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Abstract

Identifying codes and locating-dominating codes have been designed for locating irregu-
larities in sensor networks. In both cases, we can locate only one irregularity and cannot even
detect multiple ones. To overcome this issue, self-identifying codes have been introduced which
can locate one irregularity and detect multiple ones. In this paper, we define two new classes
of locating-dominating codes which have similar properties. These new locating-dominating
codes as well as the regular ones are then more closely studied in the rook’s graphs and binary
Hamming spaces.

In the rook’s graphs, we present optimal codes, i.e., codes with the smallest possible
cardinalities, for regular location-domination as well as for the two new classes. In the binary
Hamming spaces, we present lower bounds and constructions for the new classes of codes;
in some cases, the constructions are optimal. Moreover, one of the obtained lower bounds
improves the bound of Honkala et al. (2004) on codes for locating multiple irregularities.

Besides studying the new classes of codes, we also present record-breaking constructions
for regular locating-dominating codes. In particular, we present a locating-dominating code
in the binary Hamming space of length 11 with 320 vertices improving the earlier bound of
352; the best known lower bound for such code is 309 by Honkala et al. (2004).

Keywords: Locating-dominating set; locating-dominating code; rook’s graph; Hamming space;
sensor network

1 Introduction

Sensor networks are systems designed for environmental monitoring. Various location detection
systems such as fire alarm and surveillance systems can be viewed as examples of sensor networks.
For location detection, a sensor can be placed in any location of the network. The sensor monitors
its neighbourhood (including the location of the sensor itself) and reports possible irregularities
such as a fire or an intruder in the neighbouring locations. Based on the reports of the sensors,
a central controller attempts to determine the location of a possible irregularity in the network.
Usually, the aim is to minimize the number of sensors in the network. More explanation regarding
location detection in sensor networks can be found in [4, 12, 16].

A sensor network can be modeled as a simple and undirected graph G = (V (G), E(G)) = (V,E)
as follows: the set of vertices V of the graph represents the locations of the network and the edge
set E of the graph represents the connections between the locations. In other words, a sensor can
be placed in each vertex of the graph and the sensor placed in the vertex u monitors u itself and
the vertices neighbouring u. Besides being simple and undirected, we assume that the graphs in
this paper are connected and have order of at least two. In what follows, we present some basic
terminology and notation regarding graphs. The open neighbourhood of u ∈ V consists of the
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vertices adjacent to u and it is denoted by N(u). The closed neighbourhood of u is defined as
N [u] = {u} ∪N(u). A nonempty subset C of V is called a code and the elements of the code are
called codewords. In this paper, the code C represents the set of locations where the sensors have
been placed on. For the set of sensors monitoring a vertex u ∈ V , we use the following notation:

I(u) = N [u] ∩ C.

In order to emphasize the graph G and/or the code C, we sometimes write I(u) = I(C;u) =
I(G,C;u). We call I(u) the identifying set (or the I-set) of u. The notation of identifying set can
also be generalized for a subset U of V as follows:

I(U) =
⋃
u∈U

I(C;u).

Here we also use the notation I(U) = I(C;U) = I(G,C;U).
As stated above, a sensor u ∈ V reports that an irregularity has been detected if there is

(at least) one in the closed neighbourhood N [u]. In what follows, we divide into two different
situations depending on the capability of a sensor to distinguish whether the irregularity has been
spotted in the location of the sensor itself or in its (open) neighbourhood. More precisely, we have
the following two cases:

(i) In the first case, we assume that a sensor u ∈ V reports 1 if there is an irregularity in N [u],
and otherwise it reports 0.

(ii) In the second case, we assume that a sensor u ∈ V reports 2 if there is an irregularity in u,
it reports 1 if there is one in N(u) (and none in u itself), and otherwise it reports 0.

Assume first that the sensors work as in (i). Notice then that if the sensors in the code C are
located in such places that I(C;u) is nonempty and unique for all u ∈ V , then an irregularity in
the network can be located by comparing I(C;u) to identifying sets of other vertices. This leads
to the following definition of identifying codes, which were first introduced by Karpovsky et al.
in [11]. For various papers regarding identification and related problems, we refer to the online
bibliography [13].

Definition 1. A code C ⊆ V is identifying in G if for all distinct u, v ∈ V we have I(C;u) 6= ∅
and

I(C;u) 6= I(C; v).

An identifying code C in a finite graph G with the smallest cardinality is called optimal and the
number of codewords in an optimal identifying code is denoted by γID(G).

Let C be an identifying code in G. By the definition, the identifying code C works correctly
if there is simultaneously at most one irregularity in the network. However, using the identifying
code C, we cannot locate or even detect more than one irregularity in the network. Indeed, for
example, consider the graph G in Figure 1 and the code C = {a, b, c} in the graph. Clearly, C
is an identifying code in G. However, all the sensors a, b and c are alarming if there is a single
irregularity in b, or multiple ones in d, e and f . Hence, no distinction can be made between these
two cases. Thus, we might determine a false location and more disturbingly not even notice that
something is wrong. To overcome this problem, in [7], self-identifying codes, which are able to
locate one irregularity and detect multiple ones, were introduced. (Notice that in the original
paper self-identifying codes are called 1+-identifying.) The formal definition of self-identifying
codes is given as follows.

Definition 2. A code C ⊆ V is called self-identifying in G if the code C is identifying in G and
for all u ∈ V and U ⊆ V such that |U | ≥ 2 we have

I(C;u) 6= I(C;U).

A self-identifying code C in a finite graph G with the smallest cardinality is called optimal and
the number of codewords in an optimal self-identifying code is denoted by γSID(G).
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In addition to [7], self-identifying codes have also been previously discussed in [9, 10]. Sepa-
rately in these papers, two useful characterizations have been presented for self-identifying codes.

Theorem 3 ([7, 9, 10]). Let C be a code in G. Then the following statements are equivalent:

(i) The code C is self-identifying in G.

(ii) For all distinct u, v ∈ V , we have I(C;u) \ I(C; v) 6= ∅.

(iii) For all u ∈ V , we have I(C;u) 6= ∅ and⋂
c∈I(C;u)

N [c] = {u}.

As stated earlier, self-identifying codes can locate one irregularity and detect multiple ones.
Besides that, the characterization (iii) of the previous theorem also gives another useful property
for self-identifying codes. Namely, the location of an irregularity can be determined without
comparison to other identifying sets, since for all u ∈ V the neighbourhoods of the codewords in
I(u) intersect uniquely in u.

So far, we have discussed the case where it is assumed that each sensor outputs 1 or 0 depending
on whether there is an irregularity in the neighbourhood or not. In what follows, we now focus
on the case (ii) where a sensor can also distinguish if the irregularity is on the location of the
sensor itself. Then notice that if the sensors in the code C are located in such places that I(C;u)
is nonempty and unique for all u ∈ V \ C, then an irregularity in the network can be located by
comparing I(C;u) to identifying sets of other non-codewords. Indeed, we do not have to worry
about vertices in C as an irregularity in such locations is immediately determined by a sensor
outputting 2. This leads to the following definition of locating-dominating codes, which were first
introduced by Slater in [15, 17, 18].

Definition 4. A code C ⊆ V is locating-dominating in G if for all distinct u, v ∈ V \ C we have
I(C;u) 6= ∅ and

I(C;u) 6= I(C; v).

A locating-dominating code C in a finite graph G with the smallest cardinality is called optimal
and the number of codewords in an optimal locating-dominating code is denoted by γLD(G).

Comparing the definitions of identifying and locating-dominating codes, we immediately notice
their apparent similarities; in the case of identification we require that the identifying sets I(u)
are unique for all vertices and in the case of location-domination the same is required for non-
codewords. Therefore, as self-identifying codes are a natural specialization of regular identifying
codes, it is obvious to consider if something similar could be done for locating-dominating codes.
Indeed, the characterizations of Theorem 3 gives two natural ways to define new types of locating-
dominating codes with similar kind of beneficial properties as self-identifying codes have over
regular identifying codes. The definitions of these codes are given as follows.

