frameworks have well established development tools in

Python rather than Matlab.

3.4.3 Non-Linear Sampling

With the capability of simulating full LiDAR waveforms, the sampling behaviour

of the sensor is modelled. The simplest case is the full pixel scan, where each

macropixel (or pixel) is sampled individually as shown in Figure 3.10(a). As pre-

viously discussed, this is a fairly slow process and does not take full advantage of

a solid-state LiDAR array. Similarly, the depth cube can be sampled in blocks or

lines as illustrated in Figure 3.10(a), which is the most common mode of operation

of most current LiDAR systems.
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(a) Linear pixel scan (b) Vertical line scan

(c) Horizontal line scan (d) Linear block scan

(e) Random pattern full frame (f) Random block pattern

Figure 3.10: Sampling mode illustrations for simulated LiDAR sensors

Since the simulation is not constrained by existing system paradigms, the depth cube

can also be sampled in non-linear patterns and paths. This enables the exploration

of compressive sensing methods applied to LiDAR processing, which relies on often

random or specific pattern sampling methods [77], This will be further explored in

Chapter 5. A typical random sampling instance is shown in Figure 3.10(c) and a

blocked random sampling [129] instance is illustrated in Figure 3.10(d). The scene

can be sampled randomly or with a specific basis function in mind and the block

operator can be defined with and without overlap. In this work, the blocking default

scheme is non-overlapping with pseudo-random pattern generation as outlined in

Chapter 5.

This results in a simulation flow for compressive type sampling of LiDAR data. More

details in general and in particular on the pattern generation and noise removal

schemes are presented in Chapter 5.3.1. This is not only applicable to simulated

data but can also be interfaced with full-frame real LiDAR waveform data as shown
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in the flow diagram in Figure 3.11.

Figure 3.11: Sampling simulation flow.

3.4.4 Hardware Prototyping

With data generation and sampling behaviour in place, the last piece covered in the

simulation suite developed for this work is the capability of interfacing all output

data generated from this toolchain to interface with hardware compatible test-beds

or indeed hardware directly. To cover a wide scope of hardware implementations, a

C/C++ input and output (I/O) interface was created which is paired with export

and import functions in Matlab to prepare data for hardware processing and re-

import hardware output data for analysis. This enables testing of algorithms in

the C environment often used for firmware and software running on microcontroller

unit (MCU) or system-on-a-chip (SoC) devices, representative of embedded system

implementations. The C interface has the capability to directly interface with a

Virtex 7 based field-programmable gate array (FPGA) (AlphaData ADM-XRC-

7V1) using a PCI-Express connection.

The I/O module on the FPGA was implemented as a sequential shift register. The

shift register is then accessed by a logic state machine. This type of operational

mode was tested by implementing a simple cross-correlator in Verilog using Vivado

Synthesis tools. The output was verified against a Matlab and C implementation of

the same algorithm. This hardware interface enables the exploration of more hard-

ware specific optimisation such as the work presented in Chapter 6. The hardware

capabilities of the simulation tools are shown in Figure 3.12 with all implementation

variations of each tool block if multiple exist.
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Figure 3.12: Hardware prototyping flow.

3.5 Conclusion

This chapter has presented the methodology and capabilities of the simulation tools

developed for this work. The LiDAR tool-chain developed is capable of converting

feature rich synthetic depth datasets into multi-return LiDAR waveform data. To

introduce scope for reflectivity, the segmentation and brightness layers of the under-

lying dataset are leveraged to generate a class based approximation for reflectivity.

This introduces variation in the generation of the waveforms replicating real world

surface returns and by doing so programmatically enables the generation of large

LiDAR datasets at scale. This is a very useful feature for modern machine learning

type processing methodologies, which require a lot of data to derive weights for large

scale inference models.

Further, the tool-chain includes full sensor models with capabilities of modelling a

basic SPAD behaviour as well as linear and non-linear sampling behaviours. This

allows compressive sensing simulations without committing to specialised sampling

hardware. The sampling simulations can also be applied to existing real full-frame

LiDAR waveform data. This makes it an excellent tool to investigate compressive

sensing algorithms for time-of-flight applications as explored in Chapter 5.

Finally, a hardware interface was developed which enables further prototyping of
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algorithms with a focus on embedded systems. This e↵ectively turns the LiDAR

simulation tools into a synthetic sensor which can be interfaced with hardware.

The operation of these interfaces was verified by implementing a cross-correlator in

Verilog and C and was also run on an actual FPGA yielding identical results to the

Matlab and C implementations. Hardware specific optimisation for the compressive

processing method is further explored in Chapter 6.

The simulation tools presented o↵er an e↵ective solution to ToF sensor prototyping

for novel paradigms and edge cases which are not yet commercially explored in a

solid-state fashion. Further, the integration of readily available depth datasets as

the ground truth enables large scale synthetic LiDAR datasets to be generated at

runtime and o✏ine. This enables the investigation of novel deep learning approaches,

presented in Chapter 4, for LiDAR waveform processing with a ground truth for in-

depth analysis.
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Chapter 4

Deep Learning for Surface

Localisation in LiDAR Waveforms

4.1 Introduction

Moving away from a mechanical scanning light detection and ranging (LiDAR) sys-

tem to a solid-state array LiDAR increases the amount of data being sampled and

thus to be processed concurrently when capturing full waveforms. Modern prototype

scanning systems employ up to 128 emission and detection channels to capture data

at each scanning step to form a high-resolution depth scan. In contrast to this, a

solid-state system capturing at or above the same final resolution can easily produce

100 times the volume of data, because it can capture waveforms for each pixel in

the entire field-of-view concurrently. As technology progresses to increase resolu-

tion beyond scanning systems, the need to process tens or hundreds of thousands

LiDAR waveforms is inevitable. If camera resolution is to be matched at megapixel

resolution, millions of raw LiDAR signals would need to be processed in real-time.

This increases the demands on the processing bandwidth dramatically from only

128 concurrent waveforms by several orders of magnitude.

To match future high bandwidth solid-state systems, novel processing methods are

required to cope with the dramatic increase in raw information. Although e↵orts

have been made to accelerate raw LiDAR processing using statistical approaches,

this often discards a lot of the information contained in the raw waveform or makes

various assumptions to simplify the problem. This often reduces the processing task

to a modest multi-dimensional image recovery problem. However, this often implies

relatively ideal conditions and requires di↵erent algorithms for specific conditions.

This makes a unified processing solution which can scale to high resolutions even
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more challenging. The LiDAR problem in the automotive context has to operate

in various conditions, from night time to bright sunlight and adverse weather con-

ditions. This introduces further challenges to the processing stack and is often a

complex task in itself for single waveforms, let alone thousands of concurrent wave-

forms.

In recent years, machine learning has improved dramatically driven by the need

to process successfully the ever growing amount of data available in many ma-

chine vision tasks. In particular deep neural networks have become viable with

the advancements of modern graphical processing unit (GPU) hardware with highly

parallel and e�cient compute stacks. This enables the user to tackle a problem

using a data driven approach as well as the classical modelling methodologies. A

large volume of relevant data is the key to successful machine learning methods.

This means that data has to be diverse yet consistent. In the absence of real high-

resolution solid-state LiDAR, this work exploits the simulation modalities presented

in Chapter 3 to generate diverse sets of LiDAR waveforms derived from synthetic

scenes with varying scene content in terms of reflectivity and with varying ambient

conditions ranging from night to strong mid-day sunlight.

The aim of this thesis work is to develop and demonstrate a deep neural network

capable of determining surface locations for complex multi-return LiDAR waveforms

rapidly at scale as a direct high throughput processing solution for solid-state single

photon avalanche detector (SPAD) time-of-flight (ToF) arrays.

This work makes the following contributions to deep learning applied to LiDAR

waveforms:

• A novel deep neural network architecture capable of direct and fast surface

localisation from full LiDAR waveforms with high throughput: LiDARNet.

• A training-by-simulation approach allowing to train the network in absence of

real data for a specific system or augment existing datasets.

• Demonstrating the capability of LiDARNet to perform fast and robust surface

localisation even for surfaces beyond the temporal pulse resolution of the sys-

tem defined by the pulse width and across typical sunlight exposures for long

range automotive LiDAR imaging.

The chapter introduces the key elements of deep neural networks using convolu-

tional building blocks and a popular architecture in the form of a convolutional

auto-encoder which mimics model-based sparse computational approaches in a data

driven fashion in Section 4.2. A novel network architecture tailored to LiDAR wave-
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forms is then presented, in Section 4.3 which is designed to be trained primarily

with simulation data but is capable of transferring its capabilities to unseen real

data. LiDARNet is validated against the signal model and evaluated using an ex-

isting LiDAR benchmark dataset in Section 4.5. Its performance in the automotive

context of long range LiDAR waveforms is assessed with varying background noise

in Section 4.6 and the chapter concludes in Section 4.7.

4.2 Deep Learning

Machine learning has seen a massive increase in popularity due to its impressive in-

crease in capability in recent years. In particular deep neural networks have become

a very popular and e↵ective approach in tackling complex problems using a data

driven approach. One of the fundamental building blocks is the artificial neuron

shown in Figure 4.1.

Figure 4.1: Illustration of a typical artificial neuron.

Every input xi 2 Rn into an artificial neuron is associated with a weight wi to

aggregate a response with a bias, B, which ultimately passes through a transfer

function, � to form an output y, or mathematically

y = �(
nX

i

(wixi) + B). (4.1)

By forming complex networks of multiple such neurons in layers a basic neural

network is constructed. After a signal or image is fed into a network, the principal

data is passed through many neurons. The initial measurements get transformed in

this process and combined into another domain. For the network to extract useful

information a training process is required to find and set suitable values for each

weight of a neuron in an iterative fashion. This can take place in a supervised

fashion, where labelled output data is provided to auto-tune the network weights

to match the final output for an input. Alternatively, unsupervised training tunes
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the network by latching onto dominant features in the given input dataset without

outside information. Deep neural networks are inspired by the visual cortex, which

is made up of complex and simple cells. This is regarded as the main inspiration for

the modern deep neural network [130, 131, 132].

While a single neuron performs a predictable output, combinations of complex multi-

layered clusters can perform more advanced operations with the layers between input

and output often called hidden layers [133]. However, while many artificial neurons

will perform more complex tasks, the number of weights required to be stored also

increases dramatically. To advance their functionality, deep neural networks require

an ever increasing amount of computational resources to become more e↵ective at

increasingly complex tasks and become increasingly di�cult to train with simplistic

training approaches [134].

The performance and increasing capabilities of artificial neural networks closely fol-

low the dramatic growth in compute power, advances in parallel compute architec-

tures in particular for matrix arithmetics and memory density enabled by Moore’s

law well into the 2010s [135, 136]. In particular GPU architectures and their consis-

tent performance improvements with ever increasing competence in general purpose

computing, driven by demand for advanced physics in modern 3D gaming engines

relying heavily on matrix arithmetic, enabled modern deep neural networks, such

as the now famous AlexNet [137], to outperform many traditional model based ap-

proaches.

Graphic processors are a natural fit for deep neural networks, as they are designed

to accelerate large scale vector and matrix operations at scale and speed to draw

3D image frames with massive parallel architectures. Nvidia enabled access to their

compute capibility in form of their compute unified device architecture (CUDA) in

the early 2000s. It quickly became the standard application programming interface

(API) embraced by the machine learning community for their deep learning tools to

enable larger networks and accelerate training at scale. While CUDA is a proprietary

architecture from Nvidia there is also an open source equivalent supported by AMD,

the open computing language (OpenCL) which isn’t as widely supported by most

standard deep learning backends such as Tensorflow [138].

While many of the earlier networks were purely operated in a feed-forward fash-

ion, the concept of back-propagation [139] is another important concept which has

contributed to an increase in deep neural network performance allowing for deeper

and more complex networks. By using back-propagation, network weights are ad-

justed both on the forward pass and also on a backward pass, where the errors are
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evaluated in both directions for each iteration or epoch. The backward pass is facil-

itated by evaluating derivatives using stochastic gradient descent to feed back the

error gradient and improve training and application performance [140, 141, 142].

Combined with the increase of computational resources in GPU systems, neural

networks could perform more error back-propagation into more hidden layers in

less time, contributing to better deep neural network architectures and subsequent

impressive application performances.

4.2.1 Convolutional Neural Network

Although deep (i.e. multi-layered) neural network systems can perform complex

tasks, they can scale exponentially with additional hidden layers, making them very

memory demanding even with modern compute capabilities. Rather than assigning

a single weight to every input, a small collection of weights is applied to a sliding

window or kernel across the input vector. This is essentially a signal convolution and

was consequently termed a convolutional layer, which is more memory e�cient due

to weight sharing for various input collections [143] and was e↵ectively demonstrated

in the 1990s combined with multi-layered neural systems performing handwritten

digit classification [140, 144]. The modern convolutional building block is shown for

a 1D signal in Figure 4.2.

Figure 4.2: Illustration of a typical 1D convolutional building block.

As with the artificial neuron, the activations of the convolutional layer or filter

are followed by an activation or transfer function; in this case a rectified linear

unit (ReLU) is shown. While there are other activation functions, the ReLU has

been shown to outperform other activation functions in most applications [145, 146,

147]. This makes it a good default starting point, but for certain applications

other functions might be more suitable. Another key component of the modern
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convolutional layer is the pooling operator, which has been successfully applied to

neural networks [148, 149, 150]. It reduces the dimensionality of the signal and

promotes invariant feature learning in deeper layers and are a key component of

recent neural networks performing state-of-the-art complex vision and signal tasks

e.g. [151, 137, 152, 153, 154, 155] and many more.

4.2.2 Convolutional Auto-Encoder

A popular and powerful deep neural network architecture in recent years is the convo-

lutional auto-encoder. Made up of two stages, encode forming a code representation

and decode to reconstruct the principal information. It provides an architecture

which often exploits sparsity, has been shown to aid pre-training but also works for

classification and de-noising applications on its own [156, 142, 157, 158]. Generally

a single convolutional stage is made up of many convolutional filters within a single

layer, with many hidden layers making the network deep. An illustration of a mod-

ern auto-encoder architecture with such multi-layered stages is shown in Figure 4.3

adapted from [156].

Figure 4.3: Generic convolutional auto-encoder architecture [156]. The multi-layered
fashion of the deep network is illustrated by various sizes of the individual stages, illus-
trating that a single input is passing through many layers.

The auto-encoder or also auto-associator reduces the dimensionality of the data and

thus can identify features in lower dimensions similar to compression in traditional

signal processing. Being only made up of convolutional building blocks both training

and application are also extremely e�cient thanks to modern GPU cards and deep

learning accelerators. Given its overall simplicity and potential for speed, it is an

excellent starting point for fast and e�cient processing for many signal processing

tasks.
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4.2.3 Related work

Application of deep learning to image and signal processing is a very active area

of research. In terms of LiDAR applications, they often work with point clouds

to perform object classification [159, 160], scene segmentation [161] or sensor fusion

[162, 163, 164, 165]. This work aims to process LiDAR waveform directly to generate

such point clouds e�ciently from complex multi-return raw full-waveform LiDAR

data. There are some similarities with work being carried out in electrocardiogram

(ECG) analysis such as [166, 167], but in that case the final output is simpler with

few output classes, whereas thousands of potential surface locations are present in

LiDAR waveforms.

There is some recent work applying deep learning directly to the LiDAR waveform

to either de-noise the waveform and remove minor artefacts [168] or up-scale the

waveform [169]. However, both of these approaches only achieve marginal, if any,

improvements to the input waveform with no abstraction of the data into useful

information. Other approaches attempt more useful application of neural networks

to LiDAR data, such as direct object reconstruction in very constrained application

settings [170, 171] or surface segmentation [172].

The work presented in this chapter aims to determine surface locations for multi-

return waveforms and thus enable fast and e�cient point cloud generation at scale

for solid-state LiDAR arrays.

4.3 LiDARNet

4.3.1 Introduction

The following sections present work to process raw LiDAR waveforms using deep

neural networks to identify true surface returns rapidly and with high throughput

compatible with high-resolution solid-state systems and scope for increasing reso-

lution and additional functionality in the future. The large volume of data being

sampled by such devices calls for parallel, e�cient and high throughput approaches

comparable to big data applications at which deep learning approaches excel. The

network is ideally capable of processing waveforms under various conditions includ-

ing a high dynamic range of background noise as well as adverse weather conditions

or other influences on the waveform all within a single pass through the network.

The architecture is designed to adapt to a specific sensor output based primarily

on the waveform size. Two architectures are presented; one for a short range Li-

DAR system where a small amount of real data is available to validate the training
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approach using simulated data and another for the proposed automotive LiDAR

system.

As an initial starting point a convolutional auto-encoder architecture shown in Fig-

ure 4.3 was used to investigate if deep learning is suitable for raw LiDAR waveform

processing.

The auto-encoder was set up with parameters shown in Table 4.1 to be compatible

with the LiDAR system from [173] and their real super-resolution dataset which is

described in more detail in Section 4.5 and Table 4.2. Super-resolution describes

the ability to resolve close surfaces with separations less than the full-width-at-half-

maximum (FWHM) of the LiDAR system. Like for all experiments in this chapter,

the network is trained with a binary surface location vector of the same length as

the corresponding LiDAR waveform.

Table 4.1: Network parameters (F for number of filters and W for convolutional window
length) for auto-encoder to process 1D LiDAR waveforms, pooling and up-sampling by
a factor of 2 compiled with AdaDelta and a binary cross-entropy loss function. Trained
with 10000 simulated waveforms for 200 epochs.

Auto-Encoder Activation

F, W #params

Conv1D 32, 40 1056 ReLU
Conv1D 16, 40 20496 ReLU

Conv1D 8, 40 5128 ReLU

Conv1D 32, 40 10272 ReLU
Conv1D 1, 40 1281 Sigmoid

total 38233

Using this auto-encoder yielded preliminary results with seemingly good success

when simulated data was used for training and testing as illustrated in Figure 4.4

but did not transfer to unseen real data, motivating a di↵erent network architecture.

Further, from this preliminary experiment, the auto-encoder architecture only per-

formed well if the background noise level was within a small margin of a constant

mean. Any deviation from this value for testing would result in false activations.

Therefore, di↵erent network weights would be required for di↵erent noise levels.

This is similar to model based approaches, which tend to be more compact for sin-

gular scenarios. This suggests that the considered convolutional auto-encoder did

not learn to identify principal components but rather learned locations from the

training data, since it had limited success on like-for-like simulated data.

While both the real and simulated input waveforms look visually identical, the

network seems to be biased towards training data and fails to generalise the features.

This not only led to inconsistent performance when applying the auto-encoder to
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(a) Real Waveform Input (b) Simulated Waveform Input

Figure 4.4: Auto-encoder results applied to real and simulated data for super-resolution
benchmark for 5.2 cm separation. (Orange) input waveform and (blue) auto-encoder
proposal. (a) The auto-encoder did not transfer simulated training results to unseen real-
data resulting in many false proposals. (b) For simulated data the auto-encoder identifies
the correct surfaces locations for the given separation.

real data but also limited the application to very specific operating conditions. This

suggests that there is an issue in the considered architecture, which may not have

become immediately obvious if a large scale real dataset would have been used.

Achieving a robust singular network which can discriminate various scenarios is

unlikely for this type of architecture.

4.3.2 Architecture

The auto-encoder demonstrated, that deep learning is able to encode some LiDAR

waveform features in theory using the encoding stage, but failed to generalise the

latent and often sparse information space back to return proposals within the ap-

propriate information space.

To address this, a new architecture was developed, which refined the encoding stage

to include mechanisms to minimise data bias in training and improve feature encod-

ing. This was achieved by enforcing dropouts during the encoding stage [174] and

combined with a maximum pooling operator this forms an encoding block (EB) as

shown in Figure 4.5. Each EB reduces the dimension of the signal by a factor of

2. Depending on the input signal’s dimensions, a number of encoding blocks can

be placed in series to fine-tune the appropriate latent space dimension. Once the

latent space encodes significant information, a sparse proposal stage is introduced as

shown above. This uses two convolution blocks in series, where the first has a stacked

dropout layer and the second has a smaller signal window than the first. This stage

generally refines the features after encoding and discards unwanted artefacts from

prior convolutions.
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Figure 4.5: LiDARNet Architecture. A signal of length L is fed into LiDARNet. The
height of the blocks illustrates the number of layers (F), while the width of a block indicates
relative size of the window size of the convolutional filters (W).

Additionally, rather than relying on a convolutional decoding stage which reduces

the latent dimension via convolutions with decreasing number of layers and up-

sampling, a fully connected dense decoding stage is introduced more akin to tra-

ditional classification stages. This was chosen to allow for the sparse proposal in-

formation space to be fully rolled out by a flatten operation. The benefit is that

no information is discarded after encoding the information in a multi-dimensional

space. The information is then condensed into a reconstruction layer, where the

latent space forms a reconstruction code, from which a final output with surface

proposals is generated.

The final stage is therefore set up as a classification problem where each waveform

bin is a possible class or potential location of a true surface return. The advantage

of this approach is that all identified features are considered in a complex fully

connected neural network. This comes at the cost of complexity and increases the

number of parameters of the network. But even for the more complex case of the

automotive scenario with 6.5 million parameters, the network size is still modest for

modern deep learning architectures. This architecture is designed to generalise the

data and allows the user to perform training on simulation data with results also

transferring over to unseen real data. It further works across the full background

operating range, achieving the goals set out for this work. The network has to be

configured based primarily on input waveform size. Information such as number of

peaks is not directly provided but implicitly bound by the labelled ground truth.

Generally, the more layers are present, the larger the parameter space as more con-

nections between layers have to be created with associated weights. The window

(W) sizes have been chosen to capture a typical surface cluster (a collection of re-
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turns in close proximity to each other) within the operating conditions. While the

number of filters (F) has been chosen to promote learning, i.e. to facilitate enough

parameters to encode the relevant information, but not too many to avoid redun-

dancy in the network. This was done empirically, where filter sizes were reduced

until the learning rate per epoch worsens. The training approach and fine-tuning of

these parameters are outlined in the next section.

4.4 Training Methodology

For data-driven approaches such as deep learning and machine learning in general,

the quality of the input information is crucial as it drives feature detection and

forms sensible paths through an artificial neural network (ANN). To facilitate ro-

bust learning and ultimately successful operation of an ANN, the training data has

to be consistent yet diverse and representative of the entire scope of the desired

application. This introduces challenges to the training methodology and the train-

ing data. As discussed in Chapter 3 large scale diverse datasets for full waveform

LiDAR data are not readily available at the time of writing. This work proposes

a training approach via simulation to generate diverse and consistent training data

with fully labelled ground truth data.

However, simulations can be too consistent and might not have the same type of

variation real systems produce, despite best e↵orts to account for such signal prop-

erties. It is therefore critical, as with all simulation approaches, to validate the

simulation approach by testing against real data. A real experiment and system

setup from [173, 31], where two retro-reflectors are moved in close proximity beyond

the resolution of the FWHM is implemented in the simulation framework presented

in Chapter 3. A LiDARNet variant has been created for this particular type of

system output, herein referred to as SuperRes with parameters presented earlier in

Table 4.6. The general training approach is summarised below and the di↵erences

between the constrained experiment for validation and the more general Automotive

use case are also discussed.

4.4.1 Training Data Generation

In this chapter a discrete quantised observation model of equation (2.22) is adopted.

The respective time delay tk of each true surface return can be represented in the

form of an ideal binary signal representing the impulse train described in equa-

tion (2.19).

For K surfaces in the field-of-view (FoV) of the emitter and associated detector all
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surface locations of a LiDAR waveform can be described as a collection of distance

and reflectivity pairs. For simplicity, all attenuation is to be encapsulated in a single

parameter, gk. In this chapter gk is calculated using the envisioned LiDAR system

in Table 3.2 with the procedure described in Chapter 3 for the Automotive use case.

A surface group, i.e. all returns from a single detector element, is then

g = [(d0, g0), ..., (dK�1, gK�1)]. (4.2)

Each value pair of distance, dk, and attenuation including reflectivity, gk, is used to

generate the surface mean return photon count with a global background mean, �

as outlined in Chapter 3 to assemble a count distribution to generate a waveform,

f , using a Poisson counting process as defined in equation (2.22).

A discrete LiDAR waveform with p bins has an associated discrete distance vector

d = [D0 ... Dp], (4.3)

which encodes the respective quantised distances associated with each bin of a his-

togram. The principal location information of a histogram h 2 {0, 1}p of K returns

can be visualised as

h = [0 ... 1 ... 1 ... 0], (4.4)

where up to K non-zero entries (equal to 1) represent the true location of each

return in its respective bin location related to its discrete distance, dk with the same

distance definitions as in equations (2.2)-(2.3). This ideal histogram formulation

constitutes the ground truth input to the network during training.

To recover depth measurements in this ideal case, the depth is a sparse vector

containing the peak locations directly as

m = h � d = [0 ... d0 ... dK�1 .... 0], (4.5)

where dk is the distance of the k
th return and � is the Hadamard (component-wise)

product, m is therefore a vector aligned to the bins of h where entries are the non-

zero distances to each of the surfaces. This allows to construct a list of surface

returns according to

T (k) m(j) if {h(j) > 0}. (4.6)

To motivate training and enforce features, deep learning often benefits from nor-
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malisation of the input data as a consistent scale aids gradient descent during the

application of back-propagation [175]. Two normalisation schemes being

normmin�max(f) =
f �min(f)

max(f)�min(f)
and (4.7)

normmax(f) =
f

max(f)
(4.8)

are considered, where f 2 Np is the input signal vector, here a LiDAR waveform.

The output of LiDARNet is a confidence vector of surface locations, x 2 Rp. To

derive the estimate for surface locations, T ?, a confidence threshold, ⌧ , is introduced

such that

T
?(k) m(j) if {x(j) > ⌧}. (4.9)

Results of using normmax were presented initially in [97] but this work later found

that normmin�max further improved performance of LiDARNet where the background

rate is not constant in the dataset such is the case in the Automotive experiments.

For the super-resolution experiment outlined in the next section (SuperRes config-

uration), no noticeable di↵erence was observed. However, neither mode is able to

train robust convolutional filter weights to encode useful information without any

normalisation.

A dataset consists of Ntrain waveforms for training and Ntest waveforms and associ-

ated binary ground truth histograms h. The data split in this work is Ntest
Ntrain

= 1
25 . To

introduce additional variance in a dataset, some parameters are randomised in the

data generation. An illustration of the data inputs for the training stage is shown

in Figure 4.6.

Figure 4.6: LiDARNet training with simulated inputs and ground truth.

All networks were created using Keras with a Tensorflow 2.x backend running on
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Python 3.6 running on a workstation1. The networks were compiled with an Adamax

optimiser and binary cross-entropy was chosen to evaluate training loss or the error

as is often case for classification type problems in deep learning.

4.5 Validation Experiment

All training input data for LiDARNet in this work is made up of simulated wave-

forms. Simulations will always be approximations of real-world signals and as such

will have unique features from assumptions just like real data will have unique fea-

tures due to system characteristics. However, these variations are not the same and

thus a data driven approach based on simulated data can introduce a data bias

which may hinder the generalisation of features during training making it challeng-

ing to apply the trained network to di↵erent new data including real data. The

LiDARNet architecture has been specifically designed to be able to apply a network

trained with simulated data to real data applications.

The labelled data in the training of the network is the ideal impulse train without

any loss described in (2.19) with �k = 1 discretised as h as defined in equation

(4.4). Previous work has shown that this underlying ideal signal model holds in

combination with drawing counts from a random Poisson process for a simulated

waveform [31, 102, 110, 112, 105] (see equation (2.22)). This means that it is entirely

possible that LiDARNet will encode features comparable to traditional statistical

models.

The goals of this validation experiment are to demonstrate the capability of gener-

alising features, the application of a network trained by simulation to real data and

to explore if the network learns features comparable to the underlying signal model

assumptions.

The network’s internal workings are investigated to identify such similarities qual-

itatively. The output of the neural network provides immediate surface location

proposals as per equation (4.9) similar to parameter estimations methods for wave-

forms. To assess the network’s performance, LiDARNet is compared quantitatively

with two statistical approaches, which provide location estimates and have demon-

strated competent results on the real dataset [31, 110].

1Windows 10 workstation: x86-64 with dual Intel Xeon E5-2630v3 (2.4 GHz), 48 GB RAM and
NVidia RTX 2080 Ti (12 GB)
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4.5.1 Two Retro-reflectors

For validation, the system and experimental design from [173, 31] was replicated

as a pseudo-random data simulation. Two retro-reflectors S1, S2 are placed next to

each other and a ToF system is pointed illuminating both of their facing edges as

shown in Figure 4.7.

Figure 4.7: Illustration of a two retro-reflectors in close proximity experiment first de-
scribed in [173] and used in [31] and [110] for performing super-resolution using a super-
conducting single photon detector (SSPD) based on a nanowire and a wide field-of-view.
In yellow the merged peak shape is shown with individual peak contributions of each
reflector shown in blue and green respectively.

The real benchmark dataset as used in [31, 110] contains 18 measurements selected

from data first presented in [173], where one reflector is moved away from another

stationary reflector in small cm increments. The dataset considered has a starting

separation of 1.7 cm and a final separation of 71.2 cm at a stand-o↵ distance of 330

m.

For the training data generation of this experiment the two surfaces, i.e. K = 2,

the parameters to be randomised for data generation are the amplitude g and the

distance between the two reflectors. To truthfully replicate measurement variance,

the surface S1 only varies slightly around a fix position, while S2 is moved randomly

in either direction for separations of ±100 cm. The instrumental r is the real system

instrumental function. The relevant LiDAR system parameters are summarised

below in Table 4.2.

