9 research outputs found

    Reasoning with inconsistent possibilistic description logics ontologies with disjunctive assertions

    Get PDF
    We present a preliminary framework for reasoning with possibilistic description logics ontologies with disjunctive assertions (PoDLoDA ontologies for short). Given a PoDLoDA ontology, its terminological box is expressed in the description logic programming fragment but its assertional box allows four kinds of statements: an individual is a member of a concept, two individuals are related through a role, an individual is a member of the union of two or more concepts or two individuals are related through the union of two or more roles. Axioms and statements in PoDLoDA ontologies have a numerical certainty degree attached. A disjunctive assertion expresses a doubt respect to the membership of either individuals to union of concepts or pairs of individuals to the union of roles. Because PoDLoDA ontologies allow to represent incomplete and potentially inconsistent information, instance checking is addressed through an adaptation of Bodanza’s Suppositional Argumentation System that allows to reason with modus ponens and constructive dilemmas. We think that our approach will be of use for implementers of reasoning systems in the Semantic Web where uncertainty of membership of individuals to concepts or roles is present.Facultad de Informátic

    Reasoning with inconsistent possibilistic description logics ontologies with disjunctive assertions

    Get PDF
    We present a preliminary framework for reasoning with possibilistic description logics ontologies with disjunctive assertions (PoDLoDA ontologies for short). Given a PoDLoDA ontology, its terminological box is expressed in the description logic programming fragment but its assertional box allows four kinds of statements: an individual is a member of a concept, two individuals are related through a role, an individual is a member of the union of two or more concepts or two individuals are related through the union of two or more roles. Axioms and statements in PoDLoDA ontologies have a numerical certainty degree attached. A disjunctive assertion expresses a doubt respect to the membership of either individuals to union of concepts or pairs of individuals to the union of roles. Because PoDLoDA ontologies allow to represent incomplete and potentially inconsistent information, instance checking is addressed through an adaptation of Bodanza’s Suppositional Argumentation System that allows to reason with modus ponens and constructive dilemmas. We think that our approach will be of use for implementers of reasoning systems in the Semantic Web where uncertainty of membership of individuals to concepts or roles is present.Facultad de Informátic

    Toward Sensor-Based Context Aware Systems

    Get PDF
    This paper proposes a methodology for sensor data interpretation that can combine sensor outputs with contexts represented as sets of annotated business rules. Sensor readings are interpreted to generate events labeled with the appropriate type and level of uncertainty. Then, the appropriate context is selected. Reconciliation of different uncertainty types is achieved by a simple technique that moves uncertainty from events to business rules by generating combs of standard Boolean predicates. Finally, context rules are evaluated together with the events to take a decision. The feasibility of our idea is demonstrated via a case study where a context-reasoning engine has been connected to simulated heartbeat sensors using prerecorded experimental data. We use sensor outputs to identify the proper context of operation of a system and trigger decision-making based on context information

    Towards Contingent World Descriptions in Description Logics

    Get PDF
    The philosophical, logical, and terminological junctions between Description Logics (DLs) and Modal Logic (ML) are important because they can support the formal analysis of modal notions of ‘possibility’ and ‘necessity’ through the lens of DLs. This paper introduces functional contingents in order to (i) structurally and terminologically analyse ‘functional possibility’ and ‘functional necessity’ in DL world descriptions and (ii) logically and terminologically annotate DL world descriptions based on functional contingents. The most significant contributions of this research are the logical characterisation and terminological analysis of functional contingents in DL world descriptions. The ultimate goal is to investigate how modal operators can – logically and terminologically – be expressed within DL world descriptions

    Towards a Semantic Portal for Oncology using a Description Logic with Fuzzy Concrete Domains

    Get PDF
    This paper presents three systems that are fully implemented and a proposal for a fourth one. KASIMIR is a knowledge based-system using an ad hoc formalism similar to a simple description logic with concrete domains which is used for representing decision protocols in oncology. FUZZY-KASIMIR is an extension of KASIMIR with fuzzy concrete domains taking into account discontinuities in the decision that are due to numerical thresholds. Another extension of KASIMIR has led to embed it into a semantic portal for oncology, which has been motivated by the need to share knowledge for geographically distributed physicians and has led to change the ad hoc formalism to the standard OWL DL. A combination of these two extensions of KASIMIR is currently under implementation and will lead to a semantic portal for oncology with fuzzy datatypes

    Query Answering in Ontologies under Preference Rankings

    Full text link
    We present an ontological framework, based on preference rankings, that allows users to express their preferences between the knowledge explicitly available in the ontology. Using this formalism, the answers for a given query to an ontology can be ranked by preference, allowing users to retrieve the most preferred answers only. We provide a host of complexity results for the main computational tasks in this framework, for the general case, and for EL and DL-Litecore as underlying ontology languages

    Expressive probabilistic description logics

    Get PDF
    AbstractThe work in this paper is directed towards sophisticated formalisms for reasoning under probabilistic uncertainty in ontologies in the Semantic Web. Ontologies play a central role in the development of the Semantic Web, since they provide a precise definition of shared terms in web resources. They are expressed in the standardized web ontology language OWL, which consists of the three increasingly expressive sublanguages OWL Lite, OWL DL, and OWL Full. The sublanguages OWL Lite and OWL DL have a formal semantics and a reasoning support through a mapping to the expressive description logics SHIF(D) and SHOIN(D), respectively. In this paper, we present the expressive probabilistic description logics P-SHIF(D) and P-SHOIN(D), which are probabilistic extensions of these description logics. They allow for expressing rich terminological probabilistic knowledge about concepts and roles as well as assertional probabilistic knowledge about instances of concepts and roles. They are semantically based on the notion of probabilistic lexicographic entailment from probabilistic default reasoning, which naturally interprets this terminological and assertional probabilistic knowledge as knowledge about random and concrete instances, respectively. As an important additional feature, they also allow for expressing terminological default knowledge, which is semantically interpreted as in Lehmann's lexicographic entailment in default reasoning from conditional knowledge bases. Another important feature of this extension of SHIF(D) and SHOIN(D) by probabilistic uncertainty is that it can be applied to other classical description logics as well. We then present sound and complete algorithms for the main reasoning problems in the new probabilistic description logics, which are based on reductions to reasoning in their classical counterparts, and to solving linear optimization problems. In particular, this shows the important result that reasoning in the new probabilistic description logics is decidable/computable. Furthermore, we also analyze the computational complexity of the main reasoning problems in the new probabilistic description logics in the general as well as restricted cases

    Possibilistic uncertainty and fuzzy features in description logic. A preliminary discussion

    No full text
    International audienceThis short paper intends first to emphasize the basic distinction between gradual truth and uncertainty, and its relevance when dealing with classification. Then, the representation capabilities of first order possibilistic logic are pointed out, before briefly providing some hints, which may be of interest for dealing with uncertainty and handling some fuzzy features in description logic
    corecore