Definition 5. A code C ⊆ V is self-locating-dominating in G if for all u ∈ V \ C we have
I(C;u) 6= ∅ and ⋂

c∈I(C;u)

N [c] = {u}.

A self-locating-dominating code C in a finite graph G with the smallest cardinality is called optimal
and the number of codewords in an optimal self-locating-dominating code is denoted by γSLD(G).

Definition 6. A code C ⊆ V is solid-locating-dominating in G if for all distinct u, v ∈ V \ C we
have

I(C;u) \ I(C; v) 6= ∅.
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(b) Solid-locating-dominating code inG

Figure 1: Optimal self-locating-dominating and solid-locating-dominating codes in G

A code C ⊆ V is dominating if I(C;u) 6= ∅ for all u ∈ V . Since G is a connected graph on at least
two vertices, a solid-locating-dominating code is also dominating. A solid-locating-dominating
code C in a finite graph G with the smallest cardinality is called optimal and the number of
codewords in an optimal solid-locating-dominating code is denoted by γDLD(G).

The previous definitions are illustrated in the following example. In particular, we show that
the given definitions are different. Compare this observation to self-identifying codes for which
the analogous requirements are just other characterizations for the codes.

Example 7. Let G be the graph illustrated in Figure 1. Let C be a self-locating-dominating code
in G. Observe first that if a /∈ C, then I(C; a) ⊆ {b, d} and we have

{a, e} ⊆
⋂

c∈I(C;a)

N [c].

This implies a contradiction and therefore the vertex a belongs to C. An analogous argument
also holds for the vertices c, d and f . Hence, we have {a, c, d, f} ⊆ C. Moreover, the code
C1 = {a, c, d, f}, which is illustrated in Figure 1(a), is self-locating-dominating in G since for the
non-codewords b and e we have I(C1; b) = {a, c} and N [a] ∩ N [c] = {b}, and I(C1; e) = {d, f}
and N [d] ∩N [f ] = {e}. Hence, C1 is an optimal self-locating-dominating code in G and we have
γSLD(G) = 4.

Let us then consider the code C2 = {a, b, c}, which is illustrated in Figure 1(b). Now we
have I(C2; d) = {a}, I(C2; e) = {b} and I(C2; f) = {c}. Therefore, it is easy to see that C2 is a
solid-locating-dominating code in G. Moreover, it can be shown that there are no solid-locating-
dominating codes in G with smaller number of codewords. Thus, C2 is an optimal solid-locating-
dominating code in G and we have γDLD(G) = 3.

In the previous example, we showed that the definitions of self-locating-dominating and solid-
locating-dominating codes are different. In the following theorem, we present new characterizations
for self-locating-dominating and solid-locating-dominating codes. Comparing these characteriza-
tions to the original definitions of the codes, the differences of the codes become apparent.

Theorem 8. Let G = (V,E) be a connected graph on at least two vertices:

(i) A code C ⊆ V is self-locating-dominating if and only if for all distinct u ∈ V \C and v ∈ V
we have

I(C;u) \ I(C; v) 6= ∅.

(ii) A code C ⊆ V is solid-locating-dominating if and only if for all u ∈ V \C we have I(C;u) 6= ∅
and  ⋂

c∈I(C;u)

N [c]

 \ C = {u}.
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Proof. (i) Assume first to the contrary that there exist u ∈ V \ C and v ∈ V such that I(C;u) \
I(C; v) = ∅. This implies that I(C;u) ⊆ I(C; v) and we have a contradiction as

{u, v} ⊆
⋂

c∈I(C;u)

N [c].

On the other hand, if there exists u ∈ V \ C such that

{u, v} ⊆
⋂

c∈I(C;u)

N [c]

for some v ∈ V , then I(C;u) \ I(C; v) = ∅ (a contradiction).
(ii) Assume first to the contrary that there exist u, v ∈ V \ C such that I(C;u) \ I(C; v) = ∅.

This implies that I(C;u) ⊆ I(C; v) and we have a contradiction as

{u, v} ⊆

 ⋂
c∈I(C;u)

N [c]

 \ C.

On the other hand, if there exists u ∈ V \ C such that

{u, v} ⊆

 ⋂
c∈I(C;u)

N [c]

 \ C
for some v ∈ V \ C, then I(C;u) \ I(C; v) = ∅ (a contradiction).

The previous theorem immediately gives the following corollary.

Corollary 9. If C is a self-locating-dominating code in G, then C is also solid-locating-dominating
in G. Furthermore, we have γDLD(G) ≤ γSLD(G).

As discussed earlier, self-identifying codes have benefits over regular identifying codes; they de-
tect more than one irregularity and locate one irregularity without comparison to other identifying
sets. Next we study the same properties concerning self-locating-dominating and solid-locating-
dominating codes:

• Let us begin by considering the ability to locate an irregularity without comparison to other
identifying sets. For self-locating-dominating codes, this property immediately follows from
the definition. Analogously, the property is obtained for solid-locating-dominating codes by
Theorem 8(ii).

• Consider then the ability to detect more than one irregularity. Let first C be a self-locating-
dominating code in G. If more than one sensor is reporting 2, then we immediately detect
that there are multiple irregularities. Hence, we may assume that there is at most one sensor
reporting 2. Let U be the set of sensors reporting 1 (U can be empty). Consider then the
intersection

X =
⋂
c∈U

N [c].

Here we assume that X = V if the set U of sensors reporting 1 is empty. Now, by the
definition of self-locating-dominating codes (as at most one sensor is reporting 2), there are
multiple irregularities if and only if the intersection X is empty, or a sensor reporting 2 does
not belong to X. Indeed, if X = ∅ or a sensor reporting 2 does not belong to X, then there
are clearly multiple irregularities. On the other hand, if there is an irregularity in a location
u with a sensor and at least one without a sensor, then X = ∅ or u /∈ X, and if there is no
irregularity in a location with a sensor and at least two without a sensor, then X = ∅. Thus,
self-locating-dominating codes can detect multiple irregularities.
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On the other hand, solid-locating-dominating codes do not always detect multiple irregulari-
ties. For a counterexample, consider the graph G and the solid-locating-dominating code C2

of Example 7. If the vertex b is reporting 2 and the vertices a and c are reporting 1, then there
might be a single irregularity in b or multiple irregularities in b, d and f . However, if it is
assumed that the irregularities occur only in the locations without a sensor, then we can de-
tect multiple irregularities using similar arguments as in the case of self-locating-dominating
codes.

In the paper our main focus is on the new types of locating-dominating codes. However, we
also present some results for regular locating-dominating codes. In Section 2, we consider the
different types of locating-dominating codes in the Cartesian product of two complete graphs,
which is also called the rook’s graph. In particular, we obtain optimal codes for regular location-
domination, self-location-domination and solid-location-domination. In Section 3, we consider
similar problems in the binary Hamming space (or hypercube) Fn, where n is a positive integer.
In particular, we present an infinite family of optimal self-locating-dominating codes and construct
regular locating-dominating codes with the smallest known cardinalities; especially proving that
309 ≤ γLD(F11) ≤ 320. Moreover, our bound in Theorem 20 on solid-locating-dominating codes
implies an improvement on Honkala et al. bound in [8], see Remark 21.