A total of Ntrain = 25000 and Ntest = 1000 were generated. For the network training

the data is fed in chunks of size 1000. This is primarily due to memory limitations

of the GPU used. During a training run, data and label data i.e. ground truth is

randomly fed from a chunk to the network for a number of epochs, nepochs, cycling
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Table 4.2: LiDAR system parameters used to capture the super-resolution benchmark
dataset [173]

Parameter Symbol metric time type

Wavelength � 1550 nm
Sensor SSPD

Pulse width FWHM 1.5 cm 50 ps
Aperture 200 mm
Channels bins, p 4096
Bin width 9.2 mm 3.073 ps

through the entire dataset. This is repeated for nruns. This data and training delivery

is the same for any LiDARNet configuration (SuperRes and Automotive) presented.

The network was configured for the histogram size as presented first in [97] and is

shown in Table 4.3.

Table 4.3: Network parameters for SuperRes LiDARNet configuration [97] for the super-
resolution benchmark from [173].

SuperRes Activation

F, W #params

EB1 64, 64 4160 ReLU
EB2 64, 32 131136 ReLU

Conv1D 32, 32 65568 ReLU
Conv1D 16, 32 16400 ReLU

C #params

Dense 128 2097280 ReLU
Dense 4096 528384 SoftMax

total 2842928

SuperRes LiDARNet is trained in this work with nruns = 5 and nepochs = 10 epochs

per run for the entire dataset resulting in a total training time of about 35 minutes.

4.5.2 Feature Tracing

To illustrate the network’s inner workings, a signal from the real super-resolution

dataset is passed through the simulation trained network. In particular the convo-

lutional layers are under investigation as they perform the feature encoding which

if working correctly should identify principal components in a latent space. A com-

prehensive selection of intermediate signals and their associated convolutional filter

weights are shown in Figure 4.8 for a real waveform with two returns with a sepa-

ration distance of 3.2 cm.
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Figure 4.8: Illustrative signal progression as a real signal from [173] propagates through
LiDARNet in the SuperRes configuration.

63



4.5. Validation Experiment

The following analysis of above figure is structured into the three main stages in-

dentified for LiDARNet in Figure 4.5; Encode, Proposals and Decode.

Encode – Two encoding blocks are present in this configuration, which reduces the

principal signal dimension by a factor of 4, here from 4096 to 1028. The initial

Feature Detection identifies recognisable features of the LiDAR waveform with a se-

lection of weights with the largest activation values (Conv1D 1). A masking of the

region of interest with compensation for the SPAD tail (top-left), the down-sampled

waveform (top-right), a region of interest where peaks might be (bottom-right) and

finally an inverse of SPAD characteristics and a system artefact at the end of the

histogram (bottom-left). It is quite curious that the network consistently produces

at least one significant output identifying system characteristics without signal con-

tent. Next the detected features are passed through another set of convolution filters

(Conv1D 2). The resultant refined features (Refined Feature Encoding) are consis-

tently focusing on the region of interest, and a clear separation of peaks proposals

starts to emerge. However, the intermediate signal at this point still contains many

system artefacts and indeed new artefacts from the network itself.

Proposals – After this initial encoding stage, the refined features are further passed

through two convolutional layers (Conv1D 3 with dropout and Conv1D 4 without

dropout). At this point no pooling occurs and the dimensionality of the signal

passing through remains constant. Focusing on the first convolutional layer with

dropouts and its filter weights, the filters target much more specific areas of the

signal, in particular an amplification of the signal area and attenuation of the SPAD

tail can be observed in many of the weights. The existence of multiple variants

suggests a wide scope, which is separation agnostic for this configuration. Sparse

Proposals are formed which resemble the expected output more closely, but at this

stage the signal’s dimension is lower and the proposals can’t be directly mapped

to the original signal dimension. It is further obvious that the process can still

introduce false activations in particular at the beginning and end of the processed

signal. To remove the new artefacts and improve the sparse representation, another

compact convolutional layer refines the latent information space, which successfully

encodes the information to consistent activations resembling two peak position pro-

posals as shown in Refined Sparse Proposals. The weights associated with this final

convolutional layer seem to encode further noise removal with some variation around

a mean line combined with notch. Given that false activations at the beginning and

end are observed in the previous layer output, these notches seem to remove false

activations.
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Decode – All outputs from the last convolutional layer in the encoding stage are

rolled out using a Flatten operator. This expands the entire information space

into a single vector, which has the advantage of retaining all available information

before using a fully connected neural network to form a reconstrution code (Recon

Code) from all encoded information, which is then expanded out into the initial

information space. This results in two spikes at the corresponding positions of the

retro-reflectors in this constrained experiment.

As can be seen from the analysis, some the early signal features in the encoding

stage resemble the underlying signal model but the network also produces very

di↵erent features. Just from visual inspection these might not seem useful, but

get transformed throughout the network into valid outputs. This suggests that the

network identifies valid features from a signal model perspective but also learns

features directly from the data, a key benefit of machine learning approaches as it

can provide a wider scope with more variety of generic features considered significant.

Next the full real datatset is evaluated and compared against the state-of-the-art

statistical approaches to fully validate the simulation and training approach.

4.5.3 Results

For a more quantitative analysis of LiDARNet’s performance, the real super-resolution

benchmark is evaluated and compared against two statistical approaches which pro-

vide direct surface locations to validate that the network learns general features

which translate to real data.

The analysis focuses on the case were the two returns are merged into a unique peak

shape, since the fully separated case is less challenging and all approaches perform

very well in this case. Both statistical model approaches are given the number of

peaks for this experiment (i.e. K = 2), while LiDARNet has an implicit bound of

K  2 as it has been trained with only up to two surface returns present in any

presented waveform. The results for all three approaches are shown in Table 4.4.

As can be seen, LiDARNet performs comparably to the statistical approaches with

the clear ability to resolve two targets which are separated at less than the system’s

FWHM. LiDARNet has more variance than the statistical approaches, but never-

theless performs well while being fast and scalable to multiple inputs and outputs.

The results are also presented visually in Figure 4.9.

All approaches perform at sub-centimetre resolution and consistently separate all

peaks both in the merged and in the separated cases. This demonstrates that

LiDARNet, despite being trained on simulated data only, can also process unseen
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Table 4.4: Evaluation of a real super-resolution benchmark using LiDARNet (trained for
5 runs and 10 epochs each on simulated training data).

RJMCMC [31] FRI-MP [110] LiDARNet [97]

ground truth estimate error estimate error estimate error
(cm) (cm) (cm) (cm) (cm) (cm) (cm)

1.7 1.462 0.238 1.640 0.060 1.281 0.419
3.2 3.281 0.081 3.205 0.005 3.843 0.643
5.2 5.086 0.114 5.180 0.020 5.489 0.289
7.2 7.053 0.147 7.213 0.013 7.136 0.064
9.2 9.108 0.092 9.201 0.001 9.332 0.132
11.2 11.092 0.108 11.176 0.024 11.345 0.145
13.2 13.155 0.045 13.209 0.009 13.357 0.157
15.2 15.255 0.055 15.234 0.034 15.370 0.170
17.2 17.242 0.042 17.192 0.008 17.474 0.274
19.2 19.239 0.039 19.180 0.020 19.396 0.196
21.2 21.237 0.037 21.161 0.039 21.226 0.026
26.2 26.355 0.155 26.226 0.026 26.532 0.332

real LiDAR data from only requiring a few model parameters from the measurement

system, allowing to adapt the network to multiple scenarios yielding a flexible and

fast high throughput processing method.

This validates the training-by-simulation approach and although one would expect

even better performance if a real large scale dataset was available, the benefit of

simulated training is a solid starting point in absence of real data at scale. The

simulation approach can further augment real world datasets if required. System

specifications can also change throughout a development cycle and environmental

noise such as temperature fluctuations can make real datasets as biased as a poorly

designed simulation approach.

However, diversifying a simulated dataset is straightforward by adding di↵erent

model components for various scenarios, making it an ideal prototyping approach,

which can be deployed to real sensors as soon as available and can then be refined

using real data from the system. This validation demonstrates that a neural network
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Figure 4.9: Resolution experiment from [31] and [110] with this work’s results from [97]
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can be trained with simulated data which is based only a few key parameters of the

LiDAR system, which should be available early in the development cycle of the

system.

To evaluate this approach further, the network architecture is adapted for the Au-

tomotive use case and is evaluated using prototype LiDAR specifications outlined

in Table 3.2.

4.6 Automotive Experiment

With the training-by-simulation approach validated, the network configuration was

adapted to tackle the more complex task of processing long range LiDAR waveforms

in varying background lighting conditions. The spread of the background rate rep-

resents sensor operation at night and during bright mid-day sunlight. While night

time LiDAR without any adverse weather e↵ects is an almost ideal application sce-

nario for LiDAR, the other end of the spectrum is extremely challenging from a

signal-to-noise ratio (SNR) point of view. It is also important to note, that the

dynamic range of the mean count rate varies dramatically as ambient light exposure

increases. This is one of the reasons the data driven approach requires some form of

normalisation to promote learning, to ensure a consistent value range propagating

through the network.

To test the capabilities of LiDARNet applied to waveforms which not only contain

multiple surface returns but also have varying levels of sun light photon counts a

dataset is generated for this particular use case using automotive synthetic scenes.

Two scenes from VirtualKITTI [122] and another two scenes from SYNTHIA [123]

for a total of 4 scenes shown in Figure 4.10 are used for waveform generation.

The multi-return mode is set to capture K  9 surfaces per detector. The back-

ground rate is added to the depth information and is randomly varied for each

waveform between 0.04 and 38.28 to simulate sun light ranging from 0.1 to 100

klux, which replicates a range from night time to day time with bright sunshine.

Pixels are selected at random across all scenes, but locations are stored to avoid

duplicate entries and ensure an independent test dataset. Every waveform is aggre-

gated from 10 simulated laser pulses. The training parameters are summarised in

Table 4.5

To work with the increased histogram vector length over the SuperRes configuration

and to allow for more variation introduced by the large ambient count range, Li-

DARNet is configured in an Automotive configuration as shown in Table 4.6, which
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(a) SYNTHIA city scene (b) SYNTHIA cyclists scene

(c) VKITTI city scene (d) VKITTI B-road scene

Figure 4.10: Automotive scenes for LiDARNet training data generation

Table 4.5: Simulated automotive solid-state SPAD LiDAR waveform dataset derived
from synthetic scenes for LiDARNet training.

Parameter Symbol metric time type

Wavelength � 905 nm
Sensor SPAD

Pulse width FWHM 4 cm 133 ps
Channels bins, p 7500
Bin width 4 cm 133 ps

Background mean rate � 0.04-38.28 counts per bin 0.1-100 klux
Number of surfaces K 0-9
Training waveforms Ntrain 100000
Test waveforms Ntest 4000

were also first presented in [97].

As expected, due to the increased complexity of the Automotive configuration and

input waveform structure, this configuration requires more epochs and due to the

larger network and larger input data chunk memory size training takes significantly

longer. It should be noted, that the Automotive case has to encode a lot more

information due to the increased surface count and varying background rate.

It should be noted, that the surface number bound is data defined and can be readily

adapted based on expected maximum returns or indeed observed parameters from

an existing system for the desired application. As mentioned before, a data driven

approach allows full flexibility to include as many scenarios as desired and should

in theory allow the user to expand the network’s capability to handle many varying

operating conditions and by re-training the network with the additional data all

contained within a single network. In contrast to requiring multiple models and a

model selection process which has to identify the current conditions reliably prior

waveform processing introducing latency in a real-time system.

68



4.6. Automotive Experiment

Table 4.6: Network parameters for Automotive long range variable noise LiDARNet
configuration [97]

Automotive Activation

F, W #params

EB1 96, 48 4704 ReLU
EB2 96, 48 442464 ReLU
EB3 64, 24 147520 ReLU

Conv1D 32, 24 49184 ReLU
Conv1D 16, 24 12304 ReLU

C #params

Dense 256 3842304 ReLU
Dense 7500 1927500 SoftMax

total 6425980

LiDARNet in the Automotive configuration (Table 4.6) was trained for nruns = 6

and nepochs = 25 each resulting in a total training time of 14 hours with the dataset

outlined in Table 4.5.

4.6.1 Results

Before discussing the performance of LiDARNet on long range automotive wave-

forms, the e↵ects of input normalisation are assessed based on the final perfor-

mance of LiDARNet by analysing the receiver operating characteristics (ROC) of

the trained networks with di↵erent input normalisations.

A proposal is considered a true-positive (TP) if it is within ±12 cm of a ground truth

positive (P) and if the proposal made by the network is greater than a threshold,

⌧ . The other quantities to be evaluated are true-negatives (TN) i.e. if the ground

truth is also negative (N), a false-positive (FP), which means a surface location was

proposed in absence of a real surface in the scene location and false-negatives (FN),

where a true surface return has not been identified. This also allows to calculate a

true-positve rate (TPR), false-positive rate (FPR) and an overall accuracy metric

(ACC) as

TPR =
TP

TP + FN
, (4.10)

FPR =
FP

FP + TN
and (4.11)

ACC =
TP + TN

TP + TN + FP + FN
=

TP + TN

P + N
. (4.12)

The resultant ROC curves are shown in Figure 4.11 for the raw waveform and the

normalisations considered as per equations (4.7)-(4.8) for ⌧ = {0.001, 0.1} across

all 4000 test waveforms from 4 independent scenes.

The raw input fails completely with true-positive rates (TPR) of below 10%. If the
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Figure 4.11: ROC for LiDARNet for di↵erent normalisations of input data, noting
the dramatic decrease of false-positive rate from (a) no normalisation to (c) min-max
normalisation.

input data is max-normalised as presented in [97] and in particular with min-max-

normalisation, LiDARNet performs very well with TPRs above 80% for maximum

and well above 90% for min-max. Due to the large number of zero entries in the

dataset, the overall accuracy figure at 99.98% for both approaches is not as meaning-

ful as the TPR. Comparing the e↵ectiveness of peak detections and thus the qual-

ity of surface localisations of LiDARNet versus reverse jump Markov chain Monte

Carlo (RJMCMC) [31] and finite-rate-of-innovation (FRI)-matrix penciling (MP)

[110] in Table 4.7 will emphasise this.

Table 4.7: Type 2 Analysis of multi-return waveform peak detection for resolution con-
fidence interval of ±12 cm, a total of 12976 true returns are contained in 4000 waveforms.
LiDARNet threshold is ⌧ = 0.05

TP FP FN TPR FPR ACC
4 5 5 4 5 4

RJMCMC [31] 9769 133 3207 0.7529 0.000004 0.9999
FRI-MP [110] 7628 9599 5348 0.5879 0.000320 0.9995

LiDARNet-MinMax 10650 757 2326 0.8207 0.000025 0.9999
LiDARNet-Max 8997 330 3979 0.6934 0.000011 0.9999

The RJMCMC [31] approach outperforms all other approaches in terms of false-

positives, but also misses significantly more peaks than LiDARNet-MinMax. FRI-

MP [110] performs the worst out of all considered methods, primarily due to the

very high false-positive rate despite being given the correct number of peaks a priori,

something which would be di�cult to achieve in real world applications.

LiDARNet-MinMax has the highest success in identifying true-positives at about

82%, while still rejecting most false positives successfully. For LiDARNet this re-

jection rate can be adjusted with the threshold, but at the cost of rejecting true

positives with low confidence values. LiDARNet-Max demonstrates this well as the

threshold is relatively high for this trained network, which reduces both true and

false positive rates.
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It should be stressed that both LiDARNet and RJMCMC [31] have no prior knowl-

edge of the exact number of positives contained in each waveform in this experiment.

In the case of RJMCMC [31] the expected bounds have to be set (here K = {0, 9})

and for LiDARNet the number of peaks is implicitly embedded in the network due

to training with waveforms only containing up to K  9 positives.

It is curious that FRI-MP [110] has such major issues with this type of applica-

tion, despite being given the correct number of returns. One key di↵erence between

this experiment and the super-resolution experiment is the type of background rate

considered, which is low and constant for the super-resolution case but varies sig-

nificantly in the case of the comprehensive simulated automotive dataset.

Despite demonstrating a very competent performance in separating two peaks in

close proximity in low noise settings, the method tends to fit a single surface similar

to RJMCMC in the automotive case, even though many of those peaks are made

up of multiple individual returns from angled surfaces. Since RJMCMC makes a

decision on how many peaks are estimated on a per waveform basis, it generally

underestimates the number of true peaks, but with the given resolution confidence

this is acceptable.

FRI-MP requires a precise number of returns in a waveform to fit the correct number

of responses. When it identifies surface return cluster as a single return, it then seems

to randomly fit surfaces throughout the solution space. This is a major downside of

this approach, despite its otherwise excellent performance and overall simplicity. A

failure case is illustrated with an example in Figure 4.12.
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(b) FRI-MP

Figure 4.12: Multi-return issues with FRI-MP fitting too many surface locations ran-
domly.

It can be seen above that while the approach does fit the main cluster correctly,

it also randomly allocates the number of expected returns throughout the range,

rather than fitting multiple returns under the cluster. This is the same waveform

shown in Figure 4.13b, 4.13f.

In future work the false-positive rate should be reduced further for LiDARNet (and

all other approaches), as they can be as dangerous in an autonomous driving situa-
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tion as a false-negative and thus are not acceptable at these levels for safety critical

tasks.

In terms of signal quality improvement, the ideal noiseless test waveforms are min-

max normalised (x) and all return estimates are convolved with the instrumental

function and then min-max normalised to have a consistent comparison between all

approaches. The reconstruction signal (y) is evaluated using mean squared error

(MSE) and power signal-to-noise ratio (PSNR) defined below for a reference x and

a signal y as

MSE(x, y) =
1

n

nX

i=0

(x� y)2,

PSNR(x, y) = 10 log10
max(x)

MSE(x, y)
.

(4.13)

Both statistical approaches can recover estimates for actual photon return rates.

LiDARNet discards this information currently, but still recovers relative amplitude

between surface returns. The SNR evaluation is shown in Table 4.8.

Table 4.8: Evaluation of LiDARNet in Automotive configuration for 4000 simulated
waveforms (K  9) compared to ideal noiseless waveform and processing times for a
single waveform.

Metric Unit Noisy RJMCMC [31] FRI-MP [110] LiDARNet LiDARNet
Waveform MinMax Max

PSNR dB 13.12 47.59 47.04 51.45 50.98
MSE 0.19344 0.00013 0.00045 0.00027 0.00042

Time s - 14.7362 0.0092 0.0044 0.0044

Over the entire dataset of 4000 simulated waveforms with K  9, LiDARNet-

MinMax recovers the signal with the highest PSNR, followed by LiDARNet-Max

and then RJMCMC. FRI-MP overall improves signal quality dramatically as well

despite the issues with false positives, since the randomly placed returns are generally

of lower amplitude than the estimates within true return clusters. RJMCMC has

the lowest MSE closely followed by LiDARNet-MinMax.

To further investigate the reconstruction behaviour of the respective approaches, a

few sample waveforms are considered in Figure 4.13 for LiDARNet-MinMax in the

Automotive configuration and ⌧ = 0.025. All waveforms are min-max normalised to

be comparable throughout. Noiseless waveforms are also shown, which are recon-

structed from surface locations by convolution with the instrumental function for

all methods considered.
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Figure 4.13: Signal reconstructions from detected surface return positions for noisy long-
range LiDAR waveforms. (a) a mid-range scenario with moderate noise and 3 peaks – (b)
a mid-range scenerio with high levels of noise and multiple peaks in close proximity. All
approaches are shown under each respective waveform.

For the first scenario with three returns which are well separated with moderate

noise, noting that the second peak is close to the noise threshold, RJMCMC only

recoving the first peak (c) and (e) FRI-MP recovers only the first and third peak, but

the third is not well aligned with the true surface location. LiDARNet (g) retrieves

2 peaks accurately and misses only the second.

For the second scenario, a waveform with 2 close clusters is shown (b), with each

cluster containing multiple surface returns (a total of 9 returns). RJMCMC (d) fits

a peak under each cluster but does not resolve any of the individual surface returns.

FRI-MP (f) only fits a single peak in the middle of the two clusters and LiDARNet

(h) reconstructs multiple closely resolved surfaces under each cluster albeit at the

wrong overall amplitude. This reconstruction does more accurately represent the

surface distribution but RJMCMC’s singular peaks fit the the shape of the clusters
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4.6. Automotive Experiment

better and thus has a higher PSNR.

It is clear from this evaluation that LiDARNet can perform the same tasks as sta-

tistical models, without an explicit signal model nor any prior information on noise

or number of surface returns. This is a proof-of-concept for using a data driven

approach to enable LiDAR waveform processing using a single discrete processing

approach for multiple scenarios. Here, it has been demonstrated that LiDARNet

can also perform super-resolution, within the wider experiment of long range LiDAR

applications in an automotive context in presence of significant background noise

variation, which was previously only shown in the validation experiment for a short

range experiment.

It should in theory be possible to augment the simulation approach and thus the

training dataset to include other typical scenarios making surface proposals challeng-

ing in particular adverse weather conditions to improve the processing capabilities

of LiDARNet continuously. Given that the simulation approach contains some form

of signal model, LiDARNet is guided implicitly by such model assumptions and is

therefore somewhat of a hybrid between model and data driven approaches.

So far the performance of LiDARNet has been evaluated in terms signal quality,

however, the motivation to investigate deep learning for solid-state LiDAR was also

the processing speed in presence of large concurrent detector arrays. To evaluate

the potential processing speed for an array, the processing times for all 3 considered

methods is evaluated in terms of number of waveforms. It assumed that RJMCMC

and FRI-MP scale linearly with the number of waveforms. More recent work has

been carried out to accelerate RJMCMC but primarily in terms of single waveform

acceleration [103] rather than concurrent waveform processing. So the graph in

Figure 4.14 can only be seen as a relative comparison and illustrates primarily the

scaling potential of LiDARNet.
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Figure 4.14: Scaling of processing times for multiple concurrent waveforms comparing
statistical approach with proposed LiDARNet machine learning approach.
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Even if either statistical approaches can be readily distributed across several com-

pute units, LiDARNet demonstrates its inherent capability to scale with multiple

inputs and outputs with near constant processing times until memory limitations

of the GPU are reached as the number of concurrent waveforms increases. In other

words, LiDARNet can readily process e.g. 10 waveforms at less than 10 times the

speed of processing a single waveform. It also has a constant processing time for a

particular number of waveforms, because a trained network has a constant runtime

without any significant variation enabling dependable high throughput processing.

This makes it predictable in terms of speed, allowing for e�cient resource allocation

and process scheduling, which is important for complex tasks such as autonomous

driving with very limited time budget for decision making.

4.7 Summary and Conclusions

This chapter has briefly introduced the major components of modern deep neural

networks and a popular architecture used for signal processing tasks, the convo-

lutional auto-encoder. Some of the recent applications to LiDAR processing and

1D signal processing were also discussed. A distinct lack of applying this modern

technique directly to full LiDAR waveforms with meaningful abstraction was worth

investigating, as a trained neural network has the two advantages of being fast with

constant processing times per waveform providing high throughput processing.

A novel neural network architecture for localising surface positions directly from

LiDAR waveforms using deep learning was developed and makes the following con-

tributions:

• A neural network architecture capable of localising surface locations discretely

from LiDAR waveforms, called LiDARNet.

• A validated training-by-simulation approach, which allows to train LiDAR-

Net with simulated photon data capable of learning generic LiDAR waveform

features which readily transfer to real data applications of the network.

The simulation framework of this thesis was used to generate the required large

scale datasets to train deep neural networks. An initial test with a standard convo-

lutional auto-encoder architecture indicated that this approach was not capable of

generalising features and thus was only successful in like-for-like data with specific

boundary conditions. This also meant that the auto-encoder did not transfer over

to real unseen data or any data which deviated from the training data e.g. di↵erent

noise levels.
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Motivated by the capability to extract waveform features for a limited scope (specific

noise level or specific target count), a dedicated architecture was designed around

the encoding stage of the auto-encoder and a traditional deep classification stage

employing hidden layers i.e. many fully connected artificial neurons to decode the

signal into its principle surface locations. Dropouts were introduced strategically to

reduce training bias alongside the generous allocation for the encoded information

in a relatively large fully connected layer derived from the full all available data

from the convolutional stage. The architecture was named LiDARNet and not only

performed well on simulated data but also readily processed real data successfully

when only trained using simulated data.

The training-by-simulation approach was validated against a real LiDAR super-

resolution dataset with comparable performance to prior art. This illustrates Li-

DARNet’s capability to learn significant features of LiDAR waveforms in a general

fashion capable of transferring it to new and di↵erent data within the scope of the

specifications. An illustration of the inner workings of LiDARNet was also presented

illustrating some features resembling signal properties in line with the signal model

considered but also very di↵erent unusual features directly derived from learning

from the input data.

A challenging automotive use case was created using the simulator described in

Chapter 3 with multiple returns and high noise variation. LiDARNet again per-

formed very well with respect to the established statistical approaches, but did so

much faster with per waveform processing times in the low millisecond range and

processing times remain constant unless memory bottlenecks are encountered multi-

ple concurrent waveforms. Although RJMCMC demonstrated similar performance

to LiDARNet, it requires several seconds to process a single waveform. A finite-

rate-of-innovation approach was also considered, but it faired poorly in high noise

scenarios with a very high false-alarm rate.

The presented architecture is not without shortcomings though. All approaches

considered su↵ered from poor false-alarm rates and LiDARNet can still exhibit some

bias towards training data. This should be addressed in future work, ideally with an

extensive real dataset in conjunction with simulated data to augment the training

approach rather than being solely based upon simulation. Further, the network has

been by no means optimised and could benefit from more dedicated optimisation

towards the signal format, specific activation functions and potentially custom layer

configurations to further improve performance.

In conclusion, LiDARNet demonstrates the feasibility of applying deep neural net-
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works directly to raw LiDAR waveforms with useful information extraction in the

form of direct surface locations and excellent reconstruction quality of the waveform

if required. The performance is comparable to statistical approaches while outper-

forming them dramatically in terms of speed. Further, once trained, the network

will operate reliably at a constant speed and scales well to allow for concurrent wave-

form processing as required for large scale solid-state SPAD arrays for automotive

LiDAR applications.
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Chapter 5

Concurrent Block Sparse Sensing

LiDAR

5.1 Introduction

For ever higher image resolution the amount of information to be acquired, processed

and ultimately stored increases accordingly. In modern 2D colour cameras images

are captured with millions of pixels, which produces a significant amount of data to

be stored. While storage capacities have increased dramatically and have enabled

work with raw image data, in most cases, the raw image is acquired and then

compressed for more e�cient transfer and storage.

Image compression exploits image attributes in some other domain such as the

frequency domain, where the information is much more concise or sparse. However,

this process is not without compromises. The transformations from raw image data

to a compressed image requires complex computations and to maintain high image

quality, in some cases lossless, the computational complexity increases. [176, 177].

In recent years, compression and sampling theory have been investigated further to

eliminate the need for acquiring large amounts of raw data. The question posed

was if the principal information can be acquired directly instead of sampling a great

amount of data which is later discarded, while still requiring a computationally

intense reconstruction? The answer is, yes, and the field this research created has

been called compressive sensing (CS).

In normal two dimensional colour imaging, each pixel captures an intensity value

for the three primary colours and in some cases an alpha value. In direct time-of-

flight (ToF) imaging using solid-state photon detector arrays, which is considered in
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this work, each pixel can capture a histogram accumulating a photon count distribu-

tion with hundreds and even thousands of data points. However, in most cases the

histogram is sparsely populated with true photon returns. Further, the resultant

depth maps have comparable features to traditional images albeit encoding dis-

tance rather than colour intensities. This means that higher resolutions increase the

amount of sampled data significantly for depth versus traditional intensity imaging

and leads to even greater challenges in terms of bandwidth and storage capabilities

for a depth imaging system.

While most colour imaging systems operate in a passive fashion, ToF operates on the

principle of active illumination and as discussed in Chapter 2 the amount of power

radiated has limits imposed by health and safety regulations to avoid any potential

damage, in particular to eyes of humans and other animals as well as other devices.

As ToF imagers increase their resolution and range, the desirable burst illumination

for the fastest mode of operation outputs more and more laser power per unit area.

This puts limiting factors on the system design and makes burst illumination for

large array imagers infeasible. Compressed sensing requires some form of structured

illumination, which provides design flexibility for the emission system. This means

that emission density and therefore the laser output power per unit area can be

managed.

Compressive sensing can both reduce the amount of data captured initially and can

provide a way to control the laser power output density, although this does not come

without a penalty. It incurs significant computational cost, i.e. the complexity of

the system shifts from the emission/detection system to the signal processing stage

of the system and can also require a longer sampling time.

This thesis makes the following contributions to the field of compressive depth re-

covery:

• Formalising and extending an existing depth reconstruction scheme to enable

complex depth recovery for a novel blocked compressive depth recovery frame-

work.

• A blocking scheme for arrayed detectors to enable small scale compressive sens-

ing, improving depth reconstruction quality with orders of magnitude faster

processing speeds.

• A system architecture which takes full advantage of an arrayed emitter and

detector array, enabling the parallelisation of compressive depth sensing, pro-

viding a pathway to extremely fast compressive depth imaging at long range.

79



5.2. Compressive Sensing

• A novel block architecture, which proposes a block sparse depth sensor with

integrated reconstruction logic to enable high resolution high frame rate light

detection and ranging (LiDAR) imaging for long range applications.

This chapter introduces the theory of compressive sensing and a literature review

on blocked compressive sensing as well as compressive sensing frameworks for depth

imaging in Section 5.2. The shortcomings of current schemes are discussed, namely

long sampling times and expensive processing, when applied to arrayed ToF imagers

of increasing array sizes. The contributions of this thesis are presented in detail from

Section 5.3, onwards including a detailed signal and system formulation, a sparsity

analysis of the compressive depth problem when applied to small block sizes. The

small scale problem is then parallelised and scaled up for solid-state ToF arrays

in Section 5.4 and results are presented in Section 5.5. The chapter concludes in

Section 5.6.

