1,091 research outputs found

    On regular and new types of codes for location-domination

    Get PDF
    Identifying codes and locating-dominating codes have been designed for locating irregularities in sensor networks. In both cases, we can locate only one irregularity and cannot even detect multiple ones. To overcome this issue, self-identifying codes have been introduced which can locate one irregularity and detect multiple ones. In this paper, we define two new classes of locating-dominating codes which have similar properties. These new locating-dominating codes as well as the regular ones are then more closely studied in the rook’s graphs and binary Hamming spaces.In the rook’s graphs, we present optimal codes, i.e., codes with the smallest possible cardinalities, for regular location-domination as well as for the two new classes. In the binary Hamming spaces, we present lower bounds and constructions for the new classes of codes; in some cases, the constructions are optimal. Moreover, one of the obtained lower bounds improves the bound of Honkala et al. (2004) on codes for locating multiple irregularities.Besides studying the new classes of codes, we also present record-breaking constructions for regular locating-dominating codes. In particular, we present a locating-dominating code in the binary Hamming space of length 11 with 320 vertices improving the earlier bound of 352; the best known lower bound for such code is 309 by Honkala et al. (2004).</p

    Characterizing extremal digraphs for identifying codes and extremal cases of Bondy's theorem on induced subsets

    Full text link
    An identifying code of a (di)graph GG is a dominating subset CC of the vertices of GG such that all distinct vertices of GG have distinct (in)neighbourhoods within CC. In this paper, we classify all finite digraphs which only admit their whole vertex set in any identifying code. We also classify all such infinite oriented graphs. Furthermore, by relating this concept to a well known theorem of A. Bondy on set systems we classify the extremal cases for this theorem

    Solving Two Conjectures regarding Codes for Location in Circulant Graphs

    Full text link
    Identifying and locating-dominating codes have been widely studied in circulant graphs of type Cn(1,2,,r)C_n(1,2, \ldots, r), which can also be viewed as power graphs of cycles. Recently, Ghebleh and Niepel (2013) considered identification and location-domination in the circulant graphs Cn(1,3)C_n(1,3). They showed that the smallest cardinality of a locating-dominating code in Cn(1,3)C_n(1,3) is at least n/3\lceil n/3 \rceil and at most n/3+1\lceil n/3 \rceil + 1 for all n9n \geq 9. Moreover, they proved that the lower bound is strict when n0,1,4(mod6)n \equiv 0, 1, 4 \pmod{6} and conjectured that the lower bound can be increased by one for other nn. In this paper, we prove their conjecture. Similarly, they showed that the smallest cardinality of an identifying code in Cn(1,3)C_n(1,3) is at least 4n/11\lceil 4n/11 \rceil and at most 4n/11+1\lceil 4n/11 \rceil + 1 for all n11n \geq 11. Furthermore, they proved that the lower bound is attained for most of the lengths nn and conjectured that in the rest of the cases the lower bound can improved by one. This conjecture is also proved in the paper. The proofs of the conjectures are based on a novel approach which, instead of making use of the local properties of the graphs as is usual to identification and location-domination, also manages to take advantage of the global properties of the codes and the underlying graphs

    Random subgraphs make identification affordable

    Full text link
    An identifying code of a graph is a dominating set which uniquely determines all the vertices by their neighborhood within the code. Whereas graphs with large minimum degree have small domination number, this is not the case for the identifying code number (the size of a smallest identifying code), which indeed is not even a monotone parameter with respect to graph inclusion. We show that every graph GG with nn vertices, maximum degree Δ=ω(1)\Delta=\omega(1) and minimum degree δclogΔ\delta\geq c\log{\Delta}, for some constant c>0c>0, contains a large spanning subgraph which admits an identifying code with size O(nlogΔδ)O\left(\frac{n\log{\Delta}}{\delta}\right). In particular, if δ=Θ(n)\delta=\Theta(n), then GG has a dense spanning subgraph with identifying code O(logn)O\left(\log n\right), namely, of asymptotically optimal size. The subgraph we build is created using a probabilistic approach, and we use an interplay of various random methods to analyze it. Moreover we show that the result is essentially best possible, both in terms of the number of deleted edges and the size of the identifying code

    Exact Topological Quantum Order in D=3 and Beyond: Branyons and Brane-Net Condensates

    Full text link
    We construct an exactly solvable Hamiltonian acting on a 3-dimensional lattice of spin-12\frac 1 2 systems that exhibits topological quantum order. The ground state is a string-net and a membrane-net condensate. Excitations appear in the form of quasiparticles and fluxes, as the boundaries of strings and membranes, respectively. The degeneracy of the ground state depends upon the homology of the 3-manifold. We generalize the system to D4D\geq 4, were different topological phases may occur. The whole construction is based on certain special complexes that we call colexes.Comment: Revtex4 file, color figures, minor correction

    Automated Discharging Arguments for Density Problems in Grids

    Full text link
    Discharging arguments demonstrate a connection between local structure and global averages. This makes it an effective tool for proving lower bounds on the density of special sets in infinite grids. However, the minimum density of an identifying code in the hexagonal grid remains open, with an upper bound of 370.428571\frac{3}{7} \approx 0.428571 and a lower bound of 5120.416666\frac{5}{12}\approx 0.416666. We present a new, experimental framework for producing discharging arguments using an algorithm. This algorithm replaces the lengthy case analysis of human-written discharging arguments with a linear program that produces the best possible lower bound using the specified set of discharging rules. We use this framework to present a lower bound of 23550.418181\frac{23}{55} \approx 0.418181 on the density of an identifying code in the hexagonal grid, and also find several sharp lower bounds for variations on identifying codes in the hexagonal, square, and triangular grids.Comment: This is an extended abstract, with 10 pages, 2 appendices, 5 tables, and 2 figure
    corecore