2 Location-domination in the rook’s graphs

In this section, we consider the different locating-dominating codes in the Cartesian product of
two complete graphs. The Cartesian product of graphs G1 = (V1, E1) and G2 = (V2, E2) is
G1�G2 = (V1 × V2, E) where (x, y)(x′, y′) ∈ E if and only if x = x′ and yy′ ∈ E2, or y = y′ and
xx′ ∈ E1. If Kn and Km are two complete graphs of order n and m, respectively, then Kn�Km is
known as rook’s graph and can be viewed as a chess board with m rows and n columns. The closed
neighbourhood of a vertex is determined by the movement of a rook in chess. We denote V (Kn) =
{x1, . . . , xn}, V (Km) = {y1, . . . , ym} and the kth row by Rk = {(xi, yk) | i = 1, . . . , n, 1 ≤ k ≤ m}
(resp. the hth column by Ph = {(xh, yi) | i = 1, . . . ,m, 1 ≤ k ≤ n}).

In our considerations, the columns are ordered from left to right and the rows from bottom to
top. However, we will occasionally permute the order of rows and/or columns. If C is a locating-
dominating, self-locating-dominating or solid-locating-dominating code, it will also be such code
in the graph gained through these permutations since all neighbourhoods remain the same after
these permutations. Previously, in [5], [6], [9] and [10], optimal codes have been respectively found
for identification and self-identification in the rook’s graphs. These results are combined in the
following theorem.

Theorem 10 ([5, 6, 9]). Let G = Kn�Km be a rook’s graph with m ≥ n ≥ 2. We have the
following formulas for the sizes of optimal identifying and self-identifying codes in Kn�Km:

γID(Kn�Km) =

{
m+

⌊
n
2

⌋
, m ≤ 3n

2

2m− n, m ≥ 3n
2

and

γSID(Kn�Km) = 2m, m ≥ n.

In what follows, we are going to find optimal locating-dominating, self-locating-dominating
and solid-locating-dominating codes in the rook’s graphs. For this purpose, we first introduce the
following helpful lemma.

Lemma 11. For v = (xi, yj) ∈ V (Kn�Km) the following statements hold:

(i) If |I(v)| = 2 and vertices in I(v) are not on the same row or column, then |
⋂

c∈I(v)N [c]| = 2.

(ii) If |I(v)| ≥ 2 and vertices in I(v) are on the same row, then
⋂

c∈I(v)N [c] = Rj.

(iii) If |I(v)| ≥ 2 and vertices in I(v) are on the same column, then
⋂

c∈I(v)N [c] = Pi.
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(iv) If |I(v)| = 3 and all vertices in I(v) are not on the same row or column, then
⋂

c∈I(v)N [c] =
v.

Proof. Let v = (xi, yj).
(i) If we have I(v) = {(xi, yj′), (xi′ , yj)}, when i 6= i′ and j 6= j′, then

⋂
c∈I(v)N [c] =

{(xi, yj), (xi′ , yj′)}.
(ii) If we have {(xi′ , yj), (xi′′ , yj)} ⊆ I(v), when i′ 6= i′′, then

⋂
c∈I(v)N [c] = Rj .

(iii) If we have {(xi, yj′), (xi, yj′′)} ⊆ I(v), when j′ 6= j′′, then
⋂

c∈I(v)N [c] = Pi.

(iv) Without loss of generality, we may assume that there are two codewords in the same
column as v and one in the same row. Hence we have I(v) = {(xi, yj′), (xi, yj′′), (xi′ , yj)} for some
i, j with i 6= i′ and j′ 6= j′′. This implies that

⋂
c∈I(v)N [c] = {(xi, yj)}.

Let us first consider self-locating-dominating codes. We will give optimal cardinality of such
codes in the next theorem.

Theorem 12. Let G = Kn�Km be a rook’s graph with m ≥ n ≥ 1. We have

γSLD(G) =


m, m ≥ 2n, or n = 1,

2n, 2n > m > n ≥ 2,

2n− 1, m = n > 2,

4, n = m = 2.

Proof. Let V (Kn) = {x1, x2, . . . , xn}, V (Km) = {y1, y2, . . . , ym} and C ⊆ V (G) be an optimal
self-locating-dominating code in G.

• Fact 1: Lemma 11 gives that for each non-codeword v ∈ V (G) we have |I(C; v)| ≥ 3 and
we know that there are no rows or columns empty of codewords.

Let us first consider the case where m ≥ 2n. The fact 1 tells us that there has to be at least
one codeword on each row. Hence, we get γSLD(G) ≥ m. The condition m ≥ 2n includes most of
the cases under n = 1 and the case n = m = 1 is clear.

By selecting as our code

C1 = {(xi, yj) ∈ V (G) | i− j ≡ 0 mod n}

we get |C1| = m. Since |C1| = m ≥ 2n, there is exactly one codeword on each row and, as there
are n vertices on each row, there are at least two vertices on each column. Therefore, we have
at least three vertices which are not in the same row or column in each I-set of a non-codeword.
Now we get from Lemma 11 that C1 is a self-locating-dominating code.

Let us now consider the case where 2n > m > n. If we had |C| ≤ 2n− 1 ≤ 2m− 3, then there
would be a column Pi and at least two rows Rj and Rj′ with only one codeword (or an empty
row or column). Now at least one of the vertices (xi, yj) and (xi, yj′) is not a codeword. We can
assume that (xi, yj) /∈ C, now we have |I(xi, yj)| = 2 and based on the fact 1 C cannot be a
self-locating-dominating code. Thus, we have γSLD(G) ≥ 2n.

If we choose
C2 = {(xi, yj) ∈ V (G) | j − i = 0 or j − i = m− n},

we get |C2| = 2n and there are two vertices on each column and at least one vertex on each row.
Therefore, we have at least three vertices which are not in the same row or column in each I-set
of a non-codeword. Thus, based on Lemma 11, C2 is a self-locating-dominating code. In Figure 2
code C2 is illustrated for K5�K7.

Let us consider the case where m = n > 2. If we had |C| ≤ 2n − 2 = 2m − 2, then there
would be at least two columns and rows with only one codeword (or an empty row or column).
Hence, we can again choose a non-codeword v with |I(v)| = 2 and fact 1 tells that C cannot be a
self-locating-dominating code. Now we have γSLD(G) ≥ 2n− 1.
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Figure 2: Optimal self-locating-dominating
code for K5�K7.

Figure 3: Optimal self-locating-dominating
code for K6�K6.

If we choose

C3 = {(xi, yj) ∈ V (G) | i− j = 0, i− j = 1 or (i, j) = (2, n)} \ {(x2, y1)},

we have two vertices on each row and column except for R1 and P1. But since R1∩P1 = (x1, y1) ∈
C3 each intersection of a row and column with a single codeword belongs to code C3. Thus, for
each non-codeword v ∈ V (G), we have at least three vertices in I(v) and they are not all in the
same row or column. Now Lemma 11 says that C3 is a self-locating-dominating code. We also
have |C3| = 2n− 1. In Figure 3 code C3 is illustrated for K6�K6.

Let us finally consider the case m = n = 2. If we have only three codewords in C, then the I-
set of the non-codeword contains only two codewords and the intersection of their neighbourhoods
contains two words. On the other hand, the whole graph only contains four vertices so we have
γSLD(K2�K2) = 4.

We will see in the next theorem that optimal solid-locating-dominating codes are mostly of the
same size as optimal self-locating-dominating codes. However, this is only a superficial similarity.
It will be seen in the proof that the structures of solid-locating-dominating codes vary more and
there are more of them. For example, the codes in the Figures 4 and 5 are optimal solid-locating-
dominating codes for K5�K6 and K5�K5. However, they are not self-locating-dominating codes.

Figure 4: Optimal solid-locating-dominating
code for K5�K6.

Figure 5: Optimal solid-locating-dominating
code for K5�K5.

Theorem 13. Let G = Kn�Km be a rook’s graph with m ≥ n ≥ 1. We have

γDLD(G) =


m, m ≥ 2n ≥ 4 or n = 2,

2n, 2n > m > n > 2,

2n− 1, m = n > 2,

m− 1, m > n = 1.