5.2 Compressive Sensing

Many natural signals can be represented in a compact fashion, reducing their size

dramatically. This is achieved by transforming a signal into another basis domain.

The linear transformation operator, ✓, is in e↵ect an instruction set translating a

signal into another domain. The concept of compression arises as some signals are

sparse in some domain while being dense in their natural domain. This means the

transformed signal can be represented with fewer non-zero components, m, than the

n components required in its natural domain, for example a natural RGB intensity

image and its wavelet representation. For the remainder of this thesis a vectorised

format is used unless stated otherwise. A two-dimensional signal X 2 RNx⇥Ny is

vectorised such that

x 2 Rn = raster(X), (5.1)

where n := Nx⇥Ny, withNx being the number of rows in a matrix or image container

array and Ny the number of columns. All non-zero components m can be stored

more e�ciently by means of only storing positions of significant signal components.

The forward and backwards transformations incur significant computational cost,

but the benefit of smaller data volume has been deemed worth the trade-o↵ in

digital communications. Most notably in image [177] and video [176] data transfer

where bandwidth is limited but local processing power on host and/or client side is

su�cient to perform the necessary transformations on an ad hoc basis.

A sparse signal, �, is a signal with less significant values (i.e. non-zero) than zero
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(or close to zero) entries. In this work a signal is s-sparse if it has s non-zero entries.

And the sparsity,  , is a relative measure such that

 =
s

n
. (5.2)

In other words the smaller  the sparser a signal.

Compressed sensing is the mathematical theory of directly capturing the significant

components of a natural signal and thus eliminating the need for forward compres-

sion. A projection operator, �, is introduced which samples a signal in a structured

fashion. It is noteworthy that the structure can be random, orthonormal or other-

wise as long as it satisfies the restricted isometric property (RIP). Isometry is the

transformation of two metric spaces, which preserves the distance measure between

them. In the context of compressed sensing [178] introduces the restricted isometric

constant (RIC), �s, for a s-sparse signal and a matrix, F , as

(1� �s)kxk
2
 kFxk

2
 (1 + �s)kxk

2
. (5.3)

If the RIP inequality holds, then F and all sub-vectors of F of a s-sparse signal

approach isometry and thus approximate an orthonormal system. It has been shown

that Gaussian random matrices provide the smallest upper bounds for rectangular

matrices in terms of isometry. This means in the context of CS, that Gaussian

projection matrices provide the most likely transformation into the sparsest basis of

a signal [179].

The theory of compressive sensing was independently formulated by [76] and [75].

It provides a robust framework to recover a signal, x 2 Rn from a small subset of

measurements y 2 Rm by means of linear programs of the form

y = �x+ ✏ = �✓�+ ✏, (5.4)

where � is the projection transform, ✓ is a linear basis transform as mentioned

previously and ✏ is noise which most often is i.i.d. Gaussian random noise but

in imaging applications could also be Poisson random [180] for very low photon

count scenarios. In literature a sensing matrix is often A = �✓. For cases where

reconstruction is performed on the signal directly or the sparse basis is also the

projection, A = �. A visualisation of this problem is shown in Figure 5.1.
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Figure 5.1: Compressive sensing visualisation [181]. The transform ✓, the projection
� and the sensing matrix A are purely illustrative and do not necessarily depict a real
representation thereof.

To reconstruct the data the problem is formulated as an optimisation problem

min
x

↵k✓xk1

s.t. �x = y,

(5.5)

where k ·k1 is the pseudo `1 norm and ↵ is a weighting parameter. This optimisation

problem can be solved as a basis pursuit de-noising (BPDN) problem in the form of

min
x

k�x� yk
2
2 + ↵k✓xk1, (5.6)

where k · k22 is the `2 or Euclidean norm.

The use of CS principles has seen significant popularity in signal and imaging ap-

plications which naturally operate in sparse domains for data analysis in some cases

even acquisition. A lot of early CS imaging work has focused on magnetic-resonance-

imaging (MRI) imaging which operates in the frequency domain [182] and is still a

very active field of research [183, 184, 185, 186, 187, 188].

In this work we aim to reconstruct natural depth image signals, while the majority

of CS focuses on two dimensional intensity and colour imaging most often following

the principles of the breakthrough application of CS theory to imaging, the single

pixel camera.

The Single-Pixel Camera

One of the most impressive applications of CS theory is the single-pixel camera first

introduced in [189]. It demonstrated a useful application of these principles to a

very useful application; imaging. Modern image sensors can readily capture high

resolution images in the visible domain and the challenges of reading out such large

amounts of data have mostly been overcome. However, for imaging outside the
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visible spectrum, detector costs are often prohibitive due to scarce materials and

di�cult manufacturing processes.

The single-pixel camera proposes a meaningful path for imaging at a high resolution

by encoding the resolution with a passive device, a spatial light modulator (SLM).

In most cases this is a digital-micromirror-device (DMD) which enables the user

to structure a scene response via pattern projections from the scene onto a sin-

gle detector. In the case of a DMD many switchable mirrors, can be toggled to

form a pattern, where mirrors can attenuate scene elements by deflecting light in a

controlled fashion. This structured sampling approach links the spatial information

defined by the sensing pattern to the captured scene response from a single detector.

CS enables a system designer to reconstruct full images with a resolution defined by

the SLM at wavelengths for which sensing elements are either expensive to produce

in arrayed form, or may not exist at all.

An intensity image vectorised as xI 2 Rn=Nx⇥Ny has an associated measurement

defined as

(yI)j = AjxI . (5.7)

which is the inner product of the scene xI with the j
th projection or j

th row of

A. This forms a cumulative intensity measurement (yI)j illustrated in Figure 5.2.

There are drawbacks associated with the reduction in detector cost and those are

A

(yI)j

SLM
Photodiode

ADC
Aj

Scene

Figure 5.2: Illustration of the single pixel camera first presented in [189].

acquisition time and reconstruction complexity. For high resolutions with single

detectors, acquisition times of several seconds and even minutes are not uncommon.

This is still orders of magnitude faster compared to point scans of the scene, as the

number of measurements, m⌧ n in CS. Therefore, it accelerates and improves the
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feasibility of non-visible imaging dramatically but is nonetheless a limiting factor.

Another trade-o↵ is the costly reconstruction and often large projection patterns,

making the reconstruction memory intensive. This has been addressed with trans-

form based pattern generations, where the pattern is constructed on-the-fly rather

than stored, which in of itself comes at a computational cost. However, one key

advantage of compressive sensing is the theoretical link that a unifying projection

is optimal to most basis functions, which counter-intuitively is a random projection

[75, 190, 191, 179, 192]. This makes the single-pixel camera a future proof system,

where the measurements can yield better results if captured with a random projec-

tion, as the basis assumptions can be imposed as a post-processing step and thus

can be altered if a more suitable basis functions for the given signal are discovered.

To achieve CS imaging practically one particular sensing matrix structure has seen

particular popularity based on the Walsh-Hadamard transform. One of the key

reasons for its wide use in optical CS imaging is that the ±1 structure can be readily

implemented with optical binary modulators with alternating binary patterns. Due

to its coherence to the Haar wavelet transform it is often randomly permuted to

reduce coherence between the measurement and the wavelet basis [189, 193]. It is

important to note though, that such Walsh-Hadamard patterns have by definition

a relative sparsity of  ⇡ 0.5. While this is perfectly acceptable for passive imaging

systems, it means for active imaging systems that the pattern has a constant power

output and is fairly dense. This can impose limits on the operating range similar

to the restrictions of full flash illumination LiDAR as discussed in Chapter 2.3.3 for

long range applications. To gain full flexibility, the projection pattern should be as

sparse as possible, while maintaining good performance in the CS regime.

5.2.1 Linear transforms and projection patterns

One key element in compressive sensing is the projection pattern � and its relation

ship to the linear transform ✓. While there are many transforms to consider, this

work focuses on transforms which can be readily implemented in a discrete fash-

ion with simple matrix arithmetic. While some work has shown that Noiselets and

Curvelets provide good support for imaging applications and robustness to noise

[194, 77], their implementation is much more complex than Haar [195], Daubechies

[196] and the wider family of wavelets as well as the discrete cosine transform [197],

which all sparsify the signals considered. They also have straightforward discrete

implementations, which can often be approximately computed with a single coef-

ficient matrix and its inverse using straightforward linear algebra. The focus of

this work is to demonstrate a way to achieve real-time operation from sampling
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through to processing at high frame rates. This requires the ability to e�ciently

implement the proposed frameworks on hardware. Another important linear trans-

form considered for compressive imaging is total-variation (TV) [198], which can be

implemented discretely as di↵erence matrices, making it also suitable for fast and

e�cient implementations [199].

A key finding of CS theory was the use of a random measurement operator for �. It

was shown that Gaussian random matrices are near optimal i.e. are incoherent to

most basis functions and satisfy the RIP [75, 190, 179, 200]. While in theory a fully

random Gaussian matrix is achievable, it is more practical to use binary sampling

operators. For such Gaussian random operators, bounds have been derived relating

an s-sparse signal of size n to the number of measurements m [201, 202],

m � 2s log(n/s) + 7s/5 + 1. (5.8)

The compression ratio in this work is defined as C = m/n. A popular choice in

single-pixel camera systems is the Walsh-Hadamard transform, Hn 2 {±1}2
n
. It is

a square size transform and is closely related to the Fourier transform but operates

solely in the real domain [203]. It is also partially coherent with Haar wavelets [193].

Nonetheless, it has been shown to be a practical choice due to its simplicity of being

a binary transform. To achieve incoherence to any basis a series of patterns are

generated as random permutations of Hn. To encode the ±1 nature, a measurement

is made up of two projections from the same pattern, where Hn+ = (Hn < 0) = 0

and Hn� = abs((Hn > 0) = 0). A measurement is the response from a single

permutation yj = (Hn+)jx� (Hn�)jx. The Walsh-Hadamard transform illuminates

e↵ectively the entire scene albeit in two steps. This, however, doubles the sampling

time and thus makes it not the fastest choice in terms of sampling rate. It should

be noted, though, that due to its structure and pseudo-random permutation, the

transform can be defined implicitly, making it possible to generate the pattern on

the fly while maintaining repeatability in the measurement sequence [200, 204].

While those fairly structured approaches have proven overall successful they provide

little flexibility over the density of the projection pattern in relation to a s-sparse

signal. Therefore they provide no way to align the projection density with the

relative sparsity of a signal, which is particularly important if one also wants to

minimise the active illumination output power as in this work.

To gain flexibility in the sampling operator design while also gaining the advantage of

discrete generation various binary projection schemes have been proposed [205, 206,

207, 208]. It has been shown that such random binary matrices perform closely to
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Gaussian random matrices and uphold the same properties making them suitable for

applications in CS imaging, albeit they perform better for smaller signals [205]. This

is an important finding as it allows for procedurally generated projection pattern

which perform similarly to a Gaussian random binary matrix obviating the need the

storage.

It would be ideal to utilise a near-optimal Gaussian random matrix over discrete

matrices as they are more robust for a range of s-sparse signals and can be treated

as universal with respect to most basis transforms. However, in most single-pixel

systems a sequence of patterns for moderate image sizes of n � 64⇥ 64 can become

a memory issue, as all m instances of the pattern have to be permanently stored

and accessed throughout the optimisation. As image size increases this becomes an

infeasible proposition. A typical approach to reduce the computational burden and

memory requirements in these cases is the use of blocking schemes.

5.2.2 Blocked Compressive Sensing

As image sensors increase in size, the amount of data being sampled and processed

rises dramatically and puts significant strain on bandwidth and computing resources.

One of the common approaches to reduce the computational burden is to split a

complex large scale problem into many smaller problems. This of course is only

e↵ective if computations can be executed in parallel and the incurred communica-

tion overhead does not significantly impact the savings made. Since CS problems

considered thus far all operate on large image signals they often have very expensive

reconstruction routines which can take many seconds or longer. So although the

sampling is more e�cient and in some cases faster than traditional image acquisi-

tion, the structure of recovering the significant components into natural signals can

limit real-time processing alongside acquisition. In the single-pixel camera system,

the problem size is inherently linked to the size of the projection matrix, � 2 Rm⇥n.

Splitting this large scale problem into many small scale problems can accelerate the

computation of the solution dramatically.

As before an image signal is X. Now let the signal be divided into non-overlapping

blocks of size nB = NB ⇥ NB . This results in NB = n/nB blocks. Splitting a

natural image into small blocks of size nB n n not only reduces the signal size per

problem but also reduces the number of measurements mB n m as the principal

components of (5.8) are s and n with s  n, so if nB < n decreases so does the the

number of measurements mB < m per block. This reduces the per block complexity

but the total captured information m = n·mB/nB is usually comparable to full-scale

CS.
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The first application of a blocking scheme to CS was proposed in [129] as block

compressive sensing (BCS), which utilises e↵ectively a 3-stage recovery, wheremB =

m(nB/n). This scheme assumes an optimal block size of Nb = 32. Each block is

sampled with an orthonormal i.i.d. Gaussian matrix, �B 2 RmB⇥N
2
B , such that the

CS problem becomes

yi = �Bxi, (5.9)

per block for measurement vector yi 2 RmB and vectorised signal xi 2 RB
2
. Per-

forming block independent reconstruction yields an initial estimate for further more

sophisticated global reconstruction. However, these initial estimates often result in

undesirable blocking artefacts for the block sizes considered [129, 209]. To find an

initial per block reconstruction, a solution could be estimated using the linear least

square approach, such that x̂ = �
+
y, where + denotes the pseudo-inverse. This,

however, performs poorly for an under-determined system (m ⌧ n). The authors

propose that each signal is estimated using minimum mean squared error linear esti-

mation (MMSE) with an auxiliary reconstruction matrix, �̂B = Rxx�
>
B
(�BRxx�

>
B
)�1.

But it is not clear how the auto-correlation function, Rxx is estimated without prior

signal knowledge. This yields an estimate x
(0) = [x̂1 . . . x̂n/nB

]. Next, iterative-

thresholding is applied, a special case of a projected Landweber (PL) algorithm

[210, 211, 212, 213], with x
(0) as the initial global estimate. The associated projec-

tion matrix is straightforward to construct from the individual block matrices with

a diagonal block structure,

� =

2

66666664

�B 0 . . . 0
. . .

... �B

...
. . .

0 . . . �B

3

77777775

, (5.10)

which is essentially a block raster scan. The full signal is then projected onto a

convex set and hard-thresholded to enforce sparsity using the initial estimate x
(0)

and �. In the first stage this is done in the Lapped Transform, ✓LT discrete cosine

transform (DCT) domain i.e. the basis transform extends beyond the block bound-

ary, [214], followed by wavelet domain ✓WT and the oversampled Lapped transform

✓OLT hard-thresholding. This is illustrated in Algorithm 1.

These steps perform full-scale non-linear reconstruction with the only benefit being

the simpler construction of �. This means that despite the savings made due to
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Algorithm 1 Block-compressive sensing BCS reconstruction [129]

Input y, �̂B ,�, ✓LT , ✓WT , ✓OLT

Output x̂
for every block i do

x̂(0)
i

= �̂Byi
end for

for k = 0 to K do

xw = Wiener(x(k))

x̂(k+1) = TransformThreshold(✓LT , x
(k)
w )

end for

x̂(0) = x̂(K)

for k = 0 to K do

x̂(k+1) = TransformThreshold(✓UWT , ✓OLT , x̂(k))
end for

x̂ = x(K)

the block structure, the sparsity regularisation is still a full scale problem with run

times well above 30 s and up to 5min, meaning that real-time operation is still not

achieved. In comparison to full scale processing methodologies at the time, the

reconstruction is several orders of magnitude faster though.

The approach of using iterative-thresholding on a block estimates was further im-

proved in [213, 209], where a Wiener filter was directly incorporated into the basis

thresholding rather than performed in two separated steps leading to the smoothed

projected Landweber (SPL) approach to BCS shown in Algorithm 2. This algorithm

improves upon reconstruction quality further, but improves only marginally upon

the processing times, which range between 1-5 minutes per 512⇥ 512 image. While

more recent work [215] has reduced processing times to < 10 s, using a single-value

decomposition scheme for the block operations estimations in an otherwise similar

scheme to BCS-SPL [213].

The concept of block based problem distribution has been successfully applied to

CS but processing times demonstrated are still > 1 s, which is not desirable for

applications where real-time decisions are to be made based on the desired output

signal made from e�cient low bandwidth CS measurements. For standard intensity

imaging and global post-processing, the most common block size is nB = 32 ⇥

32. In this thesis it is investigated if smaller block sizes can help to reduce the

computational burden if savings made due to compressive signal acquisition are

more significant than is the case with normal intensity measurements.

In contrast to most CS schmes including blocked variants just described, this work

considers the final output to be depth information, which can either be represented as

a point cloud, LiDAR cube or simply a two-dimensional depth map of first returns

with a more costly signal acquisition for depth due to the added dimension and
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Algorithm 2 Block-compressive sensing with smoothed projected Landweber re-
construction BCS-SPL [213]

Input y,�B , ✓
Output x̂
for every block i do

x̂(0)
i

= �>
B
yi

end for

k = 0
repeat

xw = Wiener(x̂(k))
for every block i do

ˆ̂x(k)
i

= x̂w + �>
B
(yi � �Bx̂

(k)
i

)
end for

ˇ̌x(k) = ✓ ˆ̂x(k)

x̌(k) = Threshold(ˇ̌x(k))
x̄k = ✓�1x̌(k)

for every block i do
ˆ̂x(k+1)
i

= x̄(k)
i

+ �>
B
(yi � �Bx̄

(k)
i

)
end for

D(k+1) = kx̂k+1
� ˆ̂x(k)

k2

k = k + 1
until |D(k)

�D(k�1)
| < 10�4

x̂ = x̂(k)

scales dramatically with desired range precision over intensity imaging as discussed

in Chapter 2.

Significant savings are possible by applying CS principles to such complex signals,

but this further increases the complexity of the signal reconstruction. Blocking

schemes can provide a pathway to decrease the processing time penalty. It is also

noteworthy that most work considers the block independent solutions only as a

prior to full-scale CS reconstructions and sparsity regularisation. While the con-

struction of ✓ at full-scale becomes trivial as only ✓B must be stored, subsequent

arithmetic operations still operate for n-length signals. Combined with basis trans-

formations via ✓ 2 Rn
2
being appropriately sized for a n-length vector rather than

a nB-length block vector incurs significant complexity in mathematical operations,

as these transforms often scale quadratically. Although fast and e�cient transforms

exist, this increase in complexity of current schemes may explain the still relatively

long run times.

5.2.3 Compressive Depth Imaging

In this section a review of existing compressive depth imaging schemes is provided,

which add the modality of range finding to the single pixel camera methodology by

adding two key components; a pulsed laser source with timing and trigger sync to a

photon detector. Time is added as an additional dimension into compressive sens-
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ing, so two particular sparsity constraints can be considered; temporal and spatial

sparsity. Both are summarised and discussed in the context of long range LiDAR

applications for complex natural scenes.

Temporal Depth Sparsity

Several compressive schemes have been proposed which exploit sparsity in the depth

domain directly. They are based on modulated or coded illumination schemes, often

referred to as indirect ToF.

For a continuous modulation scheme depth is derived from the phase di↵erence

between the transmitted and received waveforms,

Fin(!) = ⇢e�j!⌧
Fout(!), (5.11)

where ! is frequency of the input and output wave F , ⇢ the reflectivity of an object

and ⌧ the time delay to be determined [216, 217, 218, 219, 220]. The frameworks

described to sample the continuous return function in a compressive fashion reduces

the complexity of the per pixel acquisition in time with sparsity in the frequency

domain. This means that for high resolution depth imagers, the same limitations

apply as with traditional scanning systems. Further, the sub-sample rate has the

potential to degrade the actual depth precision. Additional constraints are also

placed upon the compressive reconstruction, e.g. a single significant frequency, such

that only a single depth is allowed in a return signal [217].

Other work limits the number of surfaces with geometric constraints [216, 218]. The

complexity to increase the number of surfaces in these instances is non trivial or

very expensive. While fair assumptions, it is not clear how, together with reduced

depth precision, the compressive savings in the above cases improve overall system

performance. Further, modulated ToF schemes are somewhat limited to shorter

range applications, as the signal has varying amplitude and thus the minimal relevant

amplitude needs to be at a high enough power level to receive a su�cient return

signal, meaning that the maximum amplitude and thus power is higher than pulsed

ToF for the same operating range.

The way this information content is compressively sampled is the key di↵erentiator

between the di↵erent works considered. So far sub-sampling was achieved in time at

the sampling stage (analogue-to-digital converter (ADC) or time-to-digital converter

(TDC)). It shall be noted here that while this indeed reduces the read-out data

volume, it does not provide any time savings in the sampling stage, as this is bound

by the desired operating range and its associated ToF, �tmax. Violating this principle
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would make range measurements ambiguous.

Another scheme employs sparse encoding strategies prior to the sampling stage.

For such coded schemes two approaches have been demonstrated, one based on a

so called coded aperture [221] in the spatio-temporal domain, and another using a

pulse coding scheme in the temporal domain only [222, 223] and is illustrated in

Figure 5.3.

Laser source

yk

t

Modulation
1 K

Mirror

ADC

Timing

Detector
Array

Figure 5.3: Illustration of coded compressive depth system as described in [223]. For
K discrete pulses of varying pulse length measurements are taken, forming a compressive
measurement vector.

These investigations aim to address the limiting assumption made thus far of sin-

gle returns per pixel, by employing custom coding schemes to enable decoding of

more than one return, while retaining compressive sensing advantages. This work

relies heavily on sparse deconvolution, which can take the same form as BPDN (5.6)

problem formulations commonly used in CS or similar linear program formulations

utilising `2 or `1 norms and combinations thereof to enforce sparse reconstruction.

In particular [223] proposes a more e�cient computational scheme utilising a back-

projection and thresholding scheme, but yet again it only considers short ranges

with up to 3 surfaces.

It is becoming apparent that pulsed coding or continuous modulated coherent il-

lumination are hard to extend to complex long range scenes due to their power

requirements and range ambiguity. In particular, for the custom coding schemes,

where pulses can be both longer and shorter than �tmax, longer pulses contain more

laser power which could a↵ord longer ranges but shorter pulses with less power limit

that maximum range. Further, this method often increases the time it takes to

acquire a signal, which may be a reasonable trade-o↵ in short range systems where

91



5.2. Compressive Sensing

�tmax is fairly short, but can be prohibitive to fast frame rates for ranges of above

e.g. 100m.

The above schemes currently limit performance and seem unsuitable for long range

LiDAR applications in automotive scenarios, but show potential in exploiting spar-

sity in the temporal domain for active coherent illumination systems such as LiDAR

and radio detection and ranging (RADAR) in general. If they improve further and

address some of the current shortcomings, they could be incorporated in spatial

sparsity schemes to sense depth with compressive sampling in both the spatial and

temporal domain.

In the context of this work, which considers long range depth imaging applica-

tions, exploiting temporal sparsity seems to impose too many limitations for com-

plex scenes; low frame rates, increased laser power, while only providing marginal

savings in the sampling stage at the cost of complex reconstruction, therefore the

suitability of exploiting spatial depth sparsity is reviewed next.

Spatial Depth Sparsity

Another approach to compressive depth imaging is the exploitation of sparsity in

the spatial domain. In [224] a hybrid system is presented which exploits both spatial

and temporal sparsity and relies on a total of 4 phase images without compression

using an array ToF camera. This enforces spatial constraints by linear combinations

of pixel read-outs, to e↵ectively utilise a passive sensing matrix in the read-out stage.

This increase in phase images addresses another shortcoming of phase derived depth

measurement as frequencies are periodic and thus can become ambiguous in the

frequency domain. Each phase image can be treated as a normal single-pixel type

reconstruction problems. The compressive scheme combines 2 phase images into

a single measurement each and uses a blocking strategy to increase reconstruction

e�ciency.

One major downside of this scheme is the two-stage nature of depth recovery. First

the phases have to be estimated for all pixels and then the spatial structure is recov-

ered from linear combinations of pixels, which makes this approach very expensive

in terms of reconstruction time and complexity despite employing a blocking scheme

to accelerate the second stage with significant degradation in the final depth image.

However, range and power limitations still apply as this is a frequency modulated

scheme.

The system considered in this work utilises single photon avalanche detector (SPAD)

detectors and a pulsed illumination scheme to allow for long range imaging, rather
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than the indirect ToF frameworks discussed above. Such direct ToF systems have a

finite depth sampling resolution with p steps and measurements are often accumu-

lated in a histogram.

By exploiting spatial sparsity at every discrete depth step, depth sparsity is often

implicitly assumed similar to the assumptions made in [217]. This means that very

sparse intensity image slices are expected for every time step due to the general

sparse nature of photon counting histograms and depth as illustrated in Figure 5.4.
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...
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Figure 5.4: Illustration of time-gated compressive single pixel depth system principles
for the methodologies considered in e.g. [225, 204]. For p discrete time steps a normal
single-pixel CS recovery is performed resulting binary depth masks forming depth slices.

This casts the compressive problem onto multiple 2D imaging problems and thus

multiple instances of the standard CS problem formulation [225, 226, 204, 227].

They formulate the CS problem as

2

664

y
(1)
1 . . . y

(p)
1

...
. . .

...

y
(1)
m . . . y

(p)
m

3

775 = A

h
x
(1)

. . . x
(p)
i
, (5.12)

where p is the number of time or depth steps and m the number of measurements.

This transforms the single-pixel problem from one dimension to p dimensions. While

the sensing matrix, A, remains of constant size and is shared among all p problem

instances, it is not trivial to parallelise all instances at once, in particular for large

p.

For applications where a high-dynamic range is desired, such as the envisioned task

of long range automotive depth sensing with centimetre resolution, p can easily be in

the thousands. In most cases each time-gated intensity slice is recovered sequentially,

increasing the time it takes to compute results. Each intensity slice is then placed

in a depth cube, D 2 RNx⇥Ny⇥p and a depth map, xD 2 Rn=Nx⇥Ny can be obtained
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by forming a binary mask Ip = (xI = 0)p, which results in a depth map slice of

(xD)p = Ip � d(p) and a flattened depth map image is then, xD =
P

p (xD)pP
p Ip

.

While real-time processing has been demonstrated in [227], it is not suitable for

decision making at only 3Hz for fairly short histograms of 512 bins. One common

theme among these systems is the extremely fast sampling rates, theoretically en-

abling ultra-fast imaging, if the processing scheme can handle the high sampling

rates. However, due to the problem formulation, processing of the acquired data de-

spite compressive savings is still a challenging task for high spatial and high depth

resolution.

To minimise the computational burden, mask priors are introduced in [228]. Here,

the problem is constrained to two Lambertian surfaces. The surface positions are

estimated from the scene response, i.e. a histogram, h 2 Np in a parametric fashion

similar to approaches presented in Chapter 2 and 4. The parametric depth esti-

mation per pattern di, yields the respective measurement vector, (yI)i. The spatial

shape is then recovered with two individual CS optimisations, where photon count

information is discarded, yielding two binary masks describing the outline of either

object, Ii 2 0, 1n=Nx⇥Ny

[(yI)
1
, (yI)

1] = A[I1, I2]. (5.13)

While much more e�cient and more compact than full time-gating and complete

depth cube recovery. It places severe constraints on the application scenario and

cannot be considered a general imaging approach.

In related work, some key assumptions of the masking approach have been used

to formulate a more general approach [229, 230, 231]. Here, a proxy, the so called

time-of-flight sum, is introduced to split the depth recovery into two spatial image

recoveries in vector notation xQ = xI � xD 2 Rn, with the associated measurement

vector

(yQ)j = AjxQ = C

X

i

(Aj)i⌘iTi, (5.14)

where C is the conversion constant from time to distance, using ToF principles

(2.1), ⌘i is the number of photons reaching pixel i and Ti the ToF of each pixel

[231]. This measurement definition is neither clear on how Ti and ⌘i are formed

during sampling nor on how they are linked to the spatial regime, or that an implicit

assumption is made that a single pixel in each row of A only ever records a single

depth. This would be in conflict with a key assumption provided that depth is non-
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linear meaning that photons with di↵erent ToF contribute to the same measurement.

This work interprets, as the author specifies a time-correlated single photon counting

(TCSPC) sampling device, that each photon event  yields a time-stamp T and that

 observations form an aggregated measurement for an active pattern as illustrated

in Figure 5.5.
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Figure 5.5: Illustration of the singl-pixel LiDAR system presented in [231] and the
measurement acquisition for a pattern cycle using Hadamard patterns. Final returns are
depicted in time. The system captures two cumulative measures associated with structured
basis illumination patterns, the photon count, yI , and the time-of-flight sum yQ, which
can be reconstructed using CS principles and used to compute depth.

Mathematically,

(yQ)j = AjxQ = C

X

i

�
(Aj)i

X



(⌘iTi)
�

(5.15)

(yI)j = AjxI =
X

i

�
(Aj)i

X



(⌘i)
�
, (5.16)

where for the j
th emission pattern and the i

th pixel of the emission pattern with

(⌘i) 2 {0, 1} indicates if pixel i has observed a pixel during observation .

This particular approach makes more implicit assumptions. The main recovery fo-

cuses on xQ assuming small TV across the ToF-sum as indicated by the use of

TVAL3 [232], a TV minimisation framework. The estimate for x̄Q is basis trans-

formed and wavelet hard thresholded [233]. This e↵ectively forces a large portion of

the scene to zero, which limits the recovery to few surfaces and makes the implicit

assumption of large continuous uniform Lambertian surfaces. Finally, a least-square

recovery with a debiasing step is performed on the non-zero components of x̄Q using

gradient projection for sparse reconstruction (GPSR) [234] to recover both xI and

xQ, with the final depth recovery being an element-wise division xD = xQ./xI .
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It is quite obvious that this is a very costly recovery with many steps making real-

time reconstruction at high frame rates infeasible. It constrains the problem to a

few surfaces and also limits the recovery to significant foreground objects. Their

approach is also very sensitive to background noise and their proposed mitigations

are not very e↵ective in the described sampling scheme, as measurements are aggre-

gated immediately. As the author correctly identifies, many photons with di↵erent

ToF contribute to the final measurement. However, they seem to ignore that back-

ground photons also arrive throughout the timing cycle, i.e. also have a particular

time measurement attached, despite not coming from any surface in the scene.

Further, the acquisition times are limited by the SLM and further by the problem

size, a limitation of all single-pixel systems with a hard limit defined by the desired

final image size.

This work addresses these shortcomings by expanding the concept of the distance

sum and formulates it more rigorously in Section 5.3.1. The concept of two image

reconstructions to recover depth is intriguing for its simplicity. However, for practical

applications with a wide range of scenarios across a high dynamic range with a

long maximum operating range (> 100m) the hard thresholding step constraining

the scene to few foreground objects makes their framework impracticable for the

considered type of application. A more robust noise removal scheme is also required

to deal with much higher background rates introduced by outdoor imaging, than

envisioned by [231]. Further, the acquisition time has to be significantly reduced

without limiting resolution and the processing time needs to be shortened by several

orders of magnitude. This thesis therefore investigates block-independent sparsity

regularisation for depth signals.

5.3 Small Scale Sparse Depth Sensing

The prior art described above has focused on the application of the single pixel

camera methodology [189] and its use for depth recovery. However, most of the

previous work assumes short range applications with high density patterns. Further,

the direct depth estimation techniques often rely on solving depth for every single

time step in the acquired pattern histogram. While this time-gating approach is a

common technique to estimate LiDAR cubes, it is computationally not very e�cient.

Another approach requires heavy constraints due to the chosen basis and projection

function and is also severely range limited, with long exposure sequences.

To address these shortcomings, a framework is presented in this work, which makes

explicit use of a photon detector array. The nature of the array and available
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resources allows for design flexibility of the system as well as the sampling and

subsequent processing methodologies. In the simplest case, an array of photon

detector elements can indeed be interpreted as a collection of single pixels, where

the intrinsic resolution of the sensor is encoded in the emitter device.

This retains the advantage of smaller more e�cient sensor arrays which can image

at a higher resolution compared to linearly sampling them without a compressive

illumination scheme. However, there is significant scope to allow for a detector to be

resolution matched to the emitter, which can aggregate more information in a single

measurement utilising a Super-Pixel [82]. The developed framework in this work

addresses key issues identified above to enable higher frame-rates with low illumina-

tion densities for eye-safe long range imaging, while maintaining the key advantage

of CS of low bandwidth sampling over traditional linear sampling. By introducing

parallelism into CS depth imaging by utilising independent block compressive sens-

ing, a particular focus is placed upon pattern size. The framework described herein

proposes a pattern size significantly smaller than described in literature for most

single pixel systems and further maintains a massively parallel processing approach

to recover depth.

5.3.1 Observational Model

Signal Model

In most state-of-the-art solid-state LiDAR systems currently available, a laser array

is scanned across line-wise in a sequential fashion. As discussed in Chapter 2, in

most cases a full array illumination not only poses significant safety risk, but also

introduces a significant energy demand.

In this work, the goal is to recover a vectorised depth map, xD 2 Rn ofXD 2 RNx⇥Ny ,

from a photon sensitive solid-state detector array. By applying CS principles depth

can be estimated from a collection of m ToF measurements of a scene environment

by means of sparse illumination and sampling. The framework can work in modes,

firstly the fully compressive case, where m < n, and secondly using discrete sparse

oversampling (dSparse), where m > n. Both cases employ the same sparse sampling

scheme, where each measurement is obtained from probing the environment with

a sparse structured binary illumination scheme. This can reduce the average laser

power density emitted to enhance eye-safety while also enabling a flexible laser power

budget allocation to increase range.

Assumption 1 For a high resolution solid-state ToF imaging array, the field-of-

view (FoV) of a single pixel is very narrow to avoid overlap between pixels and
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captures in most cases only a single significant surface return.

In the ideal noiseless case the histogram of a pixel i, hi, has a single surface return

normalised to 1 with all other bins containing no counts and thus depth is simply

(xD)i = hi � d, (5.17)

where � is an element-wise multiplication and d 2 Rp encoding the distance value

for each of the p bins.

However, a direct Time-of-Flight (dToF) system captures a histogram with a count-

ing process which can be described as a Poisson random process [91, 31, 82], P(c),

where c is the count rate distribution and thus the mean and variance as in equa-

tion (2.22). For every count a histogram (h̃i) is observed. Several  Poisson obser-

vations are made i.e. time stamps from photon count events which form a histogram

estimate bhi shown in Figure 5.6.
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Figure 5.6: Histogram acquisition for an ith pixel, assuming one count per illumination
cycle resulting in   max observations yielding a histogram estimate, bhi

Now let the estimate for depth be

(bxD)i =

P
p

j=1(
bhi(j) · d(j))

P
p

j=1(
bhi(j))

=:
(bxQ)i
(bxI)i

(5.18)

where (bxQ)i is the depth sum (or ToF-sum [231]) and (bxI)i is the photon event sum

for pixel i illustrated in Figure 5.7 for a sampling approach foregoing the histogram.

Although this works retains a single histogram to derive the compressive measure-

ments, the two quantities can also be sampled as above. The total compression with
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Figure 5.7: Measurement acquisition for an ith pixel yielding the observed values for xQ
and xi.

a single histogram versus full histogram sampling is therefore

Ctotal =
2m+mn+ p

np
= C

2 + n+ p

m

p
, (5.19)

where, m is the number of measurements, n the number of pixels in the final recon-

struction (greatest number of either the emitter or detector), mn is the size of the

sensing matrix, p is the size of a histogram and C = m/n is the spatial compression.

For the case shown in Figure 5.7, Ctotal =
2m+mn

np
. These significant savings apply

throughout this work, but for consistency the spatial compression C is primarily

quoted since histogram sizes can vary for di↵erent operating conditions and across

approaches, while the spatial compression C is comparable across CS approaches.

The total compression versus full histogram processing improves dramatically if p is

large as is the case for this work.

Following [231], this work relies on the following assumption to estimate these quan-

tities individually.

Assumption 2 Let xQ 2 Rn be the image vector of total distance travelled by all

collected photons at pixel i for a single most significant surface return and let xI 2 Nn

be the intensity image vector whose i
th entry is the associated photon count at pixel

i. It is assumed that xQ and xI have sparse properties such as small TV or can be

represented in a sparse basis [189, 231].

Therefore, once (bxQ)i and (bxI)i are estimated for each pixel i, the depth is obtained

directly [231] as

bxD =
bxQ

bxI

. (5.20)
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System Model

In this work the focus is on depth estimation in small blocks with a measurement

obtained by means of a sequence of patterns (a set of active pixels). The proposed

sparse LiDAR system aggregates this structured information from a constrained set

of pixels in a block defined by a sparse pattern in a pattern histogram, h?

j
2 Rp.

A pseudo-random binary pattern, �, defines the subset of active pixels per measure-

ment. This binary pattern is generated as outlined in Algorithm 3.

Algorithm 3 Pseudo-random binary projection pattern generation
Input s,m, n
Output �
for every pattern j do

�j = zeros(n)
Ind = []
while length(Ind) < s do

pixel = random(1,n)
if pixel not in Ind then

Add pixel to Ind
end if

end while

�j(Ind) = 1;
end for

Just as with intensity imaging, where the total photon count is spatially related

to the pattern stimulation, so is the total ToF recorded during a pattern expo-

sure. However, because the ToF becomes non-linear i.e. a single measurement value

contains multiple depths due to accumulation of multiple events from potentially

di↵erent surfaces for the same time measurement, the scaling factor has to be re-

trieved to recover the true ToF at a particular spatial point mapped to the pattern

projection to retrieve the correct spatial location [231].

Conveniently, this is the photon count image, xI . For ease of illustration and to

enable noise removal, measurements in this work solely derived from histograms.

Therefore, s pixel histograms are collected with an associated pattern sequence �j

to form

h
?

j
=

X

i2�j

(bhi). (5.21)

The two proxy quantities, yQ for the depth sum xQ and yI the photon count xI ,

first defined in [231], are derived from each pattern histogram. Each quantity is

recovered by solving a BPDN problem which exploit that natural images or a subset

thereof have sparse representations or sparse properties. With the solution for both
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proxy quantities, depth can be retrieved by de-coupling ToF from the photon counts

as defined in equation (5.20).

Every pattern �j specifies the pixels contributing to the jth compressive measurement

of the depth sum and the photon count as

(yQ)j =
X

i2�j

(xQ)i + (�Q)i =
pX

k=1

(h?

j
(k) · d(k)) (5.22)

(yI)j =
X

i2�j

(xI)i + (�I)i =
pX

k=1

(h?

j
(k)) , (5.23)

where (�Q)i, (�I)i is Poisson noise with a mean and variance relative to the back-

ground count mean, �, with minor changes to the model presented in [82]. A system

illustration is shown in Figure 5.8.
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Figure 5.8: Compressive Super-Pixel LiDAR [82] sampling behaviour, where 1p is a
vector of ones with length p. A super-pixel denotes a photon detector array, which can
sample individual pixels in a structured manner.

To illustrate this measurement acquisition, an example for a single block scene is

shown with four distinct surfaces in Figure 5.9.
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Figure 5.9: Ground truth for block compressive depth sensing (a) with respective reflec-
tivity (b).
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This scene is compressively sampled with a target sparsity of s = 4 or  = 0.25 and

a spatial sampling compression rate of C = 0.75. This means that there are 4 active

pixels for a total of m = 12 < n = 16 measurement patterns stored in � for a 4⇥ 4

photon detector array. For this particular illustration, only the first 4 measurements

are shown in Figure 5.10.
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Figure 5.10: First four sample steps in a sequence of m = 12 with s = 4 for a n = 16
(4 ⇥ 4) block. Illumination pattern �i are overlayed atop the depth ground truth (a)-(d)
and corresponding pattern response histograms are shown in (e)-(h).

In this example the background rate is very low compared to the signal rate, however

this is often not the case. While for such minimal ambient noise, the regularisation

in a sparse basis removes noise e�ciently, when noise levels approach the signal

level, the background mean count rate should be estimated as b�. Two practical

approaches are proposed.

First, an additional detector area with the s pixels which are not in line with any

emitter radiation, aggregates a background noise histogram, hn, without active il-

lumination for the same number of realisations as an instance of h?. The active

background compensation can then be estimated as

b�active = max(hn) + ⌘, (5.24)

where ⌘ is an o↵set parameter.

Second, to estimate the background mean practically without additional hardware,

a small section in h
? could be allocated where the emitter is idle, for example an
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5.3. Small Scale Sparse Depth Sensing

additional ln bins beyond the operating range.

The passive background compensation is then

b�passive = max(h?[p� ln : p]) + ⌘. (5.25)

The noise compensation scheme is applied before measurements (yQ)j and (yI)j are

stored and the noise compensated histogram for pattern j is (h?

j
)0 = max((h?

j
� b�), 0)

which replaces h?

j
in equations (5.22) and (5.23).

While each individual pixel probes a single distance derived from the ToF of the

reflected photon, a measurement is made up of up s contributions, which are not

necessarily from the same surface, but have similar background rates. In particular

the distance sum measurements reflect the pattern variation, while intensity can

remain approximately constant for small FoV detectors.

Assumption 3 For the field-of-view of a small scale or block in a large scale photon

array, the likelihood of active pixels probing the same surfaces is high and therefore

the signal-to-noise ratio (SNR) across measurements increases.

To reconstruct the depth map, bxD by equation (5.20) from the measurements, equa-

tions (5.22)-(5.23) can be vectorised for all m patterns in � to estimate bxQ and bxI

by re-formulating each problem in the form of equation (5.6) [82] such that

min
xQ

1

2
k�xQ � yQk

2
2 + ↵Qk✓xQk1, (5.26)

min
xI

1

2
k�xI � yIk

2
2 + ↵Ik✓xIk1, (5.27)

where ↵Q,↵I are weights to the `1-regularisation terms with a linear transform ✓.

This is visualised in Figure 5.11. If the signal can be sparsely represented in another

basis, ✓ is a linear basis transform, e.g. a wavelet transform. For signals with sparse

gradients, this can be an isotropic di↵erence transform to minimise TV [75, 235, 231].

In this work, the linear transform is applied to a binary random projection pattern

and as such is interchangeable in the optimisation stage. This means that the choice

of basis is modular in the sense that if better basis functions are found in the future,

they could be readily placed into the framework without any changes to the sampling

scheme.
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Figure 5.11: Compressive small scale depth sensing visualisation, the two proxy quan-
tities for depth are randomly sampled randomly to obtain compressive measurements of
their sparse basis, which are recovered as dense data of the photon count, x?

I
and the total

distance x?
Q
. Note: ✓ is purely illustrative and not a real transform (such as DCT), while

� is representative of a real projection pattern matrix.

The reconstruction result for the sample block in Figure 5.10 uses ✓ = DWT

(Daubechies wavelet transform [196, 236]) with alternating direction method of mul-

tipliers (ADMM) [237] to solve equations (5.26)-(5.27) for both the proxy quantities

without background noise compensation with the final depth map shown in Fig-

ure 5.12.
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Figure 5.12: Single block reconstruction for compressive depth sensing. (a) Distance
sum, (b) Photon count intensity and (c) depth using Daubechies Wavelets (l = 2) for
m = 12 with s = 4 for a n = 16 (4⇥ 4).
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5.3. Small Scale Sparse Depth Sensing

Discrete Sparse Oversampling

Considering very small block sizes opens up an interesting practical simplification

of the reconstruction of both proxy quantities. The pattern matrix � is of very

small m ⇥ n size. For 2  s  n active pixels, the resulting system of equations

(5.22)-(5.23) is under-determined like any other CS problem. The special case with

target sparsity of s = 1 would be a traditional sampling approach i.e. m = n

measurements and loses the aggregation aspect of a CS measurement, where several

pixels are combined, which reduces the number of realisations required to obtain a

good estimate of depth. With modest m > n and s < n in this small scale problem,

the size of � remains small enough for practical applications.

The compact measurement scheme reduces memory requirements as full histograms

do not need to be stored for every pixel but can be acquired for ensembles of s

pixels as with the compressive case (see equation (5.21)). The problem can be

designed with s related to m in such a way that equations (5.22)-(5.23) are fully

determined. This is in some way a sparse over-sampling approach but it retains all

other reductions of the CS sensing approach such as lower emission power for each

sparse measurement and compact measurement storage. To enforce a deterministic

solution space, it is enforced that all pixels are active at least once across � making

it possible to compute a pseudo-inverse. In other words, it is assumed that � is full

column-rank [193].

The linear system of equations can then be readily solved with an approximated

least square solution [238]. Let A+ = (�T
�)�1

�
T
2 Rn⇥m be the standard `2 pseudo-

inverse, the problem simplifies to

bxQ = (A+)yQ , (5.28)

bxI = (A+)yI (5.29)

and depth is simply recovered via equation (5.20). Noise compensation can be

applied in the same way as in the compressive case. While this approach in of itself

is quite obvious, it becomes a viable alternative to linear sampling due to the small

problem size considered in this work for depth sensing. This discrete depth recovery

using sparse illumination was presented in [239] and is called dSparse. The exposure

patterns are still s⌧ n and thus require much less average radiation output power

versus linear sampling schemes.

Although bandwidth savings made by the compressive depth sensing approach are

obvious i.e. few m < n very compact measurements and significant savings due to

foregoing histogram storage per pixel, there are benefits to this discrete methodology,
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5.3. Small Scale Sparse Depth Sensing

if the sampling budget permits this approach. Despite the sampling time being

longer than in the compressive case, it is still shorter than a scanning LiDAR system,

as the exposure patterns are still s-sparse pattern flash emissions. A linear scanning

solid-state LiDAR requires p > Nx or p > Ny depending on line scan direction, where

p is the number of illumination cycles. dSparse performs a faster measurement cycle

if {Nx _Ny} > m. Further, this approach retains the total compression a↵orded by

not requiring full histogram storage on a per pixel basis.

5.3.2 Sparsity of Small Scale Signals

To analyse small scale sparsity for natural depth signals, the following three scenes

shown in Figure 5.13 are considered. The total image size is 128 ⇥ 128, which is

divided into various block sizes.

It is of particular interest how block sizes below 32 ⇥ 32 perform, as the majority

of literature chooses this block size. Further, the assumption that XQ is less sparse

thanXI for natural scenes in [231] may be justified for very simple scenes, but a more

detailed analysis is carried out within this work’s methodology and reconstruction

framework, where there are no constraint on the number of surfaces in the scene

unlike previous work.
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(a) Table scene, XI [124]
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(b) City scene, XI [123]
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(c) B-Road, XI [122]
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Figure 5.13: Three di↵erent scenes - short (a,d), medium (b,e) and long range (c,f) - for
sparsity analysis of depth proxies XI and XQ = XD �XI .
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5.3. Small Scale Sparse Depth Sensing

Sparsity

To find out if the depth sum XQ is more or less sparse than XI , scenes in Figure 5.13

are used. As outlined in Chapter 3, an estimate for reflectivity is used to generate

a photon count image using the photon count model from [78] and an ideal depth

image, XD is known from the datasets, then the depth sum is simply XQ = XI �XD.

For linear transforms, Daubechies wavelets (D(2)), Haar wavelets, DCT, fast Fourier

transform (FFT) magnitude and finally TV are considered. Both XQ and XI are

transformed and hard-thresholded [233] to zero if smaller than the threshold value,

⌧ , derived from a relative threshold ⇣, such that

⌧ = ⇣max(X). (5.30)

The relative threshold is swept across a range of 0.005 to 0.995 to determine the

sparsity,  of each signal with respect to the maximum values in each signal. This

ensures that the energy content is accurately considered and is equivalent to retain-

ing ⇣n components of an ordered signal X 2 Rn=Nx⇥Ny . An illustrative selection for

each scene type is provided in Tables 5.1-5.3 and for each scene the results for the

DCT basis are shown in Figure 5.14 with sparsity as defined in equation (5.2).
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(b) Mid range scene
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(c) Long range scene

Figure 5.14: Three di↵erent scenes - short, medium and long range - sparsity  of depth
proxies, XQ and XI in DCT basis for varying relative energy threshold ⇣

It is obvious from these results that in most basis transforms XQ is actually sparser

than XI or  Q <  I as block size decreases. Sparsity as a whole decreases as

the block size shrinks i.e. more non-zero components are retained and therefore  

increases. It is also good to see that sparsity behaves very similar across scene types.

It is fortunate, however, that the sparsity of both signals are very well aligned and

follows the same trends for a particular block size. This indicates that it is possible

to apply many of the sparsity assumptions which have been validated for natural

intensity images and by extension photon count images to the depth sum image.
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5.3. Small Scale Sparse Depth Sensing

Table 5.1: Sparsity (lower is better) in compressive depth sensing for intensity and depth
sum, XI , XQ 2 R128⇥128 for short range

Sparsity,  (s/n ratio at relative threshold, ⇣)

⇣ 4⇥ 4 8⇥ 8 16⇥ 16 32⇥ 32 64⇥ 64 128⇥ 128
 Q  I  Q  I  Q  I  Q  I  Q  I  Q  I

0
.0
1

Daubechies 0.31 0.36 0.24 0.29 0.19 0.21 0.14 0.16 0.08 0.10 0.01 0.02
Haar 1.00 1.00 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.55 0.54
DCT 0.42 0.48 0.37 0.42 0.23 0.27 0.10 0.12 0.04 0.06 0.30 0.26
FFT 0.46 0.52 0.43 0.49 0.28 0.31 0.12 0.14 0.04 0.06 0.34 0.30
TV 0.91 0.92 0.79 0.82 0.65 0.70 0.53 0.58 0.44 0.46 0.41 0.35

0
.0
5

Daubechies 0.16 0.18 0.10 0.12 0.05 0.06 0.01 0.02 0.00 0.01 0.00 0.00
Haar 0.99 0.98 0.90 0.90 0.89 0.89 0.88 0.88 0.87 0.87 0.29 0.26
DCT 0.18 0.21 0.09 0.11 0.03 0.04 0.01 0.01 0.00 0.01 0.05 0.06
FFT 0.21 0.24 0.10 0.12 0.03 0.04 0.01 0.01 0.00 0.01 0.06 0.06
TV 0.73 0.75 0.50 0.53 0.31 0.33 0.21 0.22 0.16 0.16 0.15 0.12

0
.1
0

Daubechies 0.12 0.13 0.05 0.06 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
Haar 0.97 0.96 0.82 0.82 0.77 0.77 0.75 0.75 0.74 0.74 0.22 0.18
DCT 0.12 0.13 0.04 0.05 0.01 0.01 0.00 0.01 0.00 0.00 0.02 0.02
FFT 0.13 0.14 0.04 0.05 0.01 0.02 0.00 0.01 0.00 0.00 0.02 0.03
TV 0.63 0.65 0.38 0.40 0.21 0.22 0.15 0.15 0.12 0.11 0.11 0.08

Table 5.2: Sparsity (lower is better) in compressive depth sensing for intensity and depth
sum, XI , XQ 2 R128⇥128 for mid range

Sparsity,  (s/n ratio at relative threshold, ⇣)

⇣ 4⇥ 4 8⇥ 8 16⇥ 16 32⇥ 32 64⇥ 64 128⇥ 128
 Q  I  Q  I  Q  I  Q  I  Q  I  Q  I

0
.0
1

Daubechies 0.42 0.50 0.30 0.37 0.23 0.29 0.16 0.19 0.11 0.12 0.04 0.04
Haar 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.19 0.15
DCT 0.53 0.60 0.48 0.56 0.43 0.51 0.40 0.43 0.19 0.23 0.65 0.48
FFT 0.55 0.60 0.53 0.59 0.48 0.57 0.49 0.52 0.20 0.24 0.74 0.65
TV 0.86 0.85 0.75 0.74 0.62 0.60 0.37 0.35 0.20 0.20 0.09 0.05

0
.0
5

Daubechies 0.20 0.23 0.14 0.17 0.09 0.11 0.06 0.07 0.03 0.03 0.01 0.01
Haar 0.97 0.96 0.90 0.91 0.89 0.89 0.88 0.87 0.86 0.85 0.09 0.07
DCT 0.27 0.33 0.22 0.27 0.12 0.14 0.05 0.06 0.02 0.02 0.21 0.14
FFT 0.31 0.37 0.25 0.31 0.13 0.17 0.05 0.06 0.02 0.02 0.25 0.20
TV 0.72 0.71 0.57 0.56 0.42 0.41 0.20 0.19 0.09 0.08 0.03 0.02

0
.1
0

Daubechies 0.16 0.19 0.09 0.11 0.05 0.06 0.03 0.03 0.01 0.02 0.00 0.00
Haar 0.94 0.94 0.82 0.82 0.77 0.77 0.75 0.75 0.72 0.71 0.06 0.04
DCT 0.20 0.24 0.12 0.15 0.04 0.05 0.02 0.02 0.01 0.01 0.09 0.07
FFT 0.22 0.27 0.14 0.18 0.04 0.06 0.02 0.02 0.00 0.01 0.11 0.10
TV 0.63 0.62 0.47 0.47 0.33 0.32 0.14 0.13 0.05 0.04 0.02 0.01

Table 5.3: Sparsity (lower is better) in blocked compressive depth sensing for intensity
and depth sum, XI , XQ 2 R128⇥128 for long range

Sparsity,  (s/n ratio at relative threshold, ⇣)

⇣ 4⇥ 4 8⇥ 8 16⇥ 16 32⇥ 32 64⇥ 64 128⇥ 128
 Q  I  Q  I  Q  I  Q  I  Q  I  Q  I

0
.0
1

Daubechies 0.35 0.46 0.25 0.33 0.17 0.23 0.12 0.15 0.07 0.07 0.02 0.01
Haar 0.88 0.87 0.89 0.89 0.93 0.93 0.97 0.97 0.97 0.97 0.28 0.42
DCT 0.42 0.49 0.36 0.43 0.33 0.38 0.31 0.36 0.14 0.23 0.19 0.19
FFT 0.44 0.47 0.38 0.43 0.37 0.41 0.35 0.40 0.15 0.27 0.26 0.41
TV 0.77 0.64 0.70 0.61 0.60 0.55 0.46 0.43 0.26 0.28 0.11 0.19

0
.0
5

Daubechies 0.13 0.16 0.08 0.10 0.06 0.07 0.04 0.05 0.02 0.03 0.00 0.00
Haar 0.86 0.85 0.82 0.82 0.85 0.85 0.87 0.86 0.86 0.85 0.09 0.14
DCT 0.17 0.20 0.12 0.14 0.10 0.13 0.07 0.09 0.01 0.03 0.04 0.05
FFT 0.19 0.22 0.14 0.16 0.11 0.15 0.08 0.11 0.02 0.03 0.05 0.08
TV 0.62 0.57 0.52 0.49 0.37 0.37 0.22 0.24 0.07 0.08 0.04 0.04

0
.1
0

Daubechies 0.10 0.11 0.06 0.06 0.04 0.04 0.02 0.03 0.01 0.02 0.00 0.00
Haar 0.84 0.84 0.75 0.75 0.73 0.74 0.74 0.73 0.73 0.71 0.05 0.08
DCT 0.12 0.14 0.07 0.08 0.06 0.07 0.03 0.04 0.00 0.01 0.02 0.03
FFT 0.13 0.14 0.08 0.10 0.06 0.08 0.05 0.06 0.00 0.01 0.02 0.04
TV 0.54 0.49 0.43 0.42 0.28 0.30 0.14 0.18 0.04 0.04 0.02 0.02
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5.3. Small Scale Sparse Depth Sensing

Importantly, as XQ is often sparser than XI for small block sizes NB < 128, the

depth information contained in XQ should be su�ciently sampled if bounds are

set by the recovery of XI . Referring to results in Tables 5.2-5.3 it is already quite

clear that the Haar wavelet transform is unsuitable for the small scale problem

considered in this work. As DCT and the magnitude of a FFT are quite similar,

DCT is favoured over FFT. The remaining analysis therefore focuses on Daubechies

wavelets, DCT and TV.

To get an idea of what savings can be achieved in bandwidth, the spatial compres-

sion, C = m/n, of a signal for a given linear transform across the relative threshold,

⇣ is shown in Figure 5.15. The potential savings are linked to the sparsity and the
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(c) Haar Wavelets
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Figure 5.15: Compression potential based on sparsity and measurement limits for various
linear transforms.

density of A. For example, a s = 4-sparse signal of size n = 16, has a targeted

sparsity of  = 0.25 as defined in equation (5.2). Measurements m are estimated

using equation (5.8) and the following analysis considers the spatial compression

potential of XQ for the mid-range scene by varying the relative energy threshold ⇣
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5.3. Small Scale Sparse Depth Sensing

as before. The respective sparsity  determines s and thus m allowing to study the

e↵ects of the basis sparsity on the compression potential.

For Daubechies wavelets and DCT (Figure 5.15(a-b)) a consistent compressibility

can be observed. Daubechies wavelets in particular scale very well across various

block sizes, which is somewhat expected as it is a common choice for forward com-

pression schemes such as JPEG2000. DCT performs very similar to Daubechies

wavelets in particular for block sizes NB < 128, but performs worse as block sizes

increase.

Haar wavelets are considered in Figure 5.15(c), as they have been shown to be linked

to Hadamard-Walsh matrices [193] in CS imaging. While they do approach similar

compressibility for larger images, they are not suitable for block based CS at the

very smallest size of 4⇥4, and while this transform does work as block size increases,

it is vastly outperformed by Daubechies wavelets.

Finally, TV is considered in terms of compressibility in Figure 5.15(d). It follows

the same trends as the other basis functions, meaning that as signal size increases,

the potential for compression increases. In the case of the smallest considered block

size of 4 ⇥ 4, the compressibility does not reduce quite as drastically as for larger

scale signals. It should be noted that compressibility in this case is considered to be

lossy, as values are hard thresholded to 0. This is done to emulate the behaviour of

a typical BPDN-solver or similar inverse linear program with basis regularisation.

This analysis implies that although larger signals are generally more compressible, in

the case of CS imaging, a trade-o↵ must be made between a targeted s-sparse signal

informing the density of � and the desired compression and thus reconstruction

performance.

Basis Proxy E↵ects on Depth

To evaluate the e↵ects of compressive sampling with a targeted s value defined by

 , the scenes are restored using their respective inverse transforms for Daubechies

wavelets and DCT for X̃I and X̃Q respectively and depth is the recovered X̃D =

X̃Q./X̃I . The recovered depth is compared to the available ground truth, XD, of

the signal provided by the synthetic scenes. Total-variation is omitted from this

particular analysis as the compressive sensing reconstruction does not recover the

basis signal but only uses it as a regularisation parameter in constructing the signal

directly.

In this initial analysis a selection of standard signal and image quality metrics

are used for quality evaluation in this work, namely mean squared error (MSE),
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5.3. Small Scale Sparse Depth Sensing

power signal-to-noise ratio (PSNR), reconstruction signal-to-noise ratio (RSNR)

[112], structural similarity index measure (SSIM) [240] and standard deviation (�).