Proof. Let V (Kn) = {x1, x2, . . . , xn}, V (Km) = {y1, y2, . . . , ym} and C ⊆ V (G) be an optimal
solid-locating-dominating code.
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If there is a row Ri such that Ri ∩ C = ∅ and there are no vertices with empty I-sets, then
Pj ⊆

⋂
c∈I(xj ,yi)

N [c] for each j. Thus, C = V (G) \Ri.

• Fact 2: The code C, |C| < m(n − 1), is not a solid-locating-dominating code if there is a
row or a column without any codewords.

Let us first consider the case where m ≥ 2n ≥ 4. Fact 2 says that there has to be at least one
codeword on each row so we have γDLD(G) ≥ m. We also have γDLD(G) ≤ γSLD(G) = m by
Theorem 12. Hence, γDLD(G) = m.

Let us next consider the case where 2n > m > n > 2. Theorem 12 gives an upper bound
γDLD(n) ≤ γSLD(n) = 2n. Let |C| ≤ 2n−1 ≤ 2m−3. Without loss of generality we may assume
that the rows with a single codeword are consecutive rows and numbered as the first ones in the
notation Ri and the same is true for the columns Pi. Denote the rows and columns which contain
exactly one codeword as follows:

K = {R1, . . . , RK} and T = {P1, . . . , PT }.

Since there are no empty rows or columns by fact 2 and |C| ≤ 2n − 1 ≤ 2m − 3, we have K ≥ 3
and T ≥ 1. Hence, K + T ≥ 4.

Let us denote codewords on column Pi as (xi, ysi), where 1 ≤ i ≤ T and codewords on row Rj

as (xhj
, yj), where 1 ≤ j ≤ K. Let us further denote

S = {(xi, yj) | 1 ≤ i ≤ T, 1 ≤ j ≤ K}.

If we have a codeword, say (xt, yst) ∈ S, then at least one of the vertices (x1, yst) or (x2, yst) is
a non-codeword, say (x1, yst). Now I(x1, yst) = {(xt, yst), (x1, ys1)} and s1 6= st. Furthermore,⋂

c∈I(x1,yst )
N [c] = {(xt, ys1), (x1, yst)}. Since column Pt has only one codeword neither of vertices

(xt, ys1), (x1, yst) belongs to C and C is not a solid-locating-dominating code. Thus, no vertex in
S can be a codeword.

For each vertex (xi, yj) ∈ S we have I(xi, yj) = {(xhj , yj), (xi, ysi)}. Hence, in order for C to
be a solid-locating-dominating code, vertex (xhj

, ysi) has to be a codeword if (xi, yj) ∈ S. We can
assume that codewords (xhj

, yj) in K are located in Y different columns and codewords (xi, ysi)
in T are located in Z different rows. Now each of the Y Z vertices (xhj

, ysi) has to be a codeword.

S

Y Z

︸︷︷︸︸︷︷︸
T Y

{
K

{Z

Figure 6: Part of a solid-locating-dominating
code in a rook’s graph with Y = 3, Z = 2,

T = 3,K = 4.

Figure 7: Optimal locating-dominating
code for K4�K9.

Let a be a positive integer. Observe that if we have more than two codewords in a row, say
2+a codewords, then there are a rows with exactly one codeword since we have |C| ≤ 2n−1. The
same is also true for columns. Hence we have at least 3 + T + Y Z − 2Z rows with one codeword
due to rows with multiple codewords since we have T +Y Z codewords on Z rows. Similarly we see

9



that we have at least 1 +K +Y Z − 2Y columns with one codeword due to columns with multiple
codewords.

Thus, we get the following inequality which implies a contradiction:

K + T ≥ 4 + (K + Y Z − 2Y ) + (T + Y Z − 2Z) = 4 +K + T + 2(Y Z − Y − Z) ≥ K + T + 2.

The latter inequality is due to the fact that Y Z − Y − Z ≥ −1, when Y,Z ≥ 1. Therefore, we
have |C| ≥ 2n.

Let us then consider the case m = n > 2. If |C| ≤ 2n − 2 = 2m − 2, then K ≥ 2, T ≥ 2,
K+T ≥ 4 and Y, Z ≥ 1. Now as in the previous case, there are no codewords in S, there is a Y ×Z
rectangle filled with codewords and we gain the same contradiction with similar reasoning. Hence
the same arguments also apply here and we have |C| ≥ 2n−1. Since γDLD(G) ≤ γSLD(G) = 2n−1,
we have γDLD(G) = 2n− 1.

As the next case we consider n = 2. If |C| < m, then there is a row without a codeword. On
the other hand we can choose C = P1 as our code. Thus |C| = m.

Finally as the last case we consider m > n = 1. If |C| < m − 1, then there are two non-
codewords with I-set equal to C and so C is not a solid-locating-dominating code. On the other
hand if C = V (G) \ {v}, then I(v) = C and I(v) is unique as the only I-set of non-codeword.

Finally, in the following theorem, we construct optimal locating-dominating codes in rook’s
graphs.

Theorem 14. Let G = Kn�Km be a rook’s graph with m ≥ n ≥ 1. We have

γLD(G) =

{
m− 1, m ≥ 2n,⌈
2n+2m

3

⌉
− 1, n ≤ m ≤ 2n− 1.

Proof. Let V (Kn) = {x1, x2, . . . , xn}, V (Km) = {y1, y2, . . . , ym}, γ = γLD(Kn�Km) and C ⊆
V (G) be an optimal locating-dominating code.

We first observe that if there are two rows Ri and Rj without codewords, then vertices (x1, yi)
and (x1, yj) have the same I-set. The case for two columns without codewords is similar. If we
have a row Rj and a column Pi without codewords, then I(xi, yj) = ∅.

• Fact 3: The total number of rows and columns without codewords in G is less than two.

Let us consider the case m ≥ 2n. If we had |C| ≤ m − 2, we would have at least two rows
empty of codewords. Hence we have γ > m− 2. We can choose

C1 = {(xi, yj) | i− j ≡ 0 mod n, j ≥ 2}.

The code C1 is illustrated in Figure 7 for values n = 4 and m = 9. Each non-codeword, which
is not located in R1 or P1, has at least two codewords on the same column and one codeword on
the same row. Hence, they are uniquely determined by Lemma 11. If the vertex is located in R1,
then I(xi, y1) = {(xi, yi+kn) | i+ kn ∈ [2,m], k ∈ Z}, which is a unique I-set since all other I-sets
contain a codeword from two different columns. For each vertex (x1, yj), j > 1, we have (x1, yn+1)
in its I-set and some codeword from the row Rj . Hence vertices on P1 have unique I-set. Note
that column P1 has to be considered only when m = 2n.

Let us then consider the case n ≤m < 2n. Let

• sp denote the number of columns with exactly one codeword,

• sp0 denote the number of columns without codewords,

• sr denote the number of rows with exactly one codeword and

• sr0 denote the number of rows without codewords.

10



A A A c4 E E E E E

A A A E E E E E

A A A E E E E E

c3 A A A E E E E E

A A A A F c1 F F F

AB AB AB AB B B B

AB AB AB B B B B

AB AB AB B B B B c2

A A A D D D D D

A A A D D D D D

Figure 8: Optimal locating-dominating code for K10�K10.

We can assume that sp0 + sr0 ≤ 1. If we had sp0 + sr0 ≥ 2, then we would not have a locating-
dominating code by the fact 3.

By counting the size of the code column by column, we get

γ ≥ 0 · sp0 + sp + 2(n− sp − sp0)

which gives us
sp ≥ 2n− γ − 2sp0. (1)

When we count the size of the code row by row, we get similarly

sr ≥ 2m− γ − 2sr0. (2)

If we have two codewords c1 and c2 with I-sets I(ci) = {ci}, 1 ≤ i ≤ 2, then C is not a locating-
dominating code. Let c1 = (xi1 , yj1) and c2 = (xi2 , yj2). Now I(xi2 , yj1) = I(xi1 , yj2) = {c1, c2}.
Hence our sr rows with exactly one codeword and sp columns with exactly one codeword share at
most one codeword. Now we get from inequalities (1) and (2)

γ ≥ sp + sr − 1 ≥ 2n+ 2m− 2γ − 2(sp0 + sr0)− 1,

γ ≥
⌈

2(m+ n)

3

⌉
− 1.

We can choose
C2 = A1 ∪A2 ∪A3, where

A1 =

{
(xi, yj) | i = j ≤

⌊
m+ n

3

⌋}
, A2 =

{
(xi, yj) | j − i =

⌊
m+ n

3

⌋}
and

A3 =

{
(xi, yj) | i+ j = 2

⌊
m+ n

3

⌋
and

⌊
m+ n

3

⌋
+ 1 ≤ i ≤ n− 1

}
(and if n = 2, m = 3 we can choose C2 = P1). Now we have |C2| = bm+n

3 c+ (n− 1− bm+n
3 c) +

(m − bm+n
3 c) = d 2m+2n

3 e − 1. In Figure 8, we have an optimal locating-dominating code for
K10�K10. The labelling of areas in what will follow corresponds to that of the figure. Codeword c1

has coordinates
(
x⌊m+n

3

⌋, y⌊m+n
3

⌋), c2 has coordinates
(
xn−1, y

2
⌊

m+n
3

⌋
+1−n

)
, c3 has coordinates

11



(
x1, y⌊m+n

3

⌋
+1

)
and c4 has coordinates

(
x
m−
⌊

m+n
3

⌋, ym). The I-set of a vertex on Pn is the set of

codewords on the same row as it is. All other I-sets have also vertices from different rows. Hence
the vertices on Pn have unique I-set. The non-codewords on columns Pi, 1 ≤ i ≤ m−bm+n

3 c have
at least three codewords in their I-sets of which two are on the same column and at least one on
the same row. Thus by Lemma 11 they have unique I-set. Let us denote the set of these vertices
by A. The vertices in set B on rows Rj , 2bm+n

3 c − n + 1 ≤ j ≤ bm+n
3 c − 1, have at least three

codewords in their I-sets if they are not on column Pn. Out of these three codewords two are on
the same row and at least one on the same column. Hence by Lemma 11 they have unique I-set.

The vertices D on (xi, yj), m − bm+n
3 c + 1 ≤ i ≤ n − 1, 1 ≤ j ≤ 2bm+n

3 c − n ≤ m − bm+n
3 c,

have codeword (xj , yj) in their I-set and one codeword from a different row. Thus by Lemma 11
there is only one other vertex which has these codewords in its I-set. However, the other vertex
would have to be in A and vertices in A have unique I-set. Vertices E; (xi, yj), m− bm+n

3 c+ 1 ≤
i ≤ n− 1, bm+n

3 c+ 1 ≤ j ≤ m, have two vertices in their I-set. One of which is from columns Pi,
1 ≤ i ≤ m−bm+n

3 c and the other one is from a different row. Hence by Lemma 11 the only other
vertex that could have the same I-set is in A but vertices in A have unique I-set.

Finally the vertices F (xi, yj), m−bm+n
3 c+1 ≤ i ≤ n−1, j = bm+n

3 c, have two vertices in their
I-sets. Codeword (bm+n

3 c, b
m+n

3 c) and a codeword from a different row Rl with 2bm+n
3 c−n+1 ≤

l ≤ bm+n
3 c − 1. The only other vertex that could share this I-set is located on rows Rl, but such

vertices had at least three vertices in their I-sets.

In conclusion, by the previous theorems, we determine the cardinalities of optimal locating-
dominating, self-locating-dominating and solid-locating-dominating codes in all graphs Km�Kn.

3 Location-domination in the binary Hamming spaces

In this section, we consider self-locating-dominating and solid locating-dominating codes in binary
Hamming spaces of length n. A binary Hamming space of length n is a graph with the vertex set
Fn = {0, 1}n, and two vertices have an edge between them if they differ in exactly one coordinate.
Vertices of Fn are called words. The distance d(x, y) is the number of coordinates where words x
and y differ. We define 0 and 1 as the all zero word and respectively all one word. We define ei
as the almost all zero word which has a 1 at i’th coordinate. The weight w(x) of a word x ∈ Fn

is the number of coordinates equal to 1, i.e., w(x) = d(x,0). When we speak about the cover of
a word x, we mean the cardinality |I(x)|. The sizes of optimal self-locating-dominating and solid-
locating-dominating codes in Fn are denoted by γSLD(Fn) = γSLD(n) and γDLD(Fn) = γDLD(n),
respectively.

In what follows, we first concentrate on the case of self-locating-dominating codes. In partic-
ular, we present an infinite family of optimal self-locating-dominating codes in binary Hamming
spaces. This result is based on the observation that a code C is self-locating-dominating in Fn if
and only if for each x ∈ Fn \ C we have |I(C;x)| ≥ 3 (see Theorem 16). An analogous result for
self-identifying codes has been presented in [7]: a code C is self-identifying in Fn if and only if for
each x ∈ Fn we have |I(C;x)| ≥ 3.

The following well-known observation is useful in the following proofs of the paper.

Observation 15. Let a, b ∈ Fn. We have

∣∣N [a] ∩N [b]
∣∣ =


0, if d(a, b) ≥ 3,

2, if d(a, b) = 2,

2, if d(a, b) = 1,

n+ 1, if a = b.

Theorem 16. A code C is a self-locating-dominating code in Fn if and only if for each non-
codeword w we have |I(w)| ≥ 3.
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Proof. By Observation 15 we have that if two non-codewords w and w′ have at least three common
neighbours, then they are the same word. On the other hand if w has only two codewords in its
I-set, then there is another word which has those same codewords in its I-set.

Now we get the lower bound for self-locating-dominating codes.

Theorem 17. Let n ≥ 3. We have

γSLD(n) ≥
⌈

3 · 2n

n+ 3

⌉
.

Proof. Let C be a self-locating-dominating code in Fn. Theorem 16 says that each non-codeword w
has at least three codewords in I(w). We also have |I(c)| ≥ 1 for all c ∈ C. Thus by double counting
pairs (c, x) such that c ∈ C, x ∈ Fn and d(c, x) ≤ 1, we get (n+1)|C| ≥ |C|+3|Fn\C| = 3·2n−2|C|.
This gives us

|C| ≥
⌈

3 · 2n

n+ 3

⌉
.

In the proof of the following theorem, we are going to need some basics of linear codes. For
more details, the interested reader is referred to [14]. The binary Hamming space Fn is a vector
space under the normal addition of vectors and multiplication with scalars. We call code C linear
if it is a subspace of Fn. If C is a linear code, then we call H its parity-check matrix if HxT = 0 if
and only if x ∈ C. If HyT = d, then we get a codeword of C by finding columns of H which form
d as their sum and adding ei to y if i’th column is in the sum. We denote the covering radius of
C by R(C) = maxx∈Fn minc∈C d(x, c). Hence, we have R(C) = 1 if each word has a codeword in
its closed neighbourhood.

Theorem 18. Let n and k be positive integers such that n = 3(2k − 1). We have

γSLD(n) = 23(2
k−1)−k.

Proof. Theorem 17 gives us the lower bound |C| ≥ 3·2n
n+3 = 23(2

k−1)−k.
Let C be a linear code such that its k × n parity-check matrix H, where k ∈ Z+ and n =

3 · (2k − 1), contains each non-zero column of Fk three times and no zero columns. We now have
R(C) = 1 since each non-zero word is a column of H. Furthermore, each non-codeword is covered
by three codewords since there are three copies of each non-zero column. The cardinality of the

code is |C| = 2n−k = 23(2
k−1)−k and it is a self-locating-dominating code by Theorem 16.