A brief overview of these metrics is provided below for the ground truth x and the

estimate y both x, y 2 Rn to be compared as

MSE(x, y) =
1

n

nX

i=0

(x� y)2

PSNR(x, y) = 10 log10
max(x)

MSE(x, y)

RSNR(x, y) = 10 log10

P
n

i=0(x)
2

P
n

i
(x� y)2

SSIM(x, y) = l(x, y)↵ · c(x, y)� · s(x, y)�

�(x, y) =

vuut 1

n

nX

i=0

|(|x� y|)� µ(|x� y|))|2,

(5.31)

with l being luminance which in this case is depth, c a contrast comparator and

s the structure comparison function with weighting parameters ↵, �, � with more

details on their definition in [240] and µ = 1
n

P
n

i=0(x) being the standard mean.

The results for the mid-range scene are shown in Figure 5.16 for PSNR and SSIM

as evaluation metrics for block sizes up to NB = 32 and with a full frame resolution

of NB = 128.

It is quite obvious that PSNR (Figure 5.16(a,c)) is a poor metric for such high

dynamic signals, as the errors scale dramatically as range increases, further amplified

due to photon count scaling in XQ. This is often worsened in a real system by the

fact that active imaging systems observe a lower SNR as range increases, meaning

that the uncertainty across the operating range increases to the far end of the range

spectrum observed.

Therefore, this work accompanies PSNR with at least another image quality metric

such as SSIM or MSE. In particular SSIM provides more information about the

structural integrity and continuity and is not as easily influenced by random large

errors cancelling each other out. Judging the reconstruction quality solely on the

PSNR would suggest that the 4 ⇥ 4 tiling scheme is entirely unsuitable for block

compressive sensing as it performs worse in the compression regime (C < 1), in

particular in the wavelet basis (Figure 5.16(a)).

However, looking at the SSIM (Figure 5.16(b,d)), the smallest block size recovers

the signal at a similar quality to all other block sizes and indeed due to its lower

compressibility has a higher quality floor and also a higher quality ceiling. This
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Figure 5.16: Reconstruction quality e↵ects in Wavelet (Daubechies) for (a) PSNR and
(b) SSIM as well as DCT basis (c) PSNR and (d) SSIM for various tile sizes and the
respective compression ratio, C = m/n based on sparsity of XQ.

makes sense, because as more values are significant, less information is lost in the

compression at the cost of slightly lower compressibility. As depth recovery is costlier

than normal CS intensity recovery, the significant reduction in problem size could

provide meaningful acceleration of the reconstruction framework to enable real-time

performance.

Furthermore, the DCT basis shows better performance for the same level of com-

pression as block size decreases and has a consistent compression curve throughout

block sizes. This suggests that DCT is a very suitable basis for small scale block

CS recovery. It is also interesting to see that with an increase in block size quality

(SSIM) can significantly deteriorate. This may explain why most blocking schemes

rely on full-scale steps to improve the overall quality.

For the depth estimation with the two proxies, XI and XQ, with respect to com-
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5.3. Small Scale Sparse Depth Sensing

pressibility and associated overall quality it seems that block recovery is actually

beneficial, due to the quality ceiling increasing as the block sizes decreases. This

holds in particular for the DCT basis transform looking at Figure 5.16(d). This sug-

gests, that independent compressive block recovery for this type of depth recovery

may yield better results, than full scale CS reconstruction due to better per block

reconstruction. As mentioned earlier, the subsequent reduction in problem size,

could enable to exploit the compression at the sampling stage in real-time at very

high frame rates as an independent block formulation has the potential to further

benefit from massive parallelism.

Total-Variation Block Compression

Total-variation is a popular regularisation function as it can be applied directly to

recover the signal without prior basis transformations [199]. It has been extensively

used in CS and inverse problems involving natural images [241, 189, 242, 243, 244,

245, 246, 247].

Applying blocking to a total-variation based signal recovery has its caveats. Total-

variation operates on the entire signal, therefore separating the full-scale problem

into small blocks without providing any connection to all neighbouring blocks should

a↵ect the compressibility dramatically. This is illustrated in Figure 5.17.
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Figure 5.17: Spatial compression potential per block size for wavelets (Daubechies),
DCT and TV based on relative energy threshold ⇣ and the resultant sparsity of a signal.

The sparsity assumptions enforced by total-variation are clearly more appropriate as

the block size increases and then approaches more traditional basis transformations
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5.4. Time-of-Flight Solid-State Block Array

in particular when NB = 128 which in this analysis is the full-scale problem. This

does not mean that TV is useless for such small scale blocking schemes. As a matter

of fact it will be shown that it can perform quite well as it does approach the same

sparsity levels as the other basis transforms at higher thresholds. It is obvious,

however, that

X

b

TV(Xb) 6= TV(X), (5.32)

because the regularisation is not able to cascade through the entire image space

and therefore independent blocking is not a↵ected by gradient changes in another

section of the image, while this is the case for the full image case.

It is investigated if TV can be used on its own or only as a full-scale post-processing

step due to this inequality and how the two compare in section 5.4.3.

From the above small empirical study it would seem that TV is not the ideal linear

transform for the compressive case of m < n, but may still be useful for sparse ran-

dom illumination where m � n or indeed to improve a solution for the independent

blocking scheme using the DCT or another basis in this work.

5.4 Time-of-Flight Solid-State Block Array

A time-of-flight solid-state detector array capable of capturing photon time stamp

measurements can capture an image space X 2 Rn=Nx⇥Ny . The imager can be

tessellated into non-overlapping detector blocks of size nB = NB ⇥NB. This results

in B = n/nB blocks as shown in Figure 5.18.

...

...

... ..
.

..
.

B

1

NB

Nx

NB

Ny

Figure 5.18: Checkerboard block structure for distribution of depth compressive sensing
into smaller sub problems. Applicable to the emitter array, the detector array or both.
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5.4. Time-of-Flight Solid-State Block Array

A proposed system architecture of this blocking methodology first presented in [82]

is shown in Figure 5.19.
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Figure 5.19: A full illustration of an arrayed Super-Pixel LiDAR system with resolution
matched emitter and detector array. A Super-Pixel can be replaced with large single-pixel
with the resolution defined by the emitter array. Conversely, a lower emitter array can be
paired with a higher resolution super-pixel array.

The system can be configured in multiple ways making use of either an arrayed emit-

ter, an arrayed detector or both. The resolution is defined by the highest resolution

of either, whichever that may be. In the remainder of this chapter, the system is

assumed to be configured as shown in Figure 5.19 with a resolution matched emit-

ter and detector. The detector array is sectioned into B blocks and each block is

sampled individually in its respective measurement vector (yQ)(b) and (yI)b each con-

taining mB measurements respectively with the sampling and signal model outlined

in (5.22)-(5.23).

5.4.1 Signal Model

Now that the imager is an array, the problem can be distributed as many individual

imaging blocks and the problem becomes

2

664

y
(1)
1
...

y
(B)
m

3

775 =

2
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�
(1)
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�
(B)

3

775
h
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(1)

. . . x
(B)

i
, (5.33)
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5.4. Time-of-Flight Solid-State Block Array

where each block has its own projection sequence, �(b). For maximum e�ciency the

system is to operate on a single projection sequence, the problem simplifies to

2

664

y
(1)
1
...

y
(B)
m

3

775 = �

h
x
(1)

. . . x
(B)

i
, (5.34)

where � is applied to sample the scene in a structured fashion yielding a measure-

ment vector on a per block basis, which results in a global measurement ensemble

yQ, yI 2 RNB⇥mB with � 2 {0, 1}NB⇥mB⇥nB , if � is identical for all blocks then

�B 2 {0, 1}mB⇥nB . The transform ✓ 2 RnB⇥nB is identical for all blocks. The full

signal is again an ensemble of blocks such that xQ, xI , xD 2 RNB⇥n. Let S(·) be a

generic solver to the problem formulated in (5.26) and (5.27) respectively.

Many algorithms exist to numerically find a solution to this inverse problem such as

ADMM [237], fast iterative shrinkage thresholding algorithm (FISTA) [212], GPSR

[234], orthogonal matching pursuit (OMP) [248]. A common solver for the TV

formulation of these problems is TVAL3 [232], which is used in this work along-

side ADMM for basis transforms to reconstruct depth images from a compressive

measurement set.

These specific algorithms were chosen for their good performance, adaptability and

reconfigurability and relatively low execution time. This does not mean they are

the optimal solvers but they should provide a good idea of e�cient solvers for these

types of problems.

Now that the problem is separated into many small sub-problems, the depth recon-

struction framework is described in Algorithm 4. The unraster(·) operator reshapes

Algorithm 4 Depth Checkerboard Compressive Sensing (CBCS) Recovery [82]

Input yQ, yI ,�, ✓

Output X̂D

for every block b do

(x̂Q)(b) = S((yQ)(b),�(b), ✓)
(x̂I)(b) = S((yI)(b),�(b), ✓)

end for

x̂D(xI > 0) = xQ./xI

X̂D = unraster(x̂D)

vectors into their array dimension and places them in their respective block location

for each recovered image.

This framework removes the restrictive steps from the formulation in [231] and en-

forces basis sparsity directly, if applicable. The individual and independent blocking
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5.4. Time-of-Flight Solid-State Block Array

structure further enables concurrent execution of each optimisation process unlike

[213], which relies on full frame steps throughout a full iteration. Combined with a

reduction in problem size related to the block size, this should provide a pathway

to fast CS depth recovery.

5.4.2 Block Size E↵ects on Processing Speed

To illustrate the time savings for smaller block sizes, ADMM and TVAL3 are set for

a constant number of iterations to remove that time variable and a random problem

is generated for various block sizes shown in Figure 5.20.
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Figure 5.20: Processing time scaling for increasing problem for BPDN using ADMM
[237] and TV using [232] with a fixed number of iterations of i = 100.

Given that the time is shown on a logarithmic scale, it is quite obvious, that process-

ing times rise exponentially with modest increases in block size, while NB = 4 and

NB = 8 are comparable in terms of processing time for a fixed number of iterations,

while all other sizes are dramatically slower and for NB > 16 recovery of images

at real-time frame rates is unlikely. It needs to be noted, that forcing the itera-

tion count to i = 100 is beneficial to large scale problems and detrimental to small

scale problems, as generally the the small scale problems requires fewer iterations

iNB16 ⌧ 100 while iNB>16 � 100. Once again favouring smaller block sizes from a

processing speed point of view.

5.4.3 Total Variation Extension

As stated in equation (5.32) TV is not separable in the same way a linear transform

is, as DCT and discrete wavelet transform (DWT) can be readily adapted to a

particular signal size and are often applied in a blocked fashion in their discrete

implementations in particular in compressive applications [176]. To allow for TV
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to take full advantage of the full scale problem, two methods are proposed, which

utilise a fast parallel block solution as a prior, which in turn should either improve

performance in speed, in quality or both. In particular full image regularisation

should reduce any kind of blocking artefacts.

TV with Block Prior

The utilisation of a block solution has been already discussed in the prior art of

BCS with full scale processing steps using only basis sparsity optimisation steps. It

is suggested in [202] that a prior in the optimisation problem reduces the number

of required measurements for the full scale problem. Ideally the number of mea-

surements can be the same as for the block (mB), which would result in a fairly

small full-scale problem formulation. To construct such a measurement vector, let

ỹ 2 RmB be

ỹ =
X

b

y
(b)
. (5.35)

The projection matrix for the full-scale problem, �̃ 2 {0, 1}mB⇥n, with prior analysis

for each pattern j is then

�̃j =

2

664

�
(1)
j

. . . �
(k)
j

...
. . .

...

�
(q)
j

. . . �
(B)
j

3

775 . (5.36)

Using the above full-scale formulations, the prior block solution is further optimised

with a final TV optimisation routine. This results in the following optimisation

problem

min
x

�kxkTV

s.t. �̃x = ỹ and x0 = x̂

(5.37)

where x is initialised as x̂ from the block solution. This can be implemented as shown

in Algorithm 5 with depth recovery as before from the final full-scale estimates for

the proxy quantities.
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Algorithm 5 Depth Block Compressive Sensing using TV recovery with block prior
(CBCS-TVp).

Input yQ, yI ,�, ✓, ỹQ, ỹI , �̃

Output X̂D

for every block b do

(x̂Q)(b) = S((yQ)(b),�(b), ✓)
(x̂I)(b) = S((yI)(b),�(b), ✓)

end for

x̃Q = TV(ỹQ, �̃, x̂Q)
x̃I = TV(ỹI , �̃, x̂I)
X̃Q = unraster(x̃Q)
X̃I = unraster(x̃I)
X̂D(X̃I > 0) = X̃Q./X̃I

Alternatively, a block-diagonal sensing matrix, �̄ 2 {0, 1}m⇥n and a ensemble of

measurement vectors, rasterised as ȳ 2 Rm=B⇥mB , can be used as in (5.10) and

(5.9). This can be used for a full-scale prior analysis such as presented in [246].

This approach uses the prior solution, x̂ in the regularisation directly, such that

min
x

�1kxkTV + �2kx� x̂kTV

s.t. �̄x = ȳ.

(5.38)

The recovery is similar to the other TV extension using x̂ as a starting point and is

shown below in Algorithm 6.

Algorithm 6 Depth Block Compressive Sensing TV-TV [246] recovery with block
prior (CBCS-TVTV).

Input yQ, yI ,�, ✓, ȳQ, ȳI , �̄

Output X̂D

for every block b do

(x̂Q)(b) = S((yQ)(b),�(b), ✓)
(x̂I)(b) = S((yI)(b),�(b), ✓)

end for

x̃Q = TVTV(ȳQ, �̄, ✓, x̂Q)
x̃I = TVTV(ȳI , �̄, ✓, x̂I)
X̃Q = unraster(x̃Q)
X̃I = unraster(x̃I)
X̂D(X̃I > 0) = X̃Q./X̃I

Both these approaches are empirically evaluated alongside individual CBCS modes

for both basis transforms and TV regularisation.
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5.5 Applications and Results

The goal in developing the checkerboard compressive sensing (CBCS) processing

methodology described in this chapter is the formulation of a robust framework

for e�cient depth imaging at high resolution with high frame rates suitable for

many applications without strict constraints on scene content or other restrictive

assumptions often seen in previous work. The system presented in [82] and shown

in Figure 5.19 is used as a simulation framework to re-sample real and synthetic

photon count data for a variety of scenes shown in Figure 5.21.
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Figure 5.21: Scenes for evaluation of CBCS methodology for arrayed CS LiDAR systems.
(a) A real photon count scene depicting a bearing in underwater foliage [99]. (b) A real
depth scene captured with a Kinect depth camera [124]. (c) A city scene from a synthetic
depth data set [123]. (d) B-Road scene as a synthetic replica [122] of original KITTI
benchmark [117]. (b)-(d) provide segmentation maps and RGB images from which photon
counts are simulated.

The four scenes are chosen to emulate 4 di↵erent depth applications, the bearing

scene from [99] represents a very detailed high-resolution ultra-short range appli-

cation with a dynamic range of only about 30 cm with histogram sub-millimetre

precision. The dining table scene from [124] represents a typical indoor short range

application with a dynamic range of < 10 m and millimetre precision. Next a mid-

range city environment with many scene participants and objects such as trees and

signs in the foreground and (0-50 m) and buildings in the background ( 250) [123]

and finally a long range scene depicting a typical B-Road scene with cars, tra�c

signs and tree foliage surrounding the street with a dynamic range of 0-300 m [122]

with centimetre resolution in both mid and long range cases. The last two scenarios

are typical scenes for automotive applications and demonstrate outdoor long-range

applications which require fast decision making and thus call for high frame rates.

The reconstruction performance is compared with ground truth depth if available

and a maximum cross-correlation approach for the real scene for a good depth es-

timate using the maximum of the correlation between return signal and the instru-

mental system response. An extended selection of quality metrics is used, because

it is di�cult to assess depth reconstruction quality, due to its dependence on max-
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imum depth value for a high dynamic range. This means the absolute error can

have a high variance and the structural integrity of shapes is no longer flattened as

is the case for intensity images. This a↵ects most error and image quality metrics.

Using multiple metrics should allow to identify good solutions if all or most metrics

consistently indicate a good reconstruction result relative to each other.

The framework presented in this work is compared to Howland et al. [231] rep-

resenting a similar signal model and single pixel CS approach, BCS-SPL [213] for

an established block CS approach which has primarily been applied to intensity

and colour imaging and variants of the presented framework with various basis

transforms, the TV extensions and the discrete pseudo-inverse approach dSparse for

sparse random imaging.

5.5.1 Practical Basis Transforms and Algorithms

To implement the basis transform ✓ as e�ciently as possible it is desirable to use a

quantised discrete matrix transform. The DCT transform is defined in matrix form

and can therefore be readily quantised into matrix form for the appropriate signal

size. The other basis transform under investigation uses Daubechies wavelets [196].

These are often defined as continuous functions. While e�cient implementations

exist for this family of wavelets, recent work also suggests that they can be imple-

mented in a single matrix transformation [236]. This work adopts this approach to

generate a discrete wavelet transform (DWT) matrix with 2 filter coe�cients. All

projection matrices are generated using Algorithm 3 for the appropriate image or

block size and are of pseudo-random binary nature.

The framework presented in [231] has been faithfully recreated from their description

and considerable work has been carried out to retrieve the best possible results with

extensive manual parameter tuning using the solvers TVAL3 for the total-variation

estimates and GPSR [234] for the debiasing stages as outlined in their manuscript.

The source code for BCS-SPL has been published and was straightforward to apply

to the dual-stage depth recovery via the two proxy units. The algorithm is operated

in two modes using the DCT basis transform, with the prescribed optimal block size

as described in [213] of NB = 32, which shall be denoted as BCS-SPL32 and for a

fair comparison with the blocking scheme in this work, the block size was altered to

NB = 4 as well (BCS-SPL4). Neither of these approaches are easily parallelisable, as

they rely on full-scale reconstruction at one point or throughout the algorithm. The

processing time is quoted for a full sequential run tseq. All algorithms are measured

in a full sequential mode for comparison.
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The primary framework of this work, CBCS, is evaluated for block sizes as CBCSNB

and similarly dSparse
NB

, the chosen basis and optional extension are added onto

this main naming scheme if applicable. All CBCS and dSparse can be either fully

parallelised i.e. are block independent or partially parallelisable in case of the two

TV extensions where the block estimate is fully parallelisable and is followed by two

full-scale problems.

An estimate for a full parallel implementation is provided as tpar which is derived

from the slowest block solution for either xQ or xI . The TV extensions take the

slowest block estimate time value and the slowest full-scale solution time is added

for the parallel estimate for those approaches. The solver for BPDN using linear

basis transforms chosen for this work is the popular ADMM [237] algorithm, due to

its speed, flexibility and relative simplicity.

The TV based BPDN CS formulation uses the popular TVAL3 [232] algorithm as it

is a fast approach and produces reliably good results. The first TV extension (5.37)

exclusively uses TVAL3 for all TV regularisation based recoveries. The second TV

extension (5.38) adopts a CBCS4-DCT approach using ADMM for the block estimate

and the algorithm from [246] to perform the full-scale recovery with prior using a

block diagonal CS system.

5.5.2 Arrayed Sparse LiDAR

To illustrate a standard approach to determine the operational mode of a arrayed

sparse LiDAR using the CBCS framework, a typical analysis of block size and spar-

sity is carried out to find good operational parameters followed by the sampling

and processing protocol. While this analysis only includes three linear transforms,

namely DWT, DCT and TV. Other basis functions can be readily implemented

if more suitable for a particular system and its intended application scenario. A

typical analysis to find good operational parameters is shown in Table 5.4, where

compression ratio and target sparsity  is swept across and compared with various

block sizes.

This analysis uses a small selection of quality metrics (PSNR, SSIM, MSE) to deter-

mine a good operating regime. It is desirable to find the lowest compression ratio C

determining the number of measurements with the lowest sparsity,  to reduce the

projection pattern density and thus laser exposure per measurement. It is quite ob-

vious again that PSNR is an unreliable metric when errors become large, however,

SSIM tends to indicate when a reconstruction was successful with values usually

greater than SSIM > 0.2. This metric seems quite low for the medium and long
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Table 5.4: CBCS operating parameters for sparsity and compression illustrated on the
mid-range scene. Operating point for examples in this chapter are highlighted.

PSNR, dB SSIM MSE
C C C

 = 0.125 0.125 0.25 0.5 0.75 0.125 0.25 0.5 0.75 0.125 0.25 0.5 0.75

4
⇥
4 DWT 18.23 18.75 19.53 21.44 0.03 0.05 0.07 0.11 759.95 672.96 562.41 362.49

DCT 20.19 20.58 19.69 22.92 0.14 0.14 0.23 0.37 483.33 441.72 541.94 257.96
TV 16.14 19.03 22.08 25.26 0.07 0.14 0.22 0.29 1227.62 631.58 312.86 150.29

8
⇥
8 DWT 18.15 18.43 19.41 21.84 0.03 0.05 0.09 0.41 772.87 724.57 578.93 330.37

DCT 20.75 20.63 21.78 22.74 0.17 0.20 0.27 0.32 425.46 437.10 335.23 268.70
TV 21.31 23.85 24.50 24.32 0.15 0.22 0.31 0.44 373.53 208.00 179.26 186.70

1
6
⇥
1
6 DWT 17.74 17.98 18.40 19.70 0.03 0.04 0.07 0.38 850.18 804.61 730.47 540.67

DCT 18.86 19.93 20.72 20.56 0.12 0.17 0.22 0.24 656.91 513.34 427.64 444.14
TV 21.85 21.19 20.45 20.88 0.20 0.22 0.30 0.38 330.21 383.62 455.87 412.15

3
2
⇥
3
2 DWT 17.64 17.56 17.97 17.80 0.02 0.03 0.06 0.26 868.79 885.67 806.27 838.87

DCT 18.12 19.76 19.13 19.54 0.19 0.21 0.23 0.24 779.56 534.41 617.11 561.78
TV 19.23 18.43 18.44 18.47 0.18 0.19 0.23 0.27 602.68 725.27 722.93 717.81

 = 0.25

4
⇥
4 DWT 18.52 18.84 20.69 22.97 0.04 0.05 0.10 0.22 710.65 659.16 430.51 255.06

DCT 21.77 21.57 22.64 22.98 0.29 0.29 0.38 0.45 336.15 351.48 275.24 254.59
TV 17.87 22.07 24.78 25.51 0.08 0.17 0.26 0.40 824.39 313.86 168.20 141.92

8
⇥
8 DWT 18.21 18.88 20.04 21.42 0.03 0.05 0.10 0.49 763.21 653.45 500.44 363.92

DCT 21.06 20.38 21.52 22.28 0.18 0.21 0.28 0.32 396.09 462.35 356.08 299.12
TV 22.66 23.49 23.40 22.88 0.17 0.22 0.34 0.49 273.82 226.19 230.93 259.96

1
6
⇥
1
6 DWT 17.67 17.80 18.62 20.01 0.02 0.04 0.07 0.40 863.05 838.52 693.28 504.44

DCT 18.48 20.32 20.35 20.55 0.13 0.19 0.22 0.24 716.97 469.41 465.95 444.61
TV 20.96 20.97 19.94 20.67 0.18 0.22 0.31 0.41 404.52 403.74 511.99 432.90

3
2
⇥
3
2 DWT 17.56 17.29 18.03 18.14 0.02 0.03 0.06 0.29 886.06 942.70 795.23 774.35

DCT 18.58 19.25 19.32 19.17 0.18 0.20 0.20 0.20 699.92 600.59 590.19 611.54
TV 19.13 18.64 18.57 18.54 0.16 0.18 0.21 0.21 616.49 690.70 702.71 707.23

 = 0.5

4
⇥
4 DWT 19.21 19.68 21.05 23.90 0.04 0.07 0.13 0.49 606.56 543.87 396.52 205.79

DCT 23.30 22.69 22.83 23.80 0.44 0.41 0.45 0.50 236.08 272.17 263.07 210.50
TV 19.82 23.89 24.97 25.63 0.09 0.23 0.47 0.62 526.90 206.33 160.66 138.21

8
⇥
8 DWT 18.24 18.30 19.90 21.71 0.03 0.05 0.13 0.51 758.11 747.05 516.68 340.59

DCT 21.41 21.18 22.48 22.84 0.20 0.23 0.32 0.34 365.01 385.32 285.59 262.78
TV 23.26 23.82 23.23 23.07 0.21 0.30 0.43 0.53 238.26 209.71 239.91 249.31

1
6
⇥
1
6 DWT 17.69 17.64 19.23 20.01 0.03 0.04 0.09 0.42 860.55 870.03 602.41 503.89

DCT 19.50 20.88 20.88 21.58 0.15 0.20 0.21 0.22 567.11 412.09 412.27 350.98
TV 20.62 20.57 20.77 20.53 0.18 0.23 0.32 0.36 437.72 442.57 423.30 446.71

3
2
⇥
3
2 DWT 17.62 17.84 18.05 18.15 0.02 0.03 0.06 0.28 873.46 830.86 791.52 772.95

DCT 19.18 19.87 19.83 18.75 0.12 0.16 0.14 0.16 610.36 520.13 525.34 673.93
TV 19.22 18.63 18.36 18.37 0.16 0.14 0.14 0.16 604.98 692.53 736.65 735.95

range scene under investigation due to errors scaling as range increases. However,

there is a clear distinction between complete failure at SSIM < 0.1 and a chance for

good reconstruction otherwise.

The MSE provides a good relative measure, but large values can indicate either a

complete failure or just large errors at long ranges while the foreground depth returns

are well reconstructed. It is quite clear that DCT generally outperforms DWT in

most cases, in particular for lower compression ratios. Generally, reconstruction

quality drops for larger tile sizes, likely due an increase in surface count in the FoV

of the block imager in contrast to assumption 3 and thus nB = 4 ⇥ 4 is treated as

the optimal tile size for the remainder of this work.

The compression is chosen to be a good compromise of number of measurements and

quality at C = 0.5 as a significant drop-o↵ in quality is observed if fewer measure-

ments are used, while more measurements only provide marginal increases. Choos-

ing  is a trade-o↵ between pattern density and thus total laser output and quality.

We choose  = 0.25 for a relatively low sparsity target of s = 4 for 4 ⇥ 4 blocks
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as the quality is only marginally lower than at  = 0.5 but significantly higher

than  = 0.125. These results are in agreement with the previous basis sparsity

investigations in Chapter 5.3.2.

Setting the block size to NB = 4 has also favourable e↵ects on general processing

times as well as sample times as it defines the individual block problem size for

equations (5.22)-(5.23) which also a↵ects sampling time. The sampling time can

be very system specific, but this work defines the total sampling time for a pattern

(and equivalently a single pixel or line of pixels in a scanning system) as

tsamp = ⌘PnP �t, (5.39)

where ⌘P is the number of pattern exposure cycles, nP is the number of laser pulses

and �t the time-of-flight as defined by its maximum operating range (here 300 m).

In the following analysis the photon count simulation assumes a macropixel with 16

SPADs as outlined in Chapter 2 and Chapter 3. A single pulse can yield therefore

up to 16 counts per bin in a histogram. It is assumed that one can record multiple

events using multi-event TDC devices [249] and if all events can be added together.

For the chosen operating parameters, the processing and sampling times are pre-

sented in Table 5.5, where t(1)
Q

and t
(1)
I

are the reconstruction times for a single block

for each proxy respectively, tpar the slowest computation time per block per proxy

for a fully parallel time estimation, tseq the total computation time if all blocks are

computed in sequential fashion. The sampling time for the defined compression is

tsamp (equation (5.39)), leading to a frame time of Tpar assuming full parallelism and

Tseq for a fully sequential approach.

Table 5.5: CBCS block size processing and sampling time illustration for  = 0.25,
C = 0.5, and number of laser pulses, nP = 100 with a ToF of 2µs each. All times are in
ms.

t
(1)
Q t

(1)
I tpar tseq tsamp Tpar Tseq SSIM

4
⇥
4 DWT 1.46 1.25 1.46 2790.00 1.60 3.06 2791.60 0.10

DCT 0.95 0.65 0.95 1650.00 1.60 2.55 1651.60 0.38
TV 9.84 10.71 10.71 21060.00 1.60 12.31 21061.60 0.26

8
⇥
8 DWT 4.96 5.00 5.00 2550.00 6.40 11.40 2556.40 0.10

DCT 3.59 3.59 3.59 1850.00 6.40 9.99 1856.40 0.28
TV 11.48 9.92 11.48 5490.00 6.40 17.88 5496.40 0.34

1
6
⇥
1
6 DWT 23.12 24.69 24.69 3080.00 25.60 50.29 3105.60 0.07

DCT 45.78 48.28 48.28 6030.00 25.60 73.88 6055.60 0.22
TV 248.28 190.78 248.28 28110.00 25.60 273.88 28135.60 0.31

3
2
⇥
3
2 DWT 336.87 341.88 341.88 10870.00 102.40 444.28 10972.40 0.06

DCT 1620.63 1651.25 1651.25 52370.00 102.40 1753.65 52472.40 0.20
TV 764.37 637.50 764.37 22430.00 102.40 866.77 22532.40 0.21

From this comparison it should become quite obvious that the smaller the tile size,

the faster the reconstruction can be. If this approach is to be implemented on a

single system on a chip though, this would result in more communication overhead
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as more parallel problems are required to be solved. This issue is addressed in

Section 5.5.3. Assuming that the communication can be kept at a minimum, the

chosen block size produces the best reconstruction quality with the fastest per block

reconstruction time. If parallelism could not be exploited at all, then NB = 4 seems

to be still the fastest option in this case with a forced number of iterations in the

algorithm. This ignores the fact that the number of iterations generally also scales

with the problem size, therefore this analysis only provides an indication in terms

of logic scaling rather than absolute time. It nonetheless provides an indication of

the good performance potential for a parallel implementation of CBCS4-DCT.

Sampling and Processing Protocol

Before analysing the various scenes and reconstruction performance for various algo-

rithms, an outline of the two sampling and processing protocols are provided. The

protocol for CS imaging outlines the protocol for B blocks. The single-pixel case is

the special case where the number of blocks is B = 1, so that the number of block

measurements is mB = m and the block size is the full frame size i.e. nB = n. The

sampling and processing methodologies are as follows.

1. The scene is illuminated with structured light-source and a binary pattern

from a sequence of projection patterns � for each block.

2. Each of all B blocks acquire mB < nB histograms.

3. Each of the mB histograms per block, b yields two measurements, y(b)
Q

and y
(b)
I

4. Recover both x̂
(b)
Q

and (x̂I)(b) by solving BPDN for both quantities in parallel

across all blocks.

5. OPTIONAL: Apply second stage using x̂Q and x̂I as priors for full scale L2-TV

or TV-TV optimisation for full-scale TV regularisation.

6. Gather X̂Q and X̂I from block solutions or directly via TV extensions.

7. Compute depth as X̂D = X̂Q./X̂I .

All data is sampled this way for all algorithms throughout with the appropriate

block sizing and number of measurements mB.

A variation of above protocol is the sampling and processing procedure for dSparse

where C > 1 i.e. the scene is technically oversampled, but in a sparse random

fashion.

1. The scene is illuminated with structured light-source and a binary pattern

from a sequence of projection patterns � for each block.
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2. Each of all B blocks acquire mB > nB histograms.

3. Each of the mB histograms per block, b yields two measurements, y(b)
Q

and y
(b)
I

4. Each measurement sequence has a unique A
? applicable to all blocks.

5. Recover both x̂
(b)
I

and x̂
b

Q
as an approximate least-square solution x = A

?
y per

block in parallel.

6. Compute depth per block as x̂D = x̂Q./x̂I .

7. Gather all blocks and assemble X̂D.

Having discussed the the protocols and a typical procedure of how to choose typical

operational parameters for CBCS, the performance of the presented methodology

can be evaluated against the prior art.

Results

The evaluation of the proposed framework are assessed on two major factors, which

in most signal and image processing application is a trade-o↵; quality and processing

speed. The goal of this work is to demonstrate that it is possible to reconstruct a

depth map from compressive samples at > 30Hz i.e. a frame time of 33ms.

The four scenes represent a range of use cases from short to long range LiDAR

applications and should highlight if the framework can handle various scene types

and operating ranges. For all CS methods the target sparsity and compression rate

are kept constant at  = 0.25 and C = 0.5, which was chosen as a good compromise

between quality and compression. It should be noted that the single-pixel approach

presented in [231] does not claim to be able to perform in applications with high

dynamic range at long distances and the authors only demonstrate indoor short

range applications, which are included in the selection of scenes.

Since [129, 213] specify an optimal block size of NB = 32 as BCS-SPL32, the frame-

work was run in that way, but to be fair to this blocked approach, it is also run with

the same block size as CBCS being NB = 4 as BCS-SPL4.

All synthetic histograms are generated with a modest ambient photon rate derived

from the incident sunlight at 1 klux, which is roughly equivalent to a mean count

rate of about 0.3 photons per bin for ⌘P = 3.

All measurements are sampled as defined in equations (5.22) and (5.23) respectively

and noise compensation schemes are used throughout. For the real scene, the passive

approach is used, while the synthetic versions use the active approach to estimate

�̂ for each block as defined in equations (5.24)-(5.25).
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It is later shown that this noise removal scheme works well even at high noise rates of

above 100 photons per bin per laser cycle, however the simulated exposure time has

to increase for this, which would also be true for real systems. The topic of sampling

time is briefly discussed with respect to these approaches, but should only be seen

as trends, because the final numbers always depend on the system specifications,

the maximum photon count rate and how many events per laser cycle the sampling

device can record.

As noted earlier, normal signal and image evaluation metrics tend to be inconsistent

for depth images and therefore additional metrics to the ones in (5.31) are introduced

which have been widely used in the depth estimation deep learning community e.g.

[250, 251, 252, 152, 253, 254].

This should allow a more rigorous assessment of the various algorithms considered.

The 3-pixel-accuracy metric, which returns the percentage of good pixels according

to a set of thresholds based on a relative error, this should be a good metric for depth

as it includes error scaling typical in depth imaging, where errors tend to become

larger as range increases. The absolute relative di↵erence (ARD) aims to capture

the absolute error, the root mean square error with log scale (RMSE-LS) performs

error analysis with a logarithmic scale and finally a log-scale invariant mean squared

error (MSE-LSI). All of these metrics are formerly described as

ACC3P(x, y) =

P
n

i=0(max( y
x
,
x

y
) = � < thr)

n

ARD(x, y) =
1

n

nX

i=0

abs(x� y)

RMSE� LS(x, y) =

vuut 1

n

nX

i=0

(log(x)� log(y))2

MSE� LSI(x, y) =
1

2n

nX

i=0

(log(x)� log(y) + ↵(x, y))2,

(5.40)

for � < {1.25, 1.252, 1.253}, ↵ = 1
n

P
n

i=0(log(x) � log(y))2 and with x being the

ground truth and y being the estimate as before.

Each scene was reconstructed over 5 runs for each framework and the results are

averaged across all runs. The overall performance of all algorithms is presented in

Table 5.6 for the average across all 4 scenes across all computation runs.

Of all compressive schemes CBCS4-DCT outperforms most algorithms in particular

in terms of speed but also in most cases in terms of depth map quality. It tends to

recover over 88% of pixels with a relatively low error shown with the �1 good pixel
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Table 5.6: Performance evaluation across various scenes for sparse depth frameworks,
best results are highlighted for best overall and best CS . All scenes are of size 128⇥128.
For all compressive schemes  = 0.25 and C = 0.5, while for dSparse, CdS = 1.5.

higher is better lower is better

m B PSNR RSNR SSIM �1 ARD MSE RMSE-LS MSE-LSI tpar tseq
dB dB s s

Howland [231] 8192 1 13.76 4.77 0.069 0.434 0.456 1827.367 0.937 0.284 - 946.44
BCS-SPL32 [213] 512 16 21.00 11.99 0.163 0.749 0.184 740.831 0.257 0.059 - 1.72
BCS-SPL4 [213] 8 1024 18.68 9.67 0.157 0.818 0.150 476.818 0.345 0.078 - 0.43

CBCS4-DWT 8 1024 14.00 4.99 0.088 0.661 0.311 674.637 0.569 0.149 0.00084 1.73
CBCS4-DCT 8 1024 22.20 13.19 0.433 0.881 0.090 326.922 0.219 0.033 0.00073 1.49
CBCS4-TV 8 1024 21.56 12.55 0.284 0.860 0.109 229.305 0.246 0.037 0.00943 19.32

CBCS4-TV-TVp 8 1024 23.78 14.78 0.371 0.751 0.185 404.536 0.278 0.065 1.33295 22.01
CBCS4-DCT-TVTV 8 1024 18.78 9.78 0.303 0.810 0.165 943.242 0.318 0.071 90.96944 183.36

dSparse4 24 1024 25.78 16.77 0.657 0.914 0.046 253.972 0.196 0.027 0.00017 0.35
dSparse8 96 256 23.43 14.43 0.596 0.881 0.076 563.622 0.275 0.057 0.00182 0.93
dSparse16 384 64 21.95 12.94 0.534 0.846 0.119 975.344 0.336 0.094 0.01405 1.80

accuracy and has low average error metrics. In some cases the total-variation scheme

tends to outperform the simple CBCS scheme, but at a higher computational cost.

The prior-art tend to perform overall quite poorly, although BCS-SPL4 is relatively

close in performance to CBCS and is sequentially the fastest CS framework. How-

ever, CBCS is highly parallelisable, making it a faster option.

The overall best performer is dSparse4. This is not surprising as it has the most

information available for reconstruction due to the slight oversampling scheme re-

sulting in good reconstruction quality and the fastest possible reconstruction time

due to its straightforward computation. However, this comes at the expense of

longer sampling times shown later in Figures 5.25-5.26, which means CBCS4-DCT

remains the fastest overall in terms of total frame time.

The detailed individual results for all 4 scenes are shown in Table 5.7 for the various

frameworks and discussed in more detail.

The single-pixel approach (Howland [231]) can retrieve the short range scenes to

some extent but fails for long range scenes. This is particular apparent in a selection

of depth maps shown in Figure 5.22(b,g,l,q). The key failing seems to be due to the

implicit masking assumption enforced by hard-thresholding in the wavelet domain,

which aims to reduce the problem space to few relevant surfaces. This results in

often large removals of the scene and excessive zeroing in non-smooth areas of the

scene.

This explains the poor performance in the complex short range underwater scene

with the ball bearing, as many angled objects are present. Further, not only is

the number of measurements the highest. Although this can be reduced, it would

likely reduce performance further. The processing time for the final image size in all

cases of 128⇥ 128 is 100s of seconds, in [82] smaller image sizes were considered for
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Table 5.7: Depth compressive sensing comparison using various approaches broken down
into various scenes of size 128⇥ 128. Ball bearing scene is real photon count data and the
other data is synthetic with simulated photon counts and all are sampled in CS fashion
using binary Gaussian random projection matrices with  = 0.25 at a compression rate
of C = 0.5 for all compressive approaches and CdS = 1.5, best results are highlighted for
best overall and best CS

higher is better lower is better

Scene PSNR RSNR SSIM �1 �2 �3 ARD MSE RMSE-LS MSE-LSI
dB dB

B
e
a
ri
n
g

Howland [231] 9.984 7.356 0.028 0.720 0.795 0.813 0.255 180.143 0.654 0.176
BCS-SPL32 [213] 27.092 24.464 0.176 0.994 1.000 1.000 0.045 3.417 0.026 0.000
BCS-SPL4 [213] 19.266 16.638 0.251 0.942 0.946 0.946 0.085 53.422 0.272 0.052

CBCS4-DWT 7.433 4.804 0.014 0.644 0.657 0.660 0.367 325.789 0.857 0.236
CBCS4-DCT 21.832 19.204 0.211 0.974 0.989 0.991 0.047 11.575 0.128 0.008
CBCS4-TV 14.226 11.598 0.061 0.917 0.931 0.933 0.103 66.196 0.377 0.065

CBCS4-TV-TVp 26.057 23.429 0.171 0.992 1.000 1.000 0.051 4.496 0.029 0.000
CBCS4-DCT-TVTV 16.351 13.723 0.106 0.880 0.930 0.948 0.105 41.475 0.237 0.026

dSparse4 20.461 17.832 0.147 0.965 0.983 0.986 0.053 15.767 0.158 0.012
dSparse8 19.594 16.966 0.216 0.954 0.977 0.982 0.057 19.214 0.178 0.015
dSparse16 22.195 19.566 0.339 0.977 0.989 0.992 0.041 10.566 0.121 0.007

T
a
b
le

Howland [231] 15.758 11.672 0.084 0.654 0.876 0.936 0.210 0.460 0.606 0.193
BCS-SPL32 [213] 21.124 17.038 0.300 0.859 0.986 1.000 0.113 0.132 0.066 0.002
BCS-SPL4 [213] 14.243 10.157 0.042 0.890 0.900 0.900 0.122 0.677 0.126 0.007

CBCS4-DWT 11.390 7.303 0.034 0.782 0.806 0.814 0.216 1.262 0.192 0.016
CBCS4-DCT 25.008 20.922 0.582 0.972 0.991 0.994 0.037 0.056 0.049 0.001
CBCS4-TV 26.216 22.130 0.475 0.974 0.994 0.997 0.038 0.043 0.038 0.001

CBCS4-TV-TVp 26.569 22.483 0.544 0.978 0.999 1.000 0.061 0.039 0.036 0.001
CBCS4-DCT-TVTV 23.912 19.826 0.530 0.966 0.987 0.991 0.042 0.078 0.062 0.002

dSparse4 36.427 32.341 0.948 0.998 1.000 1.000 0.010 0.004 0.011 0.000
dSparse8 34.513 30.427 0.912 0.996 1.000 1.000 0.014 0.006 0.016 0.000
dSparse16 31.339 27.252 0.858 0.989 0.998 0.999 0.022 0.013 0.027 0.000

C
it
y

Howland [231] 17.943 0.062 0.066 0.264 0.402 0.472 0.599 811.260 1.068 0.453
BCS-SPL32 [213] 20.366 2.419 0.086 0.574 0.761 0.836 0.349 464.273 0.305 0.046
BCS-SPL4 [213] 23.695 5.748 0.115 0.740 0.804 0.837 0.230 216.574 0.364 0.066

CBCS4-DWT 20.281 2.334 0.083 0.577 0.635 0.664 0.433 484.632 0.567 0.138
CBCS4-DCT 22.658 4.711 0.389 0.775 0.850 0.886 0.217 276.210 0.300 0.045
CBCS4-TV 24.750 6.803 0.266 0.776 0.865 0.904 0.205 169.403 0.240 0.028

CBCS4-TV-TVp 24.507 6.561 0.374 0.333 0.632 0.803 0.492 178.990 0.311 0.035
CBCS4-DCT-TVTV 19.681 1.734 0.236 0.670 0.782 0.834 0.390 555.765 0.357 0.064

dSparse4 26.315 8.368 0.753 0.861 0.912 0.933 0.098 118.072 0.231 0.026
dSparse8 23.260 5.313 0.646 0.789 0.855 0.885 0.170 238.935 0.343 0.059
dSparse16 20.145 2.198 0.538 0.698 0.773 0.808 0.282 488.565 0.460 0.103

B
-R

o
a
d

Howland [231] 11.366 0.005 0.100 0.096 0.102 0.105 0.759 6317.606 1.422 0.315
BCS-SPL32 [213] 15.400 4.037 0.091 0.569 0.728 0.762 0.228 2495.500 0.629 0.187
BCS-SPL4 [213] 17.520 6.156 0.220 0.698 0.718 0.726 0.163 1636.599 0.619 0.188

CBCS4-DWT 16.892 5.528 0.220 0.640 0.669 0.682 0.228 1886.865 0.661 0.208
CBCS4-DCT 19.288 7.924 0.550 0.804 0.828 0.836 0.062 1019.846 0.398 0.077
CBCS4-TV 21.038 9.674 0.333 0.774 0.814 0.829 0.089 681.578 0.328 0.052

CBCS4-TV-TVp 17.995 6.631 0.394 0.702 0.804 0.835 0.137 1434.618 0.734 0.222
CBCS4-DCT-TVTV 15.183 3.819 0.341 0.725 0.790 0.812 0.121 3175.652 0.617 0.192

dSparse4 19.920 8.556 0.782 0.830 0.842 0.847 0.024 882.045 0.384 0.072
dSparse8 16.371 5.007 0.607 0.785 0.810 0.820 0.064 1996.334 0.564 0.156
dSparse16 14.114 2.751 0.400 0.718 0.765 0.784 0.131 3402.231 0.737 0.266

this framework but still requiring several 10s of seconds to reconstruct depth from

compressive measurements. This makes it unsuitable to perform reconstruction in

real-time even if reconstruction quality would be better.

Next, the state-of-the art in blocked compressive sensing (BCS-SPL) with the op-

timal sizing described in [129, 213] with a block size of NB = 32 completely fails

for the problem at hand despite the metrics indicating otherwise, the visual results

show dramatic blocking e↵ects where all detail is lost Figure 5.22(c,h,m,r). This

could be due to the division of the two proxy results, or the change in projection
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(h) BCS-SPL32 [213]
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(i) BCS-SPL4 [213]
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Figure 5.22: Depth compressive sensing comparison for compressive depth recovery
schemes

matrix from dense random projections to sparse random binary patterns and the

application to photon count data, but it should be noted that we see dramatic speed

improvements from the single-pixel approach to about 1.7 s per depth recovery.

With the smaller block size of NB = 4, the approach performs much better than

before but still produces dramatic block artefacts Figure 5.22(d,i,n,s), which may

appear constant, but vary with every computation and are not basis related. Further,

each tile is still only a mean value i.e. lacks detail. In terms of processing speed it

is the fastest sequential compressive approach at around 0.5 s. And despite having

a per block stage, which could be parallelised, it is interlaced with full frame steps

which can not be readily parallelised to the same extent as the presented CBCS and

dSparse frameworks.

For CBCS the best results are obtained using the DCT basis transform, it outper-

forms both DWT and TV transforms in terms of quality and processing speed in

most cases. The sequential times are about 1� 2 s but this approach can be readily

parallelised and the slowest block reconstruction is always faster than 1ms making it
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extremely fast with theoretical processing rates of up to 1 kHz. Running the recon-

struction without any optimization and paging through the blocks on a GPU results

in real frame rates of > 5Hz, which demonstrates the bottleneck introduced by the

large number of blocks for a single processing device approach due to communication

overhead.

To exploit the full potential, a specialised processing pipeline is required, which is

proposed in Section 5.5.3. The visual quality is also the best out of all compressive

schemes Figure 5.22(e,j,o,t).

The other basis functions for CBCS perform better than the single-pixel approach

and BCS-SPL in most cases, although it should be noted that DWT performs quite

poorly overall in these particular operating conditions, despite its ability to perform

well in many other CS applications. As already discussed CBCS has scope to eas-

ily substitute the basis transform in the reconstruction, applied to the same raw

measurements.

CBCS-TV in terms of quality metrics performs slightly worse than CBCS-DCT as

expected from the sparsity analysis, as TV should generally favour a lower compres-

sion rate closer to 1 (see Figure 5.15) for this block size. Upon visual inspection in

Figure 5.23, TV actually produces overall good reconstructions with less blocking

artefacts at large step edges.

The CBCS-DWT results demonstrate that an inappropriate basis for the block size

results in major blocking artefacts similar to results from BCS-SPL4. CBCS-DCT

is also not free of blocking artefacts, but they are very minimal overall and mostly

present at step edges.

In the longer range scenes, some ringing e↵ects can be observed where a lot of depth

variation is present in a single block e.g in Figure 5.23(o). This was expected and the

reason why TV extension were proposed, in equations (5.37) and (5.38) respectively,

to take advantage of TV minimisation globally, which should increase smoothness

in the final reconstruction result.

In particular the CBCS-TV-TVp approach practically eliminates all blocking arte-

facts but does so by aggressively averaging sections of images, resulting in loss of

detail as shown in Figure 5.24. It also increases increases processing times, as the

full-scale update step is quite expensive. In terms of total sequential time it only

adds about 1 s but the minimum parallel execution time increases from a few ms to

one second. A more e�cient TV minimization algorithm may be able to reduce the

time penalty.
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(f) CBCS4-DWT

20 40 60 80 100 120

20

40

60

80

100

120

0

0.5

1

1.5

2

2.5

3

3.5

4

Distance, m

(g) CBCS4-DCT
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(h) CBCS4-TV
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Figure 5.23: Comparison of CBCS approaches with di↵erent basis transforms across the
considered scenes.

The TVTV approach presented in [246] using the all information available from

block sampling using the block diagonal formulation of the sensing matrix and the

measurement vector ensemble as with most other BCS approaches, shows promising

results. It seems to improve some parts of the recovery for example the top leaf

in Figure 5.24(e) but introduces new artefacts in other cases. It shows potential

but even if the results can be dramatically improved it is unsuitable for real-time

reconstructions.

All the above approaches are compressive approaches, but since the block size has

become very small, the problem size becomes suitable to be oversampled without a

severe sampling time penalty illustrated in Figure 5.25. The exposure time is set to

200µs, i.e 100 laser pulses imaging up to 300m.
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(h) CBCS4-TV-TVp
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Figure 5.24: Comparison of CBCS TV extensions. CBCS-TV-TVp approach using
CBCS-TV as a starting point and a cumulative measurement vector and global pattern
to reconstruct a full scale problem using TV regularisation overall reduces block artefacts
but averages out detail in the scene. Meanwhile the block diagonal approach and a CBCS-
DCT prior in a TVTV approach seems to improve some areas of reconstruction while also
introducing new errors and artefacts.

The bar chart in Figure 5.25 highlights that for NB = 4 and NB = 8 the total

sample time is lower for an equivalent line scan for a 128 ⇥ 128 pixel LiDAR. It is

also obvious that for any larger block-sizes this trade-o↵ does not necessarily make

sense, as sampling times increase dramatically for NB > 8 for C = 1.5 in this case.

Both dSparse and CBCS benefit from a constant sampling time as the number of

LIDAR pixels increases, which can not be said for normal line scanning systems,

which scales linearly.
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Figure 5.25: Sample time comparison between compressive schemes and linear line scans.
For ⌘P = 1 pattern exposure cycles and nP = 100 laser pulses per line and pattern
exposure. Both dSparse and CBCS schemes remain constant for chosen block size, while
the line scan approach scales up as image size increases.

All considered examples use histogram sizes of p > 1000, which is in the long range

cases p = 7500. For this case the total compression (see equation 5.19) for the

n = 4⇥4 with m = 8 block cases is CCBCS = 0.0637 and for the discrete least square

approach with m = 24 is CCBCS = 0.0661. This demonstrates a key advantage of

this and other spatial compressive depth approaches, as it allows to reduce memory

requirements significantly, while the approach presented in this work also increases

the depth reconstruction performance compared to other compressive frameworks.

To illustrate this further, a quality metric is compared to the total frame time for

all considered approaches and is presented in Figure 5.26. It is clear from this

comparison, that this work’s contributions outperform prior art both in quality and

speed.
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Figure 5.26: Quality (SSIM) and frame time comparison for compressive depth recon-
struction. The frame time is sample time and total processing time combined. For CBCS
and dSparse processing is assumed to be parallel.
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This figure shows the potential for frame rates well above 200 Hz for CBCS4-DCT

and above 100 Hz for dSparse4, while outperforming all prior approaches in depth

reconstruction quality.

The results for dSparse with C = 1.5 and the various block sizes shown in Figure 5.27

are very good and also have by far the fastest reconstruction times at about 0.2 ms

and even a fast sequential processing times of only 0.35 s for NB = 4. The recon-

struction quality is overall excellent, but blocking artefacts become more apparent

as block-size increases and reconstructions become more noisy. With a 4⇥ 4 block-

ing scheme reconstruction is almost ideal with very little blocking other than the

extreme step edges in the B-Road scene from tree foliage to 0m (sky).
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Figure 5.27: Depth sparse random sensing using a discrete pseudo-inverse dSparse per-
forms extremely well for NB = 4, while as block size increases blocking artefacts and noise
appears.

dSparse is clearly a very practical approach to reduce illumination density and sam-

pling time in a very e�cient fashion but at the cost of additional sampling time.

There are benefits to this, which may not be directly obvious. However, if the same

sparse random illumination was to be used to sample the entire scene pixel by pixel,
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the cost of memory and processing of individual histograms for each pixel would be

still dramatically higher than for the sparse reconstruction approaches presented in

this chapter.

Further, CBCS and dSparse can sample the scene more rapidly, which in turn can

allow for longer exposure times if required e.g. in high noise scenarios or in general

improve SNR, with the compressive scheme allowing for the longest exposure times.

It further means that the entirety of the scene is sampled only marginally slower than

a flash illumination. Meanwhile line-scans as resolution increases could introduce

dramatic motion artefacts due to the rolling shutter type imaging issues in this case.

In terms of noise, the framework can maintain su�cient reconstruction quality for

up to 50 klux with modest increases in exposure time illustrated in Figure 5.28.
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Figure 5.28: Noise comparison of sparse block depth sensing schemes. A single exposure
pattern exposure ⌘P is equivalent to a pattern sequence sample time of 1.6 ms. Values in
brackets after illuminance indicate mean ambient photon count per bin.

For longer exposures the reconstruction quality is likely to increase. Further the

noise compensation scheme could be improved or even replaced with a peak finding

algorithm such as LiDARNet in Chapter 4 to only process surface locations asso-

ciated with a projection pattern. Regardless, the framework can deal with noise,

as long as exposure and/or laser power is su�ciently adjusted, which is a common

compromise for LiDAR systems.

The results in Table 5.6 show that the proposed frameworks can theoretically reach

extremely high processing rates of > 1 kHz and certainly camera compatible frame

rates of > 30Hz with long exposure times enabling robust performance even with

high ambient photon counts from the sun or indeed other LiDAR systems. The

framework works well in all presented scenarios, without any obvious degradation

even at extremely long ranges. The reduction in quality metrics is often due to the

range error scaling as range increases. However, due to the extreme parallelism it is

not straightforward to exploit this approach to the full potential without some ded-

icated hardware as standard multi-core CPU systems require a lot communication
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to schedule and gather all blocks.

5.5.3 Scalable Imaging Arrays

The compressive and sparse sampling and processing methodology proposed in this

Chapter enables a plethora of parallelism exploitations, which in turn can enable

extremely fast frame times. However, to fully take advantage of the parallelism,

ideally the sampling and processing scheme is accompanied with dedicated hardware

to facilitate the parallelism. As each block is treated independently in normal CBCS

(without any TV extensions), no communication between blocks is required for

processing. This makes the framework suitable to integrate logic into a single block

and scale up to large imaging arrays. An integration proposal for such a detector

block is shown in Figure 5.29.

X̂D S S

yIyQ
TDC-

Sparse Scale Block

Top

Bottom

Controller

Figure 5.29: An integrated Sparse Scale Block, performing structured sensing with sam-
pling logic as well as sparse reconstruction integrated into an independent block device.
Top layer consists of programmable photon detectors, controlled by the bottom layer,
which contains all necessary components to perform depth reconstruction by sparse re-
construction, S (CBCS or dSparse).

Here, the detector block device is made up of two stackable layers. The top layer

is a photon sensitive detector array or in its simplest form a single photon sensitive

pixel. The bottom layer houses the sampling logic and pattern control, which can

both address the pixel array and the emitter array as shown in Figure 5.30. Each

block has storage vectors for both proxy quantities and dedicated logic to solve

the sparse reconstruction for either, which then forms the block solution for depth.

This is further aided by the extremely small problem size, which keeps memory

requirements and bandwidth to a minimum.

It is assumed that it is possible to fit this logic under the detector block size. This

means that high resolution arrays can be realised by distributing multiple blocks

with an associated emitter device capable of structured illumination. The sizing

and resource logistics are to be further investigated in Chapter 6.
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Sparse
Scale
Array

Timing

Laser
Array

X̂D
Gather

Figure 5.30: Scalable Sparse Depth Imaging Array using integrated Sparse Scale Blocks
with integrated sampling and reconstruction logic to exploit the parallelism enabled by
the methodology outlined in this work. Illustrated is a small 2⇥ 2 Sparse Scale array, but
the architecture can scale readily to many more Sparse Scale blocks for higher resolutions.

Such a system could provide an e�cient way for large scale high resolution imagers

exploiting the parallelism enabled by the proposed framework. Further, because the

sampling rate and processing times are block defined, the final image resolution have

little e↵ect on frame time.

5.6 Summary and conclusions

This chapter has introduced the concepts of compressive sensing (CS) and its appli-

cations to depth sensing exploiting sparsity in time and space. While the key advan-

tage of CS is the reduction in sampling bandwidth and more compact measurement

storage, it does so by increasing the processing cost. As resolution increases, this

processing cost is prohibitive to real-time applications such as autonomous driving,

where fast scene mapping, object recognition and decision making are required. The

concept of blocking schemes for CS was introduced which reduce the computational

burden and memory cost of structured illumination and reconstruction. However,

these schemes employ full-scale steps in their reconstruction to reduce block arte-

facts, limiting scope for parallelism dramatically. The depth CS approaches in the
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past have heavily relied on scene constraints to reduce the problem complexity,

which limits their use to short range and simple scenes. In particular the direct

exploitation of time or depth sparsity often results in a large problem formulation

with very large problem spaces, as processing is performed on each time slice. The

exploitation of spatial sparsity for depth is by contrast more e�cient but required

major constraints on the number of retrievable surfaces in the scene.

By addressing the above issues, this thesis makes the following contributions:

• A signal formulation for small scale compressive depth reconstruction

• An independent blocked compressive depth recovery framework for high-resolution

and long range LiDAR applications at high frame rates and

• A system architecture proposal to exploit independent blocks for high-resolution

sparse LiDAR systems.

More specifically, the small block size enables the assumption of few surfaces for a

single block problem, while not adversely a↵ecting the reconstruction of large scale

depth scenes with multiple blocks. As each block is independent, it can also be

processed independently and uses two proxy quantities, the depth sum and photon

count for a given projection pattern, which can also be reconstructed in parallel.

This makes it possible to reconstruct depth in a compressive fashion in a matter of

milliseconds. The reconstruction quality of this methodology performs well using

the discrete cosine transform (DCT) for a sparse representation, but is also modular

in the sense that other basis transforms can be readily used if more suitable for the

application. While this approach in theory can provide e�cient and extremely fast

sampling and reconstruction times, it is not necessarily straightforward to implement

such massive parallelism with o↵-the-shelf components and multi-core systems. A

system architecture to address this, was also presented to showcase an e�cient way

to enable fast and e�cient high resolution 3D LiDAR solid-state imaging using

independent block imagers with integrated logic further explored in Chapter 6.

Due to the small problem size within each block, the sample time is dramatically

reduced in comparison to linear scans, and also versus other proposed compressive

schemes. This may allow the system to operate in a slight oversampling mode, which

in turn solves the inverse problem with a discrete least square approximation step.

This framework using sparse random reconstruction, dSparse, further showcases an

extremely fast and e�cient mode of this framework but at the cost of more pattern

exposures. However, the quality of reconstruction generally improves markedly,

making this trade-o↵ a worthwhile consideration.
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This work demonstrates a proof-of-concept for ultra-fast 3D imaging at high resolu-

tion suitable for autonomous driving and other complex tasks. Good performance

was demonstrated for high precision in both short range and long range scenarios.