Let C ⊆ Fn and D ⊆ Fm be codes. The direct sum of C and D is defined as C ⊕D = {(x, y) |
x ∈ C, y ∈ D}. In the following theorem, it is shown that new self-locating-dominating codes can
be formed from known ones using a direct sum.

Theorem 19. If C ⊆ Fn is a self-locating-dominating code in Fn, then D = C ⊕ F is also a
self-locating-dominating code in Fn+1.

Proof. Let (a, x) ∈ Fn+1 where a ∈ Fn, x ∈ F and a /∈ C. We have I(D; (a, x)) = {(c, x) | c ∈
I(C; a)}. Since |I(C; a)| ≥ 3, also |I(D; (a, x))| ≥ 3. Therefore, D is a self-locating-dominating
code.

Let us then concentrate on solid-locating-dominating codes. We will first give a lower bound
such that its ratio to 2 2n

n+1 approaches 1 as n tends to infinity. After that we will give an infinite
sequence of solid-locating-dominating codes with the same limit. When we compare the sizes
of optimal self-locating-dominating and solid-locating-dominating codes we see from Theorems
17 and 18 that optimal solid-locating-dominating codes are essentially smaller. In the following
theorem, we first give a lower bound for solid-locating-dominating codes.
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Theorem 20. Let n be an integer such that n ≥ 5. We have

γDLD(n) ≥
⌈(

1 +
n− 1

n2 + n+ 2

)
2n+1

n+ 1

⌉
.

Proof. Let C ⊆ Fn be a solid-locating-dominating code. Let us define sets

Ci = {c ∈ C | |I(c)| = i} and Ni = {v /∈ C | |I(v)| = i}.

Let us also denote Ci+ =
⋃n+1

j=i Cj and Ni+ =
⋃n

j=iNj .
Each of the |C| codewords covers n + 1 words. Hence together they give total of (n + 1)|C|

cover. On the other hand, if each of the |Fn| words is covered on average by at least 2 + 2n−2
n2+n+2

codewords, then we have an inequality (n+1)|C| ≥ (2+ 2n−2
n2+n+2 )|Fn| which gives the desired result

when we solve |C|.
If w ∈ N1 and I(w) = {c}, then c ∈ Cn. Otherwise, there would be a non-codeword v such

that I(w) \ I(v) = ∅ which would mean that C is not a solid-locating-dominating code. If w ∈ N2

and I(w) = {c1, c2}, then N(c1) ∩N(c2) = {w,w′}. We have I(w) ⊆ I(w′) and this implies that
w′ ∈ C as in Figure 9.

When n ≥ 5, we have 2 + 2n−2
n2+n+2 ≤

9
4 and we will be moving covers from words to words

according to following three rules:

R1. If x ∈ Ni, 3 ≤ i ≤ n, we will be moving 1
4 cover from it to each codeword in N(x).

R2. If c ∈ C3+ and N(c) ∩ N1 = ∅, then we move 2n−2
n2+n+2 cover from c to each codeword in

I(c) (including c itself) and each word which is neighbour to two words in I(c) \ {c} as in
Figure 10.

R3. If c ∈ Cn and N(c)∩N1 = {x}, then we first move one cover from c to x and then we move
n−3

2+(n−1
2 )

cover from c to x, c and each word which is neighbour to two words in I(c) \ {c} as

in Figure 11.

w′

c1 c2

w

Figure 9: If
w ∈ N2, then
w′ ∈ C.

C

c1 c2 c3 w1 w2

w w w w

Figure 10: Rule R2: c gives
cover to words pointed by

arrows.

C

c1 c2 c3 c4 x

w w w w

Figure 11: Rule R3: c gives cover
to words pointed by arrows.

We immediately notice that we never move cover away from a word with two different rules. We
will next go through all types of words in the following order: N3+ , C1, c ∈ C3+ with N(c)∩N1 = ∅,
N1, c ∈ Cn for which N(c) ∩N1 6= ∅, N2 and finally C2.

Let us first consider words x ∈ Ni, 3 ≤ i ≤ n. If we move 1
4 cover from x to i codewords in its

I-set, then x has i− i
4 ≥

9
4 cover left.

If codeword c is in C1, then each word x ∈ N(c) is in N3+ . Since if x ∈ N1, then c ∈ Cn and if
x ∈ N2, then c has a codeword neighbour. Hence c has n neighbours which are in N3+ and each
of them gives 1

4 cover to c by R1. Thus c has at least 9
4 cover since n ≥ 5.

Let us next consider a codeword c ∈ Cn+1−K such that either K = 1 and N(c) ∩ N1 = ∅ or
K ∈ {i | 0 ≤ i ≤ n− 2, i 6= 1}. We move 2n−2

n2+n+2 cover from c to n+ 1−K +
(
n−K

2

)
words. After
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C x

Cn

C3+
N2

N1

c′′

Figure 12: A solid-locating-dominating code when x ∈ N1. Darker vertices are in code C.

that c has

n+ 1−K −
(
n+ 1−K +

(
n−K

2

))
2n− 2

n2 + n+ 2
+

2n− 2

n2 + n+ 2

(∗)
≥n+ 1−K −

(
n+ 1−K +

(
n−K

2

))
n− 1−K

n+ 1−K +
(
n−K

2

) +
2n− 2

n2 + n+ 2

=2 +
2n− 2

n2 + n+ 2

(3)

cover. We get the inequality (∗) from the fact that f(x) = x−1
x+1+(x

2)
is decreasing when x ≥ 3

and f(2) = f(5). Hence f(n − K) = n−1−K
n+1−K+(n−K

2 )
gets its minimum value when K = 0 at

f(n) = 2n−2
n2+n+2 since n ≥ 5.

Let x ∈ N1 and {c} = I(x). Hence c ∈ Cn and x has 1 + 1 + n−3
2+(n−1

2 )
cover by R3. We have

n− 3

2 +
(
n−1
2

) ≥ 2n− 2

n2 + n+ 2
, when n ≥ 5.

Hence x has enough cover.
When c ∈ Cn and x ∈ N1 ∩ N(c), we move n−3

2+(n−1
2 )

cover from c to x, c and
(
n−1
2

)
words

neighbouring exactly two of codewords in N(c) and 1 more cover to x in the rule R3. Now c has
n− 1−

(
2 +

(
n−1
2

))
n−3

2+(n−1
2 )

+ n−3
2+(n−1

2 )
= 2 + n−3

2+(n−1
2 )

cover left which is enough.

Let x ∈ N2 and I(x) = {c1, c2}. Hence N(c1) ∩ N(c2) = {x, c}. Since C is a solid-locating-
dominating code, we have that c ∈ C. Thus |I(c)| ≥ 3 and c gives to x either 2n−2

n2+n+1 cover by R2

or n−3
2+(n−1

2 )
cover if |I(c)| = n and N(c) ∩N1 6= ∅ by R3. Hence x has at least 2 + 2n−2

n2+n+2 cover.

Let c ∈ C2 and I(c) = {c, c′}. If c′ ∈ C2, then c has n − 1 non-codewords in N3+ in its
neighbourhood. These words are in N3+ , since they clearly cannot be in N1 and if I(w) = {c, c′′}
for some w ∈ N2, then c′′ and c have a common codeword in their I-set but this is impossible,
since I(c) = I(c′) = {c, c′} and c′ 6= c′′. Now each non-codeword in N(c) gives c at least 1

4 cover
by R1. If n ≥ 5, then it will have at least three cover. If c′ ∈ C3+ and N(c′) ∩ N1 = ∅, then c′

gives 2n−2
n2+n+1 cover to c by R2 and c has enough cover. If c′ ∈ Cn and N(c′) ∩ N1 = {x}, then

our situation is as in Figure 12 and c and x have a common non-codeword neighbour v which is
in N3+ since if v ∈ N1, then c ∈ Cn and if v ∈ N2, then

⋂
y∈I(v)N [y] = {v, c′′}, so c′′ ∈ C and

c′′ 6= c′ so {c, c′, c′′} ⊆ I(c) which is a contradiction. Since c has a neighbour in N3+ , it has at
least 9

4 cover by R1.
Now we have considered every word and each of them has at least 2 + 2n−2

n2+n+2 cover.