Although the current operational parameters yield good results, the question of op-

timal projection patterns is an open question in the CS field and could also enhance

the performance of this framework. In particular a structured projected pattern may

be designed by means of machine learning taking randomness into consideration but

introducing some structure to aid reconstruction. This direction is certainly worthy

of future investigations. Another key component of CS work is the chosen basis func-

tion. Since the framework allows for linear transforms to be plug-and-play, a more

detailed investigation into the optimal basis function for small scale blocks might

yield improved performance. Finally, the system design provides many opportuni-

ties for future work, both in terms of logic reduction, which is investigated in the

next chapter, as well as dedicated sampling and processing logic, which would have

implications on sample times, e.g. if the TDC can capture more events in a single

exposure with a high-dynamic range and dedicated application specific integrated

circuits (ASIC) to enable the small package proposed in this work.
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Chapter 6

Small Footprint Sparse Sensing

Logic

6.1 Introduction

The sparse depth imaging approach presented in Chapter 5 requires a parallel hard-

ware implementation to take full advantage of the proposed architecture. It has

been demonstrated that independent blocks can recover a scene, which suggests

that the processing can also be done on a per block basis. This mitigates the over-

head introduced by parallel computing such as task scheduling, data distribution

and gathering of results.

However, thus far all computations and simulations have been performed on power-

ful general compute hardware in high-level processing languages, which often hide

complexity and memory bottlenecks due to the abundance of resources. In this par-

ticular case, the main constraints are physical size and power. The size is limited by

the detector array size for a particular imaging block, as the proposed system-on-a-

chip (SoC) solution is a two-layered stacked approach, while power should always be

kept to a minimum for e�ciency and in this case to further prevent thermal e↵ects,

which can cause false photon events and decrease the signal-to-noise ratio (SNR)

[255].

There are many more resource constrained applications in particular for battery pow-

ered systems such as drones, electric cars and mobile phones. This calls for strate-

gies to optimise a processing pipeline. One branch of these strategies is approximate

computing (AC) [256, 257, 258]. One added benefit to approximations is that they

can also speed up overall processing, since algorithm approximations may allow

fewer processing steps and smaller numerical representations reduce read and write
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operations, further improving e�ciency of the overall system.

This chapter introduces a common approximate computing technique being preci-

sion scaling alongside a brief overview of other branches of the field. This technique

is applied to the sparse depth recovery problem presented in Chapter 5 for two

configurations: The compressive sensing case with an un-rolled version of the opti-

misation algorithm alternating direction method of multipliers (ADMM) [237]) and

the discrete sparse depth recovery using a discrete least square solution, dSparse.

This work expands upon the initial findings presented in [239], where a resource and

power analysis was performed in the context of reconstruction quality, where the

field-programmable gate array (FPGA) synthesis was performed by a collaborator,

who also provided a custom data type library for C. Although, the initial findings

demonstrated that `ADMM and dSparse can tolerate precision scaling with minimal

quality loss, it lacked a detailed analysis of the respective precision boundaries.

This thesis therefore provides a formal analysis of expected minimum precision in

the context of quality degradation alongside a thorough analysis of breaking points

for both approaches when precision scaling is applied. Further, extended resource

requirements from [239] are translated into estimates for application specific inte-

grated circuit (ASIC) logic core implementation size with comparisons to real single

photon avalanche detector (SPAD) array sizes appropriate for the imaging block for

a full block system implementation, finding that the considered sparse depth frame-

works’ complexity are appropriate for SoC systems constrained by the detector array

size.

6.2 Approximate Computing

The demand for ever more capable computing systems is growing, initially supported

by a density increase of transistors driven by decreasing manufacturing nodes as

small as 5 nm [259]. Unfortunately, transistor sizes can only shrink so much, at least

for silicon semi-conductors, due to physical limits [260, 261, 262]. To enable future

advancements of computing systems when this limit is reached, other techniques

have to be employed to increase functional density by minimising the complexity of

circuits, rather than relying on the continued miniaturisation of transistors.

To address the above issues a new paradigm has emerged, approximate computing

(AC), which utilises approximations across algorithms and circuits to reduce the

number of transistors for arithmetic operations and by finding the smallest possible

numerical representations, the memory required to store information can also be

significantly reduced.
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A notable approximation technique is loop perforation, which aims to streamline

aspects of a particular iteration of a loop or altogether jump ahead in the itera-

tion flow. This can aid execution times and decreases the number of operations at

runtime and thus reduces power consumption [263, 258, 264, 265].

Many applications have a well defined precision for their inputs and outputs, which

are often lower than the standard number precision found in general purpose comput-

ing; the double precision floating point precision popularised by the widespread use

of 64 bit processing architectures for general compute hardware in recent years. The

reduction of bit width means that fewer bit operations are required, this reduces the

size of shift registers, arithmetic units, memory and many if not all connected compo-

nents. This approximation technique is called precision scaling and has been demon-

strated successfully for a wide range of applications [266, 267, 268, 264, 269, 258].

Memory in particular is usually a costly component in image and signal processing

and could further benefit from optimised memory allocation techniques [270] if pre-

cision scaling is not su�cient to reduce the overall logic core size or memoization

techniques which enable e�cient usage of recurrent data [271, 272]. Approximate

computing is a very active area of research [273, 265, 274, 275] with many more

branches and techniques under investigation, however, this work only considers pre-

cision scaling in the first instance to assess potential savings and performance when

approximations are made. If the analysis carried out in this work would not achieve

a su�cient size reduction, additional targeted approximations could be made for

example in the form of inexact hardware e.g. [276, 277].

Addressing the applications considered in this work, solid-state time-of-flight (ToF)

imaging is resource constrained in two ways in the context of an integrated stacked

processing solution. First, the size of the detector array limits the size of the logic

to be the same size or less. Second, photon detector arrays are sensitive to thermal

energy and SPAD detectors can trigger if subjected to excess heat and can cause

false photon counts [255]. It is therefore advantageous to reduce power consumption

by improving the e�ciency of any logic placed underneath a photon counting device.

It was shown in [239] that resources can be significantly reduced for the proposed

system resulting in power draw reductions of above 70% versus full double floating

point precision.

This chapter is primarily concerned with fitting a moderately complex optimisation

framework and a discrete approximate method in the same space occupied by a

single photon detector array. Precision scaling is applied to the processing method-

ologies proposed in Chapter 5 to assesses the feasibility of small scale sparse imaging
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blocks. The initial findings presented in [239] are expanded upon and a more de-

tailed analysis of the experiment is provided. Additionally, a case study is presented

to determine if the proposed architecture can fit under a modern SPAD array [58]

using the aforementioned precision scaling techniques.

6.2.1 Reduced Precision

The goal of reducing precision is to find the smallest possible bit width configuration

for a given numerical data type to improve power and resource e�ciency with a

specific application in mind. The concept of precision scaling generally involves the

reduction of bit width required to represent any value throughout processing stacks

without any loss to final precision or with loss up to an acceptable level. For image

reconstruction a SNR of above 30 dB is often considered of good enough [258] and

any marginal gains in quality might incur a disproportional increase in resources.

This work will consider precision scaling for two common number formats, the float-

ing point [278] using the FloatX library [279] and the fixed point format [280], with

illustrations of both provided in Figure 6.1.

(a) Floating Point (FP) [278]

(b) Fixed Point (FXP)

Figure 6.1: Illustration of floating and fixed point number formats.

Many digital signal processing (DSP) applications use floating point (FP) represen-

tations as it o↵ers more flexibility due to the floating nature of the decimal point

and, if properly optimised, the operational complexity can be reduced significantly

by reducing shift operations [266, 268]. It is straightforward to switch between large

numbers with low precision and small numbers with high precision i.e. to allow for

more significant figures. The principal structure is illustrated above in Figure 6.1(a).

The main component in the decimal representation is called the Mantissa, which

is an integer number. To obtain the significant figures, this is accompanied with

an exponent, which shifts the decimal point according to the exponent value. The

bits required to encode this form the Exponent. For the Mantissa the bits form the
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Signficand [278]. The total bit width of a floating point number is

bFP = log2(2
Sign
⇥ 2Exponent ⇥ 2Mantissa). (6.1)

The fixed point (FXP) number representation has an implied stationary decimal

point with two separate integer values encoding the Integer part of the number and

another integer for the significant figures or the Fraction. This is useful when the

value range and total precision is known a priori and remains constant [258]. The

total bit width for a fixed point number is

bFXP = log2(2
Sign
⇥ 2Integer ⇥ 2Fraction). (6.2)

By minimising the bit width for either representation, several components, in par-

ticular memory, will reduce in size, arithmetic becomes less expensive as bit width

decreases and thus allows for more compact and faster logic designs. This work

provides a theoretical estimate based on system specifications. These are compared

to an empirical study of precision breaking points with respect to depth reconstruc-

tion quality. Further, e�ciencies a↵orded by approximations made to the iterative

algorithm used to solve the compressive inverse problem are quantified.

6.3 Algorithm Hardware Optimisations

The majority of the work carried out in this work thus far was performed in software

packages for advanced arithmetic such as Matlab and Python with feature-rich li-

braries. They are ideal for fast prototyping of many complex tasks, as they allow for

a plethora of complex arithmetic operations to be performed in a few lines of code

on general purpose computer hardware. However, those few lines of code can often

hide a large number of sub-routines performing various tasks which, when rolled out,

can turn seemingly a simple operation into a costly task on embedded hardware,

where memory and compute capabilities are very limited.

In order to make the presented algorithms for the proposed sparse depth reconstruc-

tion system architecture compatible with embedded systems to assess its feasibility

as an ASIC component in the form of a SoC, the optimiser used in the relevant

chapter has been rolled out and simplified to only allow for vector and matrix arith-

metic without any nested sub-routines. This allows the algorithm to be readily

implemented in C/C++, which can then be converted to a hardware description

language (HDL) to assess its complexity on a FPGA platform.

145



6.3. Algorithm Hardware Optimisations

6.3.1 Lean ADMM

The compressive sensing reconstructions considered in this work take the normal

basis pursuit de-noising (BPDN) form and can be solved using many available op-

timisation algorithms for this popular problem type. After careful consideration

in Chapter 5, ADMM was chosen as the main algorithm and its processing flow is

shown in Algorithm 7 for a standard `2`1 minimisation.

Algorithm 7 General ADMM least absolute shrinkage and selection operator
(lasso) [237] suitable for BPDN

minimise
1
2ky �Axk22) + �kzk1)

subject to Fx� z  t
Iterate :

1: xk+1 = (ATA+ ⇢FTF )�1(AT y + ⇢FT (zk � uk))
2: zk+1 = S�/⇢(Fxk+1 + uk)
3: uk+1 = uk + Fxk+1

� zk+1

Here, z 2 Rn is the basis representation of x 2 Rn with a linear transform F and

u 2 Rn are the intermediate solutions, while A is the sensing matrix in a compressive

sensing (CS) problem and y the corresponding measurement vector. To enforce spar-

sity a soft-threshold operation S is used [281]. Parameters playing a critical role are

the tuning parameters � and ⇢. � in particular, setting the threshold for significant

components in the sparse signal, is often derived from a set of measurements, while

⇢ is a constant tuning parameter scaling value changes per iteration. They interact

to determine the sparsity threshold and thus play a major role in the final perfor-

mance and convergence of the algorithm. The algorithm formulation suggests as

many iterations, k, to satisfy the inequality with a set threshold, t.

Although the above algorithm formulation can be readily implemented in high-level

software packages such as Matlab, many operations, in particular computing x
k+1,

are challenging to perform on embedded systems from first principles and would

require often costly additional packages such as Eigen [282] or custom libraries to

perform matrix inversion and other advanced matrix arithmetic. While performing

such operations at runtime can be useful for general purpose approaches, particu-

lar application specific considerations can provide meaningful simplifications of the

algorithm.

Such complications are identified for ADMM in the context of checkerboard com-

pressive sensing (CBCS). To further reduce arithmetic complexity, parameters are

identified which can be readily pre-computed as they remain constant throughout

the operation.
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The simplifications made to the algorithm were first presented in [239] and the re-

sulting algorithm variant was called `ADMM (short for lean ADMM) as shown in

Algorithm 8. In this section, the considerations made to arrive at this more e�cient

optimiser will be expanded upon. The changes were made to the Matlab imple-

mentation of ADMM [237]. The resultant algorithm was then ported to C/C++

for FPGA synthesis as presented in [239], while the custom data formats were in-

tegrated collaboratively for [239]. The base Matlab implementation uses a more

e�cient LU-decomposition to replace the matrix inversion in Algorithm 7, but for

embedded systems even a LU-decomposition can be considered expensive. Luckily,

the majority of complex arithmetic operations are based around the sensing matrix,

A 2 Rm⇥n for an individual sparse imaging block, which is constant throughout

the operation of a sparse depth imaging system as described in Chapter 5 for a

pre-computed pattern sequence.

Algorithm 8 `eanADMM lasso for m < n [239]

Input: A,AT y, L�1, U�1, y,�
Output: x

Initialization : const{↵, ⇢, = �/⇢}, zeros{z, q, u}
1: for k = 0 to kmax do

2: qk+1 = AT y + ⇢(zk � uk)
3: xk+1 = qk+1/⇢� 1/⇢2 ⇤AT (U�1(L�1(Aqk+1)))
4: x̂k+1 = ↵xk+1 + (1� ↵)zk

5: xuk+1 = x̂k+1 + uk

6: zk+1
1 = max{0, xuk+1

� }; zk+1
2 = max{0,�xuk+1

� }
7: zk+1 = zk+1

1 � zk+1
2

8: uk+1 = uk + (x̂k+1
� zk+1)

9: end for

10: x = zkmax

11: return x

There are a few components which can be pre-computed as they remain constant

throughout the iterations. To determine the threshold to enforce a sparse solution,

a scaling parameter ⌧ is used to determine the threshold parameter �. For the

proposed measurement methodology in CBCS one can readily estimate ⌧ from one

of the measurement quantities such that ⌧ = ⌫

max(yI)
, where ⌫ is a scaling parameter,

which can be applied to both the reconstruction of xI and xQ alike. The threshold

parameter is unique to either problem and is computed as �I = ⌧max(|AyI |) and

�Q = ⌧max(|AyQ|) respectively. The AT
y 2 Rn term is assumed to be pre-computed

after each measurement cycle alongside the respective � parameter. The auxiliary

matrices {L,U} 2 Rm⇥m are constant matrices linked to A and thus can all be

stored e�ciently in read-only memory. The original implementation calls for a left

matrix division, which in this work is simplified to normal matrix multiplications by

pre-computing L
�1 and U

�1. The sensing matrix contains both the projection and

147



6.4. Precision Scaling E↵ects

the linear transform i.e. A = �✓ as presented in Chapter 5.

Additionally, through empirical evaluation, values for the regularisation parame-

ters ↵, ⇢ were determined alongside an appropriate number of iterations. For the

considered 4 ⇥ 4 imaging block and set of experiments, this was hand-tuned to be

k = 5, ⌫ = 200, ↵ = 1.7 and ⇢ = 1.1 for double precision floating point reconstruc-

tion quality. All simplifications above make it possible to implement the algorithm

in a discrete fashion with constant execution times only involving simple matrix

arithmetic, which can be readily implemented on embedded hardware. Next, an

investigation is presented which analyses the e↵ects of precision scaling on above

algorithm as well as dSparse with respect to depth reconstruction quality and total

transistor count derived from logic primitives utilised in FPGA synthesis.

6.4 Precision Scaling E↵ects

Conceptually, a discrete algorithm will occupy a fixed amount of space if imple-

mented as an ASIC. However, translating an algorithm from a high-end language

to a transistor count and ultimately physical space is not a trivial task. This section

explores resource utilisation of `ADMM and dSparse using a prototyping platform

in form of the Xilinx FPGA UltraScale+ ZCU106 [283]. By converting C/C++ code

into HDL, logic can be synthesised for use on a target FPGA platform. Synthesis

is the process of converting principal operations to be executed in algorithms to

logic primitives which are then replicated in the FPGA structure by matching the

available logic primitives available. The full FPGA synthesis reports from [239] were

provided for this work by a collaborator alongside an arithmetic library for the two

data formats considered. This chapter expands upon the initial findings and further

provides an estimation of real term transistor usage in terms of approximate NAND

gate logic cost for the logic primitives used on the FPGA platform. The transistor

count should allow to find a general idea of the size of an ASIC implementation of

said logic. The areas for all logic configurations are compared against SPAD array

imager sizes in Section 6.5.2. An overview of the used logic primitives is provided

in Table 6.1.

Using the documentation for the UltraScale architecture of the test platform [284,

285, 286], transistor counts were estimated from the specifications of each logic

component. Look-up tables (LUT) provide basic routing and arithmetic operations

using carry logic and multiplexing to facilitate summing arithmetic. It is assumed

that a look-up table acts as a routing device where each input bit is connected to

all output bits and thus its total bit count is b2.
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Table 6.1: A full list of FPGA logic primitives utilised in the synthesis for the experiments
in [239]. This work provides NAND gate count estimates for the utilised logic building
blocks based on information in the FPGA documentation [284, 285, 286].

Type Bit Width NAND Gates

L
o
g
ic

LUT1 Look-up table 1 1
LUT2 Look-up table 2 4
LUT3 Look-up table 3 9
LUT4 Look-up table 4 16
LUT5 Look-up table 5 25
LUT6 Look-up table 6 36

DSP48 Arithmetic Unit 48 2304
MUX7 Multiplexer 13 26
MUX8 Multiplexer 24 40

CARRY8 Carry logic 8 8

M
em

or
y

FFD Flip-Flop 1 6
FFS Flip-Flop 1 6

BRAM18 Block RAM 18000 18000
BRAM36 Block RAM 36000 36000
SR16 Shift Register 16 16
SR32 Shift Register 32 32

RAMD32 Memory 32 32
RAMS32 Memory 32 32

The multiplexers (MUX) are estimated based on their input and output bit widths,

for example a MUX7 has two 6 bit inputs and combines them to a single 13 bit output

with an additional carry bit, this results in a total of 26 bits, which is assumed to

simplistically translate to the same number of NAND gates.

The logic primitive with the highest complexity is the DSP slice, providing a 48

bit output. This is a complex component with various arithmetic functionality.

Here it is assumed that it performs the most expensive arithmetic operation being

multiplication for a 48 bit number assuming O(b2) operations , resulting in a total

of 2304 NAND gates.

Finally, and probably most intuitively, are memory components which in the case

of shift registers, random access memory (RAM) and simple memory registers are

assumed to have the same number of NAND gates as the number of bits they store.

In the case of a flip-flop (in synchronous (FFS) and asynchronous (FFD) configura-

tions) the total complexity for a single bit input is 6 NAND gates to facilitate the

storage of two bit states in a stable fashion.

These are simplistic assumptions about the total NAND gate count and can there-

fore only provide a rough approximation to real logic size when implemented as an

ASIC. Due to the nature of FPGA prototyping there is plenty of overhead versus a

application specific implementation due to its configurable nature. Similarly, some of

the complex logic primitives provided in a prototype platform, may be more expen-

sive to implement in an ASIC while other savings and optimisations can be made
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for the particular application. However, the NAND gate count estimates should

provide a good idea of feasibility and can indicate if the logic complexity is close

to fit within constraints of a sensor area, is simply too complex and would require

further approximations and optimisations or is outright impossible to be matched

to a typical detector array.

To assess the impact of precision scaling on depth reconstruction quality using the

presented sparse reconstruction approaches, three scenes are considered as shown in

Figure 6.2. The selection comprises real photon count data in the Bearing scene and

two scenes with simulated photon counts from synthetic data using the simulation

tools presented in Chapter 3.
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Figure 6.2: Three di↵erent scenes - short (a), medium (b) and long range (c) for precision
scaling e↵ects on sparse depth reconstruction using CBCS.

The initial results presented [239] focused mainly on resource use and power draw

with empirically found bit widths around an arbitrary breaking point, this work

will try to elaborate upon these initial results by providing a more structured ap-

proach to finding the respective breaking points for a generic light detection and

ranging (LiDAR) system with known specifications and with specific applications

in mind, represented by the three scenes; ultra short range millimetre resolution

(Figure 6.2(a), short range centimetre resolution 6.2(b) and long range centimetre

resolution 6.2(c).

To find the minimum precision required for `ADMM and dSparse for the considered

application types, several specifications should be considered as outlined in Table 6.2

for a 4 ⇥ 4 Sparse Scale Block (Figure 5.29). The primary goal is to estimate

the largest possible value for both the integer part and fractional part to find the

minimum bit width required to encapsulate all intermediate results without loss

in precision. If some loss in precision is acceptable, the bit width can be reduced

further. However, this work considers a lossy compressive imaging scheme and

therefore the aim is to reduce precision before further losses occur.
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Table 6.2: Properties a↵ecting precision limits for `ADMM and dSparse.

Property Variable System

Block length n 16
Max photon count per sample cP 16

Sample steps ⌘P 3

Scenes

Floating Table B-Road

Max range rmax 45 cm 10 m 300 m
Depth resolution rmin 0.01 cm 0.01 m 0.04 m

Bins nbin 4500 1000 7500
Largest photon count (YI)max ⇠ 4000 Eq.(6.3) Eq.(6.3)

Largest value (YQ)max ⇠ 12000 Eq.(6.4) Eq.(6.4)

`ADMM dSparse

Measurements m 8 48
Iterations k 5 1

Multiplications p 10k 2nm

Decimal exponent e log10(
200

(YI )max
)� 1 log10(

1
p

1
rminnbin

)

Fraction length f 10e

With the considered LiDAR system (Figure 5.30) using independent small block im-

agers for compressive or sparse sampling, the system specifications inform the upper

limit of photon counts per sample per pixel per block. Several scenes representa-

tive of di↵erent application scenarios are considered. They provide the maximum

range and sampling resolution, which informs the number of bins in a histogram

and consequently the matching distance vector encoding the bin number as depth,

d. Ultimately, the largest values are expected to be intermediate values, in partic-

ular since the final depth estimate is a division in the CBCS framework as outlined

in Chapter 5. Those two proxy quantities might therefore require higher precision

than the final result. Maxima for both measurement quantities can be estimated as

follows. The maximum photon count can be estimated by the multiplication chain,

(YI)max = ⌘P cPmnbin, (6.3)

where ⌘P is the number of illumination cycles per pattern exposure, m the total

number of patterns exposed and cP the maximum photon count per bin per sample

step across all histogram bins nbin. This is a theoretical limit, which is unlikely to

occur in practice.

Next, to estimate the limit for the depth sum, the following is considered

(YQ)max =
X

(⌘P cPm � ((d+ 1)�1) � d), (6.4)

where d 2 Rnbin is the distance vector spanning across the range rmax with step-size

rmin, 1 is a vector of ones matching the prior dimension and � represents element-
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6.4. Precision Scaling E↵ects

wise multiplication. Here, the maximum photon count is inversely scaled across the

range under ideal conditions. These two values should provide worst cases for the

bit width, b, required to maintain precision throughout the depth computation.

To estimate the integer part of the fixed point numerical representation, the largest

binary representation is found for YQ with an additional bit to allow for overflow.

The fractional parts should scale based on multiplications. In Table 6.2 the exponent

is estimated for both algorithms based on the most demanding fractional component

of each algorithm. In the case of `ADMM, the most convenient value to find a limit

seems to be the tuning parameter ⌧ , which is assumed to be pre-computed at double

floating point precision as it sets the threshold parameter � and is thus involved the

sparsity regularisation a↵ecting precision. For dSparse, the cumulative nature of

matrix multiplication is used to estimate the largest fractional error. With this

information each minimum bit width can be estimated for the fractional parts of

each algorithm, leading to the full limits for fixed point numbers as

bFXPInt = ceil(log2((YQ)max)) + 1, (6.5)

bFXPFrac�` = ceil(log2(p log10(
1

f
))) + 1 and (6.6)

bFXPFrac�d = ceil(log2(p|e|)) + 1. (6.7)

The ceil(·) operator is forcing the number to be rounded to the next bigger integer

value. A bit is added as a safety net in case of overflow.

For floating point, a slightly di↵erent approach is used to estimate the largest possi-

ble value for the mantissa by scaling the fraction of the two maximum estimates by

the largest estimated exponent, while the bit width of the exponent is simply the

exponent estimate for each respective algorithm, which leads to

bFPSig = ceil(log2(10
|e| (YQ)max

(YI)max
)) + 1 and (6.8)

bFPExp = |e|+ 1 (6.9)

with an additional bit as before. Using all values as specified in Table 6.2 the

estimated minimal bit widths for each respective scenario are presented in Table 6.3.

These values will be compared against a comprehensive bit width analysis for all

three scenes in the next two sections for each considered reconstruction framework.

In the next part, the logic primitive usage from [239] is expanded from the full

synthesis reports for all logic primitives used and shown in Table 6.1 for a small
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Table 6.3: Estimates for minimum bit width, b, for various scenes and algorithms.

Scene Floating Point

`ADMM dSparse
Significand Exponent Significand Exponent

Floating 13 7 23 7
Table 11 6 11 6
B-Road 11 7 11 7

Fixed Point

`ADMM dSparse
Integer Fraction Integer Fraction

Floating 15 14 22 15
Table 20 14 22 15
B-Road 23 14 26 15

selection of bit widths for floating and fixed point arithmetic.

6.4.1 Compressive Depth Reconstruction

In this section, the analysis from [239] is expanded and tackled from the perspective

of potential transistor count. Further, a more thorough breaking point analysis is

provided, which is compared with minimum bit width estimates as presented in

Table 6.3 from the accompanying equations (6.9) for floating point and (6.7) for

fixed point representations. The full resource utilisation of `ADMM for a 4 ⇥ 4

sparse scale block is provided in Table 6.4. The problem is set up with m = 8

measurements and a pattern density of  = 0.25 (i.e. 4 active pixels per pattern

exposure).

The overall resource usage is compared to the double floating point precision. The

extended analysis from NAND gate counts for particular logic primitives (Table 6.1)

provides a slightly di↵erent weighting than the more high-level analysis provided in

[239]. In particular memory units are much larger components than most other logic

primitives with significant numbers for flip-flops and shift registers not considered

in earlier work.

The potential for logic savings is significant for both float and fixed point data rep-

resentations. A sharp drop is observed by dropping from double to single precision

with over 70% in logic reduction, overall it can be observed that floating point is

slightly more e�cient than fixed point, primarily due to the added arithmetic cost

incurred by fixed point operations. It should be stressed that the logic resources are

of illustrative nature as the breaking points for this data were chosen empirically

until quality dropped by visual inspection and/or when quality metrics dropped by

more than 10% versus double precision results. More importantly the breaking point

was only found for a single short range scene.
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Table 6.4: Resource utilisation on FPGA for `ADMM in terms of hardware primitives
in the context of custom data types extended from [239] with estimates of NAND gates
extrapolated from Table 6.1.

Custom Float Fixed Point

64 bits 32 bits 18 bits 12 bits 28 bits 23 bits 20 bits
L
o
g
ic

LUT1 110 46 50 46 36 31 33
LUT2 928 545 433 322 930 363 372
LUT3 2572 1608 620 559 641 548 492
LUT4 2146 1146 893 689 386 407 333
LUT5 2065 1241 573 508 327 289 273
LUT6 5851 1713 1573 985 560 396 386

DSP48 82 36 8 8 81 57 32
MUX7 119 0 11 0 0 0 0
MUX8 11 0 0 0 0 0 0

CARRY8 438 177 188 154 147 77 97

M
em

or
y

FFD 24558 10631 7132 5036 2764 2147 1523
FFS 14 36 20 20 14 14 14

BRAM18 24 0 0 0 0 0 0
BRAM36 7 2 0 0 2 2 2
SR16 2222 912 607 445 0 0 0
SR32 522 42 27 21 0 0 0

RAMD32 512 390 170 110 280 230 198
RAMS32 0 320 258 168 364 299 261

NAND Gates 1419605 386745 180009 132237 341112 268246 202412
Usage 100.0% 27.2% 12.7% 9.3% 24.0 % 18.9% 14.3%

To provide a more analytical evaluation of breaking points for precision scaling on

sparse depth imaging, a thorough manual bit width sweep was carried out using

the C/C++ code created for [239] to capture quality degradation across various bit

width combinations for the respective numerical formats. Double floating point (64

bit) precision is chosen as the baseline and all subsequent reduced precisions and

resulting depth reconstructions are compared against it. The results for `ADMM

are mapped in Figure 6.3 with the estimated minima from Table 6.3 highlighted.

All considered metrics (equations in 5.31) behave very similar in this experiment

and structural similarity index measure (SSIM) was chosen for illustration purposes

due to its intuitive normalised scaling.

What stands out in the graphs in Figure 6.3 is the consistent breaking point be-

haviour when certain values for the two data types are reached for `ADMM across

all scenes and the excellent tolerance to precision scaling before quality degradation

occurs. As expected the quality boundaries are not the same for each of the consid-

ered scenarios due to value magnitude and overall precision variations in the problem

definitions as discussed previously. The floating point estimates for minimum bit

width seem to be reasonable, while the fixed point estimate is in the general area for

the two simulated systems, where all system specifications where known. For the

real data scene, the estimate is o↵ by about 5 bits for the Integer part. A potential

explanation for this could be the windowed nature of this data, which might a↵ect
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(a) Bearing
Custom Float

(b) Table
Custom Float

(c) B-Road
Custom Float

(d) Bearing
Fixed Point

(e) Table
Fixed Point

(f) B-Road
Fixed Point

Figure 6.3: Precision e↵ects on reconstruction quality for CBCS and `ADMM versus
full double float precision. A consistent plane of no degradation can be observed, which
ends in a smooth but pronounced quality boundary for all scenarios. Red points indicate
the precision limits determined in Table 6.3 and labelled points are examples shown in
Figure 6.4

the overall value distribution in comparison to the full range scenes considered for

the simulated system approach.

To illustrate how each algorithm breaks when precision is reduced beyond the quality

boundary, a representative selection is provided for the short range Table scene in

Figure 6.4, but similar behaviours were observed for all scenes.

The overall performance of `ADMM in this chapter is limited to a single pattern

sequence for memory e�ciency of sharing a pattern sequence across all block. This

can introduce additional blocking artefacts in the compressive case as can be seen.

Therefore, the quality degradation is compared versus double floating point precision

to only assess the e↵ects of precision scaling. Floating point degrades once the

Significand drops below 13 bits, which results in more noise across the reconstructed

image.

Fixed point on the other hand seems to be primarily a↵ected by the number of

Fraction bits and fails by losing detail and averaging the block depth value or rather

losing the values after the decimal point.
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(a) FP(13,7)
SSIM=0.96
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(b) FP(11,6)
SSIM=0.75

20 40 60 80 100 120

20

40

60

80

100

120 1.5

2

2.5

3

3.5

4

Depth, m

(c) FP(10,8)
SSIM=0.54
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(d) FXP(20,14)
SSIM=0.97
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(e) FXP(20,10)
SSIM=0.80
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(f) FXP(22,4)
SSIM=0.52

Figure 6.4: Illustration of quality degradation for precision scaling of `ADMM evalu-
ated against double floating point precision. Floating point configuration is shortened to
FP(Significand, Exponent) and fixed point representation to FXP(Integer, Fraction).

6.4.2 Sparse Depth Reconstruction

Another approach presented in this work is the usage of a pseudo-inverse to find

the least-square solution to the inverse problem of recovering values from sparse

structured illumination. In this case the length of the pattern sequence increases,

such that the system of equations becomes determined i.e. m � n. This incurs

a small cost in larger measurement vectors. However, measurement vectors still

remain smaller than full per pixel histogram storage shown in Section 6.5 and the

benefit of pattern pixel accumulation to increase SNR per single measurement still

allows for fast sampling rates.

In this approach, the solutions to the depth sum xQ and the intensity photon count

image xi are found directly by applying the pseudo-inverse to each measurement

vector yQ and yI with a full parallel program illustration shown in Algorithm 9.

It was shown in Chapter 5 that this approach performs quite well if the added

number of patterns is not an issue. The scalable block array architecture proposed

in this work can further extend its application to long and short range applications

alike. In [239] it was shown that this approach is extremely resource e�cient with a

total resource usage using double precision comparable to single precision `ADMM.
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Algorithm 9 Discrete Depth Sparse recovery (dSparse) [239]

Input yQ, yI , A+

Output X̂D

for each block b concurrently do

(x̂Q)(b) = A+yQ
(x̂I)(b) = A+yI

end for

x̂D(xI > 0) = xQ./xI

X̂D = unraster(x̂D)

It was also shown that the power reduces in line with resource reduction and is

not discussed in this chapter further. A full extended resource utilisation of FPGA

primitives is shown in Table 6.5 for m = 48 patterns,  = 0.25 for a 4 ⇥ 4 sparse

scale block as before.

Table 6.5: Resource utilisation on FPGA for dSparse in terms of hardware primitives
in the context of custom data types extended from [239] with estimates of NAND gates
extrapolated from Table 6.1.

Custom Float Fixed Point

64 bits 32 bits 18 bits 12 bits 28 bits 23 bits 20 bits

L
o
g
ic

LUT1 23 9 11 14 60 51 44
LUT2 541 242 113 83 320 292 282
LUT3 3568 948 211 177 327 273 243
LUT4 263 154 190 151 260 270 265
LUT5 246 90 99 91 200 206 181
LUT6 734 147 231 129 531 495 546

DSP48 20 8 2 2 1 1 1
MUX7 20 0 3 0 2 1 1
MUX8 2 0 0 0 0 0 0

CARRY8 493 150 56 45 27 22 21

M
em

or
y

FFD 10191 2778 1449 1035 912 833 776
FFS 1 6 1 1 1 1 1

BRAM18 5 2 2 2 3 3 1
BRAM36 0 0 0 0 0 0 0
SR16 173 39 46 41 0 0 0
SR32 74 20 0 0 0 0 0

RAMD32 0 0 0 0 0 0 0
RAMS32 0 2 2 2 2 2 50

NAND Gates 277993 93179 66827 59178 94673 92540 58540
Usage 100.0% 33.5% 24.0% 21.3% 34.1% 33.3% 21.1%

The overall savings achieved by precision scaling for a single block are similar to

the savings with respect to double precision as were observed for `ADMM, with the

exception of RAM usage, which is slightly higher even for much smaller bit widths.

This is probably due to the large matrix multiplication required to find the solution

the linear system of equations, in this case x 2 R16 = A
+
2 R16⇥48

⇥ y 2 R48⇥1.

This fairly large multiplication has to be performed twice per block in comparison to

many smaller multiplications in `ADMM. However, the overall complexity is lower

and despite the larger matrix multiplication, this approach can enable extremely
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small and power e�cient logic to reconstruct depth using a sparse scale block.

Further, similar to `ADMM, a comprehensive analysis of the e↵ects of precision

scaling on the reconstruction quality in comparison to double floating point precision

for the three scenarios is shown in Figure 6.5.

(a) Bearing
Custom Float

(b) Table
Custom Float

(c) B-Road
Custom Float

(d) Bearing
Fixed Point

(e) Table
Fixed Point

(f) B-Road
Fixed Point

Figure 6.5: Precision e↵ects on reconstruction quality for CBCS using dSparse versus full
double float precision. A clear quality boundary can be observed for all cases. Red points
indicate the precision limits determined in Table 6.3 and labelled points are examples
shown in Figure 6.6

Similar to the results for `ADMM in Figure 6.3, the predictions for minimum bit

width for the simulated system are close to the breaking point boundaries for both

numerical representations. It is curious, however, that the fixed point boundaries

are not consistent as before. This is likely due to more multiplications in a single

step and the summations in matrix multiplication.

Even more striking is the quality degradation for the real scene using dSparse and

floating point in Figure 6.5(a), which looks very di↵erent to the simulated data,

despite behaving exactly the same for `ADMM. This again could be a combination

of the algorithm itself and the windowed nature of the real data. Nonetheless, the

overall quality degradation behaves as expected, albeit with much higher bit widths

compared to the simulated system specifications for the other two scenes. The range

resolution of the real data is significantly higher, which may also contribute to this

particular degradation map.
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It was shown in Chapter 5 that dSparse can provide excellent depth reconstructions

and likewise very good reconstruction performance is observed even for significant

bit width reductions. To demonstrate how dSparse fails when precision is reduced

beyond the quality boundary a representative selection of reconstructions is provided

in Figure 6.6. For consistency the table scene is shown, but failure behaviour is very

similar across all scenes considered.
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(a) FP(11,6)
SSIM=1.0
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(b) FP(7,6)
SSIM=0.78
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(c) FP(4,6)
SSIM=0.18
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(d) FXP(22,15)
SSIM=1.0
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(e) FXP(16,24)
SSIM=0.85
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(f) FXP(20,8)
SSIM=0.80

Figure 6.6: Illustration of quality degradation for precision scaling of dSparse evalu-
ated against double floating point precision. Floating point configuration is shortened to
FP(Significand, Exponent) and fixed point representation to FXP(Integer, Fraction).

Figure 6.6(a)-(c) illustrates the quality degradation as the Significand bits are re-

duced with the reconstruction becoming noisier with grainy depth maps in the worst

case. If the Exponent is dropped below 6 bits, no reconstruction occurs with a blank

depth map.

For the fixed point breaking point analysis for dSparse, blocking artefacts are ob-

served once the Integer is reduced below a certain value, while edge artefacts occur

when the Fraction bit width is insu�cient.

Overall, dSparse behaves more consistently compared to `ADMM in terms of failure

behaviour, likely due to its non-iterative operation. Regardless, the presented results

of precision scaling have demonstrated options to significantly reduce resource cost

for the two frameworks without sacrificing reconstruction quality, if the bit width is

carefully chosen for a specific application.
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6.5 Case Study: Logic Footprint

It has been shown that both compressive sparse depth reconstruction and a sparse

discrete depth reconstruction schemes can be synthesised for a FPGA and could

thus be implemented as an ASIC. As both approaches can be implemented with

a specific complexity using a constant number of logic primitives with potential to

reduce resources using precision scaling, this section demonstrates how each partic-

ular number of logic resources would translate into a physical size in comparison to

typical values for a SPAD imaging array as envisioned for a sparse scale block as

shown in Figure 6.7.

Figure 6.7: Sparse Scale Block Components

In particular, a recently presented SPAD array [58] provides a good size estimate for

two variants of 4⇥ 4 photon detector arrays providing size constraints to the logic,

which is either the same size or ideally smaller than the detector array. The analysis

provided should only be seen as a feasibility study and a full ASIC implementation

of the logic may require more space to facilitate additional memory, wiring, read-out

and other design constraints. The case study should, nonetheless, be able to answer

the question, if the proposed processing stacks can be realistically placed underneath

a photon detector array to form a small independent block sensor.

6.5.1 SPAD Array Size

The dimensions for a photon detector array are taken from a recent 256⇥256 SPAD

array [58], which provides real dimensions for both single SPADs and a typical

macro-pixel in a 4⇥ 4 configuration. This case study compares the size of the logic

to both the macro-pixel and a 4⇥ 4 standard pixel array. The dimensions for both

considered 4 ⇥ 4 detector block configurations are shown in Table 6.6. This SPAD

array was also chosen as a reference point because it stacks logic underneath the array
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Table 6.6: Physical dimensions of a 4 ⇥ 4 SPAD arrays with and without macro-pixels
configuration based on dimensions of SPAD in [58].

Unit 40 nm SPAD Array

1⇥ 1 4⇥ 4

Macro-pixel 1⇥ 1 1⇥ 1 4⇥ 4
SPADs 1 16 256

Size (length) µm 9.6 38.4 153.6
Size (area) µm2 92.16 1474.56 23592.96

(manufactured in a 40 nm process) for time-to-digital converter (TDC) histogram

logic manufactured in a 90 nm process, which is used as the largest technology node

in the following size analysis for the overall sparse depth reconstruction logic.

6.5.2 Sparse Logic Component Size

Two size constraints have been established. This constitutes the maximum permis-

sible area any required processing and control logic can occupy. The analysis carried

out in this section provides baseline estimates to assess feasibility for a single sparse

scale block implementation as conceptually shown in Figure 6.7. To find an approxi-

mate size for the logic and memory required to perform sparse depth recovery, three

technology nodes are considered. A technology node refers the smallest feature size

which can be achieved in semi-conductor manufacturing. For this case study, it is as-

sumed that a NAND gate in a complementary metal-oxide semiconductor (CMOS)

implementation occupies a square space for simplicity i.e. the node size squared.

The three manufacturing nodes are summarised in Table 6.7.

Table 6.7: Physical dimensions for transistors in various technology nodes with square
size assumption.

Unit 28 nm 40 nm 90 nm

Size (length) µm 0.028 0.04 0.09
Size (area) µm2 ⇥ 10�3 0.784 1.6 8.1

The three nodes were chosen for various reasons. The 90 nm node is considered

because a logic stack in this node for the considered detector array has been pre-

sented in [58]. Further, a like-for-like size comparison of the SPAD technology node

[39] is considered with the 40 nm node and finally a 28 nm node is considered for a

smaller but reasonable near future technology node, considering that many modern

SoC designs are manufactured in sizes as small as 5 nm [259].

Although the arithmetic logic is expected to be the largest component in this anal-

ysis, in particular since two are required for the two concurrent recovery processes

of xQ and xI , a simple full system DSP logic estimate is provided by considering
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additional memory for measurements, pattern projection, sensing matrix and final

outputs, which will scale with bit width, b, as shown in Table 6.8.

Table 6.8: Full DSP logic components for sparse imaging block in terms of estimated
NAND gates for varying bit widths, b.

Type Data dimension NAND gate count

Pattern storage Memory 48⇥ 16 768⇥ b

Histogram Memory 1⇥ 7500 7500⇥ b
Measurements Memory 2⇥ 48 96⇥ b
Reconstruction Logic 2⇥ 16 see Table 6.4 & 6.5

Output Memory 2⇥ 16 32⇥ b

It should be noted that the pattern storage is a catch-all container, which is by de-

sign chosen to be larger than its typical individual components. For the compressive

case, the actual projection, � is binary and thus more compact, and the the final

sensing matrix, A, with associated basis transform, ✓, is smaller compared to the

larger pseudo inverse, A+ for dSparse, with an associated binary projection matrix.

It was shown in Chapter 5 that dSparse can operate well with only 24 patterns,

and therefore the considered 48 patterns should be a good estimate for a full sys-

tem memory for this component which may require a bit of extra space. A single

histogram container is considered to enable noise removal per pattern-measurement

cycle for the largest histogram case being the long range automotive application.

The remaining components are the measurement, reconstruction logic and output

containers, of which two are required to make the most of the reconstruction. This

means a depth and intensity image are reconstructed for each block in a larger scal-

able block array. All components together form a simple representation of a full SoC

for the sparse scale block.

6.5.3 Block Logic Core Size

With a rudimentary system component list, manufacturing nodes and the size con-

straints imposed by the SPAD detector array, the full system size is estimated by

combining results from Tables 6.4, 6.5 and 6.8 as summarised in Table 6.9.

The above should provide a good estimate for the various system sizes across various

bit widths a↵orded by precision scaling. Using the total NAND gate or transistor

count estimations for each approach and precision alongside the various technologies

node, the size is readily computed. All sizes of the resulting SoC are compared

against both the single 4⇥ 4 (i.e. 16 individual SPADs) and the macro-pixel 4⇥ 4

detector array (i.e. 16 pixels arranged in a 4 ⇥ 4 configuration where each pixel is

a grouping of 16 SPADs for higher SNR) across all technology nodes as shown in

Figure 6.8.
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Figure 6.8: SPAD and logic size comparison chart across various precisions and technol-
ogy nodes.

What is interesting in this figure, is that a sparse depth recovery system in a 90 nm

node would not fit under a macro-pixel array when utilising double floating point

precision for a compressive configuration but dropping the precision to single and

below allows all frameworks to fit comfortably underneath a macro-pixel array. It

stands out, that when looking specifically at the single pixel array, the analysis is

not as straightforward.

The 90 nm node is simply too large to fit any framework under the smaller detec-

tor array even with precision scaling savings. In the 40 nm node, the compressive

`ADMM framework fits when precision is reduced below single floating point pre-

cision, and for dSparse, the precision needs to be at least dropped to single float-

ing point to comfortably fit. Even at 28 nm, double precision would not fit for

`ADMM, although it would accommodate the dSparse approach. Overall though,

in this smaller manufacturing process, other than double floating point `ADMM all

Table 6.9: NAND gate estimation for full sparse computation logic and associated stor-
age.

NAND Gate Count Estimate

Datatype Bit Width , b Pattern Storage Histograms Measurements Logic Output Total

`A
D
M

M

Float 64 49152 480000 6144 2839210 2048 3376554
Float 32 24576 240000 3072 773490 1024 1042162
Float 18 13824 135000 1728 360018 576 511146

Fixed Point 28 21504 210000 2688 682224 896 917312
Fixed Point 23 17664 172500 2208 536492 736 729600

d
S
p
a
rs
e

Float 64 49152 480000 6144 555986 2048 1093330
Float 32 24576 240000 3072 186358 1024 455030
Float 18 13824 135000 1728 133654 576 284782

Fixed Point 28 21504 210000 2688 189346 896 424434
Fixed Point 23 17664 172500 2208 185080 736 378188
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other frameworks would comfortably fit under the detector block array.

This demonstrates that the complexity of the framework presented in this work is

not only suitable for a SoC implementation but should also fit comfortably under a

typical SPAD detector array. In many cases the estimates are significantly smaller,

which would further decrease cost and thermal/power budget and allows for addi-

tional components to either increase the overall capability of the system or provides

design flexibility to accommodate wiring and any other required logic for the full

system.

To visualise the sizing further, an illustration is provided in Figure 6.9. Here two

particular nodes are chosen, 90 nm and 28 nm, and the full system size is compared

to a macro-pixel and single pixel array size respectively.

(a) 16⇥ 16 SPAD
90 nm node

(b) 4⇥ 4 SPAD
28 nm node

Figure 6.9: Size of logic core versus SPAD arrays. dSparse in blue tones and `ADMM
in magenta tones. A macro-pixel array is paired with 90 nm SoC size estimates while a
single pixel array is compared to 28 nm SoC area approximations.

This figure demonstrates the significant savings a↵orded by precision scaling and

algorithm optimisations. More importantly, it further confirms that the system

proposal of this work is feasible to be implemented as an e�cient small scale SoC

for a resource constrained imaging system.
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6.6 Summary and Conclusions

This chapter has introduced the concept of approximate computing (AC) to im-

prove resource and power e�ciency in embedded systems with limited resources. In

particular the concept of precision scaling was discussed in detail, as it provides an

opportunity to reduce logic resource requirements and therefore logic size by improv-

ing the computational e�ciency due to the reduction of bit width, which reduces

both arithmetic operations, memory requirements and power draw.

Earlier results applying precision scaling to the presented sparse depth reconstruc-

tion framework were expanded and a thorough analysis of precision scaling on the

quality of reconstruction was added with an attempt to provide an initial estimate

based on system specifications. In most cases the respective estimate provided a

good starting point for further precision scaling optimisation fairly close to the

quality boundaries for both considered reconstruction methods.

Figure 6.10: Sparse Scale Block with a 28 bit fixed point logic core with component
scaling for 28 nm transistor sizing.

Finally, a case study was presented which considers a recent SPAD array in terms

of area size for two pixel configuration. The logic primitives used in the FPGA

synthesis were translated into transistor counts which in turn were used to compute

the logic area for three technology nodes. The results from the precision scaling were

combined with a simple full system logic estimation to provide area estimates for all

synthesised precision logic configuration and compared to the photon detector array

sizes. For the largest technology node, double precision floating point was too large,

but depending on configuration and technology node, the logic should comfortably

fit under a detector array and in some cases with room to spare to allow for more

design flexibility. An illustration of such a SoC and detector block combination is

shown in Figure 6.10 with appropriate component scaling.
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This chapter has shown that the proposed system architecture and associated frame-

works are not only ASIC compatible, but can in theory also fit under a detector array

with minor precision scaling optimisation. Further savings could be achieved with

more approximations, if required, to reduce power and size even more.

The feasibility of the Sparse Scale block demonstrates a potential system capable of

LiDAR imaging, which exploits hardware parallelism for a wide scale of resolutions.

The key performance metrics are dictated by the block performance rather than the

full system array, which provides a reliable constant high frame rate as resolution is

scaled up.
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Chapter 7

Conclusion and Future Work

7.1 Summary of Main Findings

The work presented in this thesis addresses challenges associated with the processing

of raw measurements from solid-state time-of-flight (ToF) arrays for light detection

and ranging (LiDAR) systems with an emphasis on long range use cases as required

for automotive applications.

The concepts of LiDAR and the enabling technology for solid-state high resolution

LiDAR were introduced in Chapter 2, with particular emphasis on emerging large

scale single photon avalanche detector (SPAD) arrays. A clear trend of increasing

array sizes was observed, yet many of the demonstration systems with integrated

sampling circuitry have reduced depth resolution and/or limited range, due to the

complexity associated with the large volumes of data as range increases and depth

resolution improves. Further, laser power for the considered systems is limited due

to the operational window a↵orded by silicon, making long range applications more

di�cult to achieve at high frame rates. The concepts and advantages of the full

LiDAR waveform were discussed in the context of recent processing methodologies,

noting distinct compromises between speed, dynamic range and resolution.

To investigate novel processing frameworks, a simulation tool chain was developed

and presented in Chapter 3. The focus of this framework was to enable waveform

simulation from scenes with semantic content to enable visual inspection with ground

truth for evaluation and the ability to sample the data in a non-linear fashion to

enable investigation of novel system architectures. The ability to generate large

LiDAR waveform datasets from synthetic depth datasets motivated the investigation

into deep learning (DL) methods to process LiDAR data, as they provide an e�cient

way to facilitate high throughput processing. The ability to sample both real and
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simulated LiDAR data in a random sparse fashion enabled the exploration of novel

compressive sensing schemes applied to long range LiDAR depth imaging.

Using modern DL techniques, a novel convolutional neural network (CNN) archi-

tecture was developed to localise returns from LiDAR waveforms in Chapter 4.

This work addresses the challenges of processing large data volumes generated by

future solid-state high-resolution LiDAR detector arrays, with the following contri-

butions:

• A novel neural network architecture for LiDAR waveform processing, LiDAR-

Net. It has the capability of learning significant waveform features to discretely

localise surface returns in LiDAR waveforms with multiple returns in both low

and high ambient noise scenarios in a unified network architecture.

• Validation of a training-by-simulation approach and feature tracing for the

presented network architecture, confirming relevant features are learned and

generalised. This provides a meaningful way to augment real datasets and

pre-train a network for faster deployment on simulated data.

• Peak localisation performance is comparable to state-of-the-art model based

approaches, while being twice as fast as a prior approach at 0.44 ms per his-

togram providing an extremely fast and high throughput approach to LiDAR

waveform processing for solid-state arrays at high frame rates.

Compressive sensing was investigated to address the issue of high laser power density

for long range LiDAR and ever increasing data bandwidth scaling with photon de-

tector array size in Chapter 5. Although structured sparse illumination reduces laser

power density, the sampling and processing times for high resolution compressive

depth reconstruction were prohibitive to long range depth imaging in real-time.

A novel compressive depth reconstruction framework was presented, with major

outcomes being:

• The formulation of a small-scale compressive depth reconstruction signal model

for a narrow field-of-view imaging block with excellent depth reconstruction

performance even at long range and scope for noise suppression, while the

prior art only was limited to short range and low noise applications.

• A novel parallel block sparse LiDAR architecture was proposed to distribute

the small-scale compressive depth reconstruction across a large solid-state pho-

ton detector array with a parallel processing architecture, which was shown to

be capable of depth image frame rates of well above 200 Hz.
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• A practical device for scaling up LiDAR resolution was proposed in the form

of a block imaging platform with integrated sparse depth reconstruction logic.

This exploits the independent nature of the proposed framework and enables

scalable high frame rate depth imagers with performance bounds set by the

block size rather than array size.

The inception of the sparse scale block device led to an investigation in Chapter 6

into the feasibility of a stacked detector device, with a full system-on-a-chip (SoC)

occupying the same or less space than the detector to perform depth and intensity

reconstruction using sparse principles. An introduction to approximate computing

was provided and precision scaling was applied to an optimised compressive frame-

work suitable for hardware implementation and a discrete sparse reconstruction

framework with the key findings of this case study being:

• A theoretical estimate and an empirical analysis of the precision boundaries for

the compressive depth reconstruction framework was presented in Chapter 5

for floating and fixed point representations. This demonstrated significant

tolerances for both sparse depth reconstruction methods before reconstruction

quality su↵ers, allowing for hardware approximations reducing resource and

power requirements.

• A case study translated resource usage of the considered sparse reconstruction

frameworks to transistor count which were compared to the area of a modern

SPAD array for the considered imaging system architecture. It was shown that

with moderate precision reduction, either framework could theoretically fit

directly under a SPAD detector array in form of a stacked SoC demonstrating

that the complexity of the proposed system is feasible to implement in the

future.

The work presented in this thesis has addressed the challenges identified for solid-

state arrayed LiDAR for automotive application with a novel approach for high-

throughput LiDAR waveform processing using deep learning in the form of LiDAR-

Net and a novel compressive depth reconstruction framework enabling sparse illumi-

nation, fast compressive sampling with low memory requirements and fast processing

times due to an independent parallel block signal formulation. With a focus on e�-

ciency throughout the development of this work, both approaches provide practical

approaches for e↵ective future LiDAR systems utilising solid-state photon detector

arrays.
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7.2 Future Work

Significant e↵ort has been a↵orded to mitigate the absence of a real solid-state ar-

rayed light detection and ranging (LiDAR) sensor by means of comprehensive sim-

ulation tools complemented by small amounts of real LiDAR waveforms. Although

both major contributions; an e�cient high throughput neural network, LiDARNet,

which can localise surface returns directly from the LiDAR waveform and a blocked

compressive depth sensing framework, checkerboard compressive sensing (CBCS),

which enables fast sampling via structured random sampling and real-time process-

ing at high speed using an independent block parallel processing approach have

been successfully applied to real data, both approaches should be demonstrated in

conjunction with a real sensor system and further examples in the future.

In particular, the deep learning approach might see improvements if trained using a

comprehensive real LiDAR waveform dataset with a more diverse set of operating

conditions. This could still be augmented using the presented simulation tools to add

additional variance and robustness for training LiDARNet. Further, the presented

convolutional neural network (CNN) architecture could benefit from optimisations

to find the most suitable parameters for each network layer alongside an expanded

intermediate signal analysis to improve learning rates by means of di↵erent activa-

tion functions, training strategies and more advanced deep learning (DL) techniques

not considered in this work. The parameter space could also be reduced by means

of weight pruning or other size reduction techniques to improve speed and resource

requirements, which may enable an embedded implementation of this architecture.

The compressive sensing depth framework makes the major assumption of few sur-

face returns in a small field-of-view and only returns a single depth value per pixel.

While this work has shown to recover depth well in this framework, it would be

beneficial to quantify the uncertainty in this reconstruction framework. In partic-

ular, how uncertainty is a↵ected across the full range scale and the influence of

random pattern generation in various noise conditions. Furthermore, it would be

beneficial to extend this sparse depth framework to multi-return recovery similar

to processing full waveforms with LiDARNet or other waveform processing strate-

gies, e.g. by pre-processing the data by methods such as LiDARNet to work with

surface proposals rather than cumulative measurements derived from the histogram

directly. The basis transforms considered in this work were chosen primarily for

speed and e�ciency, but other more complex basis functions may perform better

and should be explored alongside e↵orts to reduce their computational and resource

impact on the proposed system. Additionally, although a thorough feasibility study

for sparse reconstruction on hardware was presented, the processing chain could
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also be implemented discretely using DL techniques directly from raw compressive

measurements. Another worthwhile investigation would be to use machine learning

techniques to post-process and de-noise the depth proposals with the compressive

information available. Deep learning could also be leveraged to determine custom

sensing patterns tailored to compressive depth recovery to improve performance

further.

Finally, since two sparse reconstruction frameworks were demonstrated to be suit-

able for hardware implementations, work could be carried out to create a full demon-

stration system by linking a photon detector array with a field-programmable gate

array (FPGA) platform in the first instance, which could lead to a full investiga-

tion and development of a system-on-a-chip (SoC) chip for a full or partial photon

detector array for sparse depth sensing in an integrated fashion.
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[283] Xilinx, “Zcu106 evaluation board,” Xilinx.com, vol. UG1224, no. v1.4, pp.

1–134, Oct. 2019.

[284] Xilinx, “Ultrascale architecture libraries guide,” Xilinx.com, vol. UG974, no.

v2014.1, pp. 1–422, Apr. 2014.

[285] Xilinx, “Ultrascale architecture configurable logic block user guide (ug574),”

Xilinx.com, vol. UG574, no. v1.5, Feb. 2017.

[286] Xilinx, “Ultrascale architecture: Dsp slice user guide (ug579),” Xilinx.com,

vol. UG579, no. v1.10, pp. 1–75, Sept. 2020.

201


	Abstract
	List of Publications
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis outline

	Light Detection and Ranging
	Introduction
	Depth Sensing
	Photon Detection
	Single Photon Avalanche Diode
	SPAD arrays
	Laser Power Constraints

	LiDAR Architectures
	Mechanical Scanning Systems
	Solid-State LiDAR
	Commercial LiDAR Systems

	LiDAR Waveform
	Waveform Signal Model
	LiDAR Signal Processing

	Conclusions

	LiDAR Signal Simulation
	Introduction
	Datasets
	LiDAR Datasets
	Synthetic Depth Data

	LiDAR Waveform Simulation
	Photon Count Rate Models

	LiDAR Simulation Toolchain
	Synthetic scenes to Full-Waveforms
	Waveforms with Multiple Returns
	Non-Linear Sampling
	Hardware Prototyping

	Conclusion

	Deep Learning for Surface Localisation in LiDAR Waveforms
	Introduction
	Deep Learning
	Convolutional Neural Network
	Convolutional Auto-Encoder
	Related work

	LiDARNet
	Introduction
	Architecture

	Training Methodology
	Training Data Generation

	Validation Experiment
	Two Retro-reflectors
	Feature Tracing
	Results

	Automotive Experiment
	Results

	Summary and Conclusions

	Concurrent Block Sparse Sensing LiDAR
	Introduction
	Compressive Sensing
	Linear transforms and projection patterns
	Blocked Compressive Sensing
	Compressive Depth Imaging

	Small Scale Sparse Depth Sensing
	Observational Model
	Sparsity of Small Scale Signals

	Time-of-Flight Solid-State Block Array
	Signal Model
	Block Size Effects on Processing Speed
	Total Variation Extension

	Applications and Results
	Practical Basis Transforms and Algorithms
	Arrayed Sparse LiDAR
	Scalable Imaging Arrays

	Summary and conclusions

	Small Footprint Sparse Sensing Logic
	Introduction
	Approximate Computing
	Reduced Precision

	Algorithm Hardware Optimisations
	Lean ADMM

	Precision Scaling Effects
	Compressive Depth Reconstruction
	Sparse Depth Reconstruction

	Case Study: Logic Footprint
	SPAD Array Size
	Sparse Logic Component Size
	Block Logic Core Size

	Summary and Conclusions

	Conclusion and Future Work
	Summary of Main Findings
	Future Work

	Bibliography