In the following remark, we briefly compare the previously obtained lower bound to one for
locating-dominating codes locating multiple irregularities.
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Remark 21. In this paper, we have mainly studied locating-dominating codes which can locate
one and detect multiple irregularities. Previously, in [8], so called (1,≤ `)-locating-dominating
codes of type B ((1,≤ `)-LDB codes for short), which can locate up to ` irregularities, have been

studied. In [8, Theorem 5], the lower bound
⌈
2n+1

n+1

⌉
for (1,≤ 2)-LDB codes has been achieved.

Since it can be shown that every (1,≤ 2)-LDB code is also a solid-locating-dominating code, our
lower bound in Theorem 20 improves the lower bound for (1,≤ 2)-LDB codes in Hamming spaces.

When n ≥ 5, the lower bound in Theorem 20 is attained by choosing as codewords all codewords
and their neighbours of a code with covering radius two and minimum distance five. Unfortunately,
codes like this are only known when n = 5 [2, Theorem 11.2.2]. Using this code, the following
theorem is obtained.

Theorem 22. We have γDLD(5) = 12.

Proof. We have γDLD(5) ≥ d(2 + 10−2
52+5+2 ) · 25

5+1e = 12 by Theorem 20. We can choose as our code
C all words of weight 0, 1, 4 or 5 since then each non-codeword is covered by two codewords and
the intersection of 1-balls of these two codewords contains a codeword (1 or 0).

In general, we can construct solid-locating-dominating codes from codes with covering radius
two.

Theorem 23. If D ⊆ Fn is a code with R(D) = 2, then the code

C = {c ∈ Fn | c ∈ N [d], d ∈ D}

is solid-locating-dominating.

Proof. Since D has covering radius of two, each non-codeword w is covered by at least two code-
words x, y ∈ C. These codewords on the other hand have a common codeword d, the one which
is also in D. Now {w, d} ⊆

⋂
c∈I(w)N [c] so C is a solid-locating-dominating code.

In [2, Theorem 4.5.8], Struik has constructed an infinite sequence of codes with covering radius
two such that we can build on top of it such a sequence of solid-locating-dominating codes that
they converge to our lower bound. We denote the cardinality of a ball with radius 2 in Fn with
V (n, 2).

Theorem 24. There exists a sequence of solid-locating-dominating codes (Cn)∞n=1 such that

lim
n→∞

|Cn|
2 2n

n+1

= 1.

Proof. Struik has constructed a sequence of codes (Dn)∞n=1 with covering radius two such that
|Dn|V (n,2)

2n
n→∞−−−−→ 1. If we choose Cn = {x ∈ Fn | a ∈ Dn, x ∈ N [a]}, this is a solid-locating-

dominating code by Theorem 23. We have |Cn| ≤ (n+ 1)|Dn|. Hence

|Cn|
2 2n

n+1

≤ (n+ 1)|Dn|
2 2n

n+1

=
|Dn|V (n, 2)

2n
+
|Dn|(n

2 −
1
2 )

2n
n→∞−−−−→ 1.

On the other hand we have from Theorem 20 |Cn|
2 2n

n+1

≥
(1+ n−1

n2+n+2
) 2n+1

n+1

2 2n

n+1

n→∞−−−−→ 1, which proofs the

theorem.

Using direct sum we can construct new solid-locating-dominating codes from existing ones in
a similar fashion as with self-locating-dominating codes.

Theorem 25. If C ⊆ Fn is a solid-locating-dominating code, then code D = C ⊕ F is also
solid-locating-dominating.
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Proof. Let (a, x) ∈ Fn+1 where a ∈ Fn, x ∈ F and a /∈ C. We have I(D; (a, x)) = {(y, x) | y ∈
I(C; a)}. If |I(C; a)| ≥ 3, also |I(D; (a, x))| ≥ 3. If I(C; a) = {c1, c2}, then there is a codeword
c3 ∈ N(c1)∩N(c2). Now we have I(D; (a, x)) = {(c1, x), (c2, x)} and (c3, x) ∈ N(c1, x)∩N(c2, x).
If I(C; a) = {c}, then |I(C; c)| = n and |I(D; (c, x))| = n+ 1. Since I(D; (a, x)) = {(c, x)}, D is a
solid-locating-dominating code.

For small lengths n the sizes of optimal self-locating-dominating and solid-locating-dominating
codes in Fn are presented in Table 1. The lower bounds of γDLD(n) for n ≤ 4 as well as γSLD(1),
γSLD(2) and γSLD(5) are achieved with computer search. The lower bounds of γSLD(3) and
γSLD(4) are due to the fact γSLD(n) ≥ γDLD(n). The rest of the lower bounds are due to
Theorems 17 and 20. The upper bound of γSLD(1) comes from the size |F| = 2 and the upper
bound of γDLD(1) is gained with the code C = {0}. The upper bounds of γSLD(2), γSLD(4),
γSLD(5) are from Theorem 19 and the upper bounds of γDLD(2), γDLD(3) and γDLD(4) are
from Theorem 25. We get γDLD(5) from Theorem 22, γSLD(3) is gained with the code C =
{x | w(x) = 0 or w(x) = 2}, the upper bound for γSLD(6) with the code C = {x ∈ F6 | x ∈
A,w(x) = 1, w(x) = 4 or w(x) = 6}, where A = {(1, 1, 1, 0, 0, 0), (1, 0, 0, 1, 1, 0), (1, 1, 0, 0, 0, 1),
(0, 1, 0, 1, 1, 0), (0, 0, 1, 1, 0, 1), (0, 0, 1, 0, 1, 1)} and the upper bound for γDLD(6) with the code
C = {x ∈ F6 | w(x) = 0, 1, 4 or 6}.

n γSLD(n) γDLD(n)
1 2 1
2 4 2
3 4 4
4 8 8
5 16 12
6 [22, 28] [21, 23]

Table 1: Optimal self-locating-dominating and solid-locating-dominating codes in binary
Hamming spaces of short lengths.

Above, we have discussed self-locating-dominating and solid-locating-dominating codes in bi-
nary Hamming spaces. In what follows, we briefly consider regular locating-dominating codes.
In particular, for certain lengths, we provide locating-dominating codes with the smallest known
cardinalities. Previously, locating-dominating codes in Fn have been considered, for example,
in [3, 8]. For future considerations, we first define the mapping π : Fn → F as follows:

π(u) =

{
0, if w(u) is even;
1, if w(u) is odd.

In the following theorem we introduce a novel approach for constructing new locating-dominating
codes based on known (suitable) identifying codes.

Theorem 26. Let C be an identifying code in Fn such that |I(C;u)| ≥ 2 for all u ∈ Fn \C. Then

D = {(π(u), u, u+ c) | u ∈ Fn, c ∈ C}

is a locating-dominating code in F2n+1.

Proof. Let a be an element of F, u and v be words of Fn and x = (a, u, u + v) be a word of
F2n+1. Assume further that I(C; v) = {c1, c2, . . . , ck} for some positive integer k. Then we have
the following observations:

• If a = π(u), then we have I(D;x) = {(a, u, u+ c1), (a, u, u+ c2), . . . , (a, u, u+ ck)}.

• Assume then that a 6= π(u). If v is not a codeword of C, then we have I(D;x) = {(a, u+v+
c1, u+v), (a, u+v+c2, u+v), . . . , (a, u+v+ck, u+v)}. Indeed, the word (a, u+v+ci, u+v)
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belongs to I(D;x) since its distance from x is equal to 1 and (a, u+ v + ci, u+ v) = (a, u+
v + ci, (u + v + ci) + ci) ∈ D. If v is a codeword of C, say v = c1, then we similarly have
I(D;x) = {(a+ 1, u, u+ v), (a, u+ v + c2, u+ v), . . . , (a, u+ v + ck, u+ v)}.

Assume then that x is not a codeword of D. By the previous observation, we first obtain
that I(D;x) 6= ∅ as I(C; v) 6= ∅. Furthermore, if |I(D;x)| ≥ 3, then the identifying set of x
immediately identifies the word x by Observation 15. Hence, we may assume that |I(D;x)| ≤ 2.
In what follows, we first suppose that |I(D;x)| = 2 implying |I(C; v)| = 2.

Assume first that a = π(u). Then, by the previous observation, we have I(D;x) = {(a, u, u+
c1), (a, u, u+ c2)}. Assume then (to the contrary) that there exists y ∈ F2n+1 \D such that x 6= y
and I(D;x) = I(D; y). Since (a, u, u+v+ c1 + c2) is the unique word in the set (N [(a, u, u+ c1)]∩
N [(a, u, u+ c2)]) \ {x}, we obtain that y = (a, u, u+ v+ c1 + c2). Therefore, as I(D;x) = I(D; y),
we have I(C; v + c1 + c2) = I(C; v). However, this is a contradiction since v + c1 + c2 6= v and C
is an identifying code in Fn.

Assume then that a 6= π(u). If v is not a codeword of C, then I(D;x) = {(a, u + v + c1, u +
v), (a, u+v+c2, u+v)} by the previous observation. Assume now (to the contrary) that there exists
y ∈ F2n+1\D such that x 6= y and I(D;x) = I(D; y). Then we obtain that y = (a, u+c1+c2, u+v)
since (a, u+c1+c2, u+v) is the unique word in the set (N [(a, u+v+c1, u+v)]∩N [(a, u+v+c2, u+
v)]) \ {x}. Denoting u′ = u+ c1 + c2 and v′ = v+ c1 + c2, we have π(u) = π(u′), y = (a, u′, u′+ v′)
and I(D; y) = {(a, u′ + v′ + c1, u

′ + v′), (a, u′ + v′ + c2, u
′ + v′)}. Therefore, as I(D;x) = I(D; y),

it follows that I(C; v) = I(C; v′) (a contradiction). Hence, we may assume that v is a codeword
of C, say v = c1. Then we have I(D;x) = {(a+ 1, u, u+ v), (a, u+ v+ c2, u+ v)}. Now we obtain
that y = (a + 1, u + v + c2, u + v) since it is the unique word in the set (N [(a + 1, u, u + v)] ∩
N [(a, u + v + c2, u + v)]) \ {x}. Denoting a′ = a + 1, u′ = u + v + c2, v′ = c2 and c′2 = c1, we
have y = (a′, u′, u′ + v′) and I(D; y) = {(a′ + 1, u′, u′ + v′), (a′, u′ + v′ + c′2, u

′ + v′)}. Therefore,
as I(D;x) = I(D; y), it follows that I(C; v) = {v, c2} = {v′, c′2} = I(C; v′) (a contradiction).

Finally, we assume that |I(D;x)| = 1. This implies that |I(C; v)| = 1. Hence, as |I(C;u)| ≥ 2
for all u ∈ Fn \ C, we know that v ∈ C. Then we may assume that a 6= π(u) as otherwise
x = (a, u, u + v) belongs to D. Now, by the previous observation, we have I(D;x) = {(a +
1, u, u + v)}. Assume to the contrary that there exists y = (a′, u′, u′ + v′) ∈ F2n+1 \ D such
that I(D;x) = I(D; y). As above, we obtain that v′ ∈ C and I(D; y) = {(a′ + 1, u′, u′ + v′)}.
Therefore, as I(D;x) = I(D; y), we have a′ = a, u′ = u, v′ = v and x = y (a contradiction). Thus,
in conclusion, we have shown that D is a locating-dominating code in F2n+1.

The best known upper bounds on γLD(Fn) for 1 ≤ n ≤ 10 have been presented in [3, Table 3].
For lengths n > 10, the smallest known locating-dominating codes are actually identifying codes.
(Recall that by the definitions any identifying code is also locating-dominating.) The currently best
known upper bounds on γID(Fn) can be found in [1]. In the following corollary, we present locating-
dominating codes in Fn with the smallest known cardinalities for the lengths n = 11 and n = 17.
These constructions significantly improve on the known upper bounds γLD(F11) ≤ γID(F11) ≤ 352
and γLD(F17) ≤ γID(F17) ≤ 18558.

Corollary 27. We have γLD(F11) ≤ 320 and γLD(F17) ≤ 16384.

Proof. Let C1 be a code in F5 formed by the the words of weight 1 and 4. In [11], it has been
shown that C1 is an identifying code in F5 (with 10 codewords). Moreover, it is straightforward
to verify that for all u ∈ F5 \ C1 we have |I(C1;u)| ≥ 2. Indeed, we have |I(0)| = 5 and each
word of weight two is covered by exactly two codewords of weight one. By symmetry, analogous
observations also hold for the words of weight three and the word 1. Therefore, by Theorem 26,
the code

D1 = {(π(u), u, u+ c) | u ∈ F5, c ∈ C1}

is locating-dominating in F11. Thus, we have γLD(F11) ≤ |D1| = 25 · |C1| = 320.
Let C2 be a code in F8 formed by the binary representations of length 8 of the following

integers: 3, 6, 8, 13, 18, 21, 27, 28, 32, 39, 41, 46, 49, 52, 58, 63, 65, 68, 74, 79, 80, 87, 89, 94, 98,
101, 107, 108, 115, 118, 120, 125, 129, 132, 138, 143, 144, 151, 153, 158, 162, 165, 171, 172, 179,
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182, 184, 189, 195, 198, 200, 205, 210, 213, 219, 220, 224, 231, 233, 238, 241, 244, 250, 255. It is
straightforward to verify that C2 has 64 codewords, C2 is an identifying code in F8 and for all
u ∈ F8 \ C2 we have |I(C2;u)| ≥ 2. Therefore, by Theorem 26, the code

D2 = {(π(u), u, u+ c) | u ∈ F8, c ∈ C2}

is locating-dominating in F17. Thus, we have γLD(F17) ≤ |D2| = 28 · |C2| = 16384.

With the help of the following theorem, which has been shown in [8, Theorem 7], we can
construct new improved locating-dominating codes from codes obtained in Corollary 27.

Theorem 28 ([8]). If C ⊆ Fn is a locating-dominating code, then C ⊕ F is also a locating-
dominating code.

The smallest currently known upper bounds for locating-dominating codes of lengths n = 12
and n = 18 are 684 and 35604 respectively [1].

Corollary 29. We have γLD(F12) ≤ 640 and γLD(F18) ≤ 32768.

Proof. The upper bounds follow immediately by applying Theorem 28 on codes obtained in Corol-
lary 27.

In [8, Theorem 15], a lower bound for γLD(Fn), which is currently the best known, has been
presented. Applying the lower bound on the lengths n = 11, n = 12, n = 17 and n = 18, we
obtain that γLD(F11) ≥ 309, γLD(F12) ≥ 576, γLD(F17) ≥ 13676 and γLD(F18) ≥ 26006. Thus,
comparing the lower bounds to the constructions of the previous corollaries, we can state the
gap between the new upper bound and existing lower bound is significantly smaller than the gap
between the previous upper and lower bounds.